コード例 #1
0
def measure_ufo(out_path, metric, axis, width, height):
    pm = Ufo.PluginManager()
    sched = Ufo.Scheduler()
    graph = Ufo.TaskGraph()
    input_path = 'data/measure.tif'

    image = make_input(width, height)
    tifffile.imsave(input_path, image)

    reader = pm.get_task('read')
    measure = pm.get_task('measure')
    output = Ufo.OutputTask()

    reader.props.path = input_path
    measure.props.axis = axis
    measure.props.metric = metric

    graph.connect_nodes(reader, measure)
    graph.connect_nodes(measure, output)

    sched.run(graph)

    buf = output.get_output_buffer()
    gpu_result = ufo.numpy.asarray(buf)
    write_image(out_path, gpu_result)
コード例 #2
0
def _run(params, x_region, y_region, regions, index):
    """Execute one pass on all possible GPUs with slice ranges given by *regions*."""
    from gi.repository import Ufo

    pm = Ufo.PluginManager()
    graph = Ufo.TaskGraph()
    scheduler = Ufo.FixedScheduler()
    gpus = scheduler.get_resources().get_gpu_nodes()
    num_gpus = len(gpus)

    broadcast = Ufo.CopyTask()
    source = _setup_source(params, pm, graph)
    graph.connect_nodes(source, broadcast)

    for i, region in enumerate(regions):
        subindex = index * num_gpus + i
        _setup_graph(pm,
                     graph,
                     subindex,
                     x_region,
                     y_region,
                     region,
                     params,
                     broadcast,
                     gpu=gpus[i])

    scheduler.run(graph)
    duration = scheduler.props.time
    LOG.info('Execution time: {} s'.format(duration))

    return duration
コード例 #3
0
def create_preprocessing_pipeline(args,
                                  graph,
                                  source=None,
                                  processing_node=None):
    pm = Ufo.PluginManager()

    if not (args.width and args.height):
        width, height = determine_shape(args, args.projections)
        if not width:
            raise RuntimeError("Could not determine width from the input")
    if not args.width:
        args.width = width
    if not args.height:
        args.height = height - args.y

    LOG.debug('Image width x height: %d x %d', args.width, args.height)

    if source:
        current = source
    elif args.darks and args.flats:
        current = create_flat_correct_pipeline(args,
                                               graph,
                                               processing_node=processing_node)
    else:
        current = get_task('read')
        set_node_props(current, args)
        if not args.projections:
            raise RuntimeError('--projections not set')
        setup_read_task(current, args.projections, args)
        if args.absorptivity:
            absorptivity = get_task('calculate',
                                    processing_node=processing_node)
            absorptivity.props.expression = '-log(v)'
            graph.connect_nodes(current, absorptivity)
            current = absorptivity

    if args.transpose_input:
        transpose = get_task('transpose')
        graph.connect_nodes(current, transpose)
        current = transpose
        tmp = args.width
        args.width = args.height
        args.height = tmp

    if args.projection_filter != 'none':
        pf_first, pf_last = create_projection_filtering_pipeline(
            args, graph, processing_node=processing_node)
        graph.connect_nodes(current, pf_first)
        current = pf_last

    if args.energy is not None and args.propagation_distance is not None:
        pr_first, pr_last = create_phase_retrieval_pipeline(
            args, graph, processing_node=processing_node)
        graph.connect_nodes(current, pr_first)
        current = pr_last

    return current
コード例 #4
0
ファイル: preprocess.py プロジェクト: ldorofeeva/tofu
def run_flat_correct(args):
    graph = Ufo.TaskGraph()
    sched = Ufo.Scheduler()
    pm = Ufo.PluginManager()

    out_task = get_writer(args)
    flat_task = create_flat_correct_pipeline(args, graph)
    graph.connect_nodes(flat_task, out_task)
    sched.run(graph)
コード例 #5
0
def run_preprocessing(args):
    graph = Ufo.TaskGraph()
    sched = Ufo.Scheduler()
    pm = Ufo.PluginManager()

    out_task = get_writer(args)
    current = create_preprocessing_pipeline(args, graph)
    graph.connect_nodes(current, out_task)

    sched.run(graph)
コード例 #6
0
ファイル: preprocess.py プロジェクト: decarlof/tofu
def run_flat_correct(args):
    graph = Ufo.TaskGraph()
    sched = Ufo.Scheduler()
    pm = Ufo.PluginManager()

    out_task = pm.get_task('write')
    out_task.props.filename = args.output
    flat_task = create_flat_correct_pipeline(args, graph)
    graph.connect_nodes(flat_task, out_task)
    sched.run(graph)
コード例 #7
0
ファイル: preprocess.py プロジェクト: decarlof/tofu
    def generate_partial(append=False):
        pm = Ufo.PluginManager()
        graph = Ufo.TaskGraph()
        sched = Ufo.Scheduler()

        writer = pm.get_task('write')
        writer.props.filename = args.output
        writer.props.append = append

        sinos = create_sinogram_pipeline(args, graph)
        graph.connect_nodes(sinos, writer)
        sched.run(graph)
コード例 #8
0
def create_phase_retrieval_pipeline(args, graph, processing_node=None):
    LOG.debug('Creating phase retrieval pipeline')
    pm = Ufo.PluginManager()
    # Retrieve phase
    phase_retrieve = get_task('retrieve-phase',
                              processing_node=processing_node)
    pad_phase_retrieve = get_task('pad', processing_node=processing_node)
    crop_phase_retrieve = get_task('crop', processing_node=processing_node)
    fft_phase_retrieve = get_task('fft', processing_node=processing_node)
    ifft_phase_retrieve = get_task('ifft', processing_node=processing_node)
    width = args.width
    height = args.height
    default_padded_width = next_power_of_two(width)
    default_padded_height = next_power_of_two(height)

    if not args.retrieval_padded_width:
        args.retrieval_padded_width = default_padded_width
    if not args.retrieval_padded_height:
        args.retrieval_padded_height = default_padded_height
    fmt = 'Phase retrieval padding: {}x{} -> {}x{}'
    LOG.debug(
        fmt.format(width, height, args.retrieval_padded_width,
                   args.retrieval_padded_height))
    x = (args.retrieval_padded_width - width) / 2
    y = (args.retrieval_padded_height - height) / 2
    pad_phase_retrieve.props.x = x
    pad_phase_retrieve.props.y = y
    pad_phase_retrieve.props.width = args.retrieval_padded_width
    pad_phase_retrieve.props.height = args.retrieval_padded_height
    pad_phase_retrieve.props.addressing_mode = args.retrieval_padding_mode
    crop_phase_retrieve.props.x = x
    crop_phase_retrieve.props.y = y
    crop_phase_retrieve.props.width = width
    crop_phase_retrieve.props.height = height
    phase_retrieve.props.method = args.retrieval_method
    phase_retrieve.props.energy = args.energy
    phase_retrieve.props.distance = args.propagation_distance
    phase_retrieve.props.pixel_size = args.pixel_size
    phase_retrieve.props.regularization_rate = args.regularization_rate
    phase_retrieve.props.thresholding_rate = args.thresholding_rate
    fft_phase_retrieve.props.dimensions = 2
    ifft_phase_retrieve.props.dimensions = 2

    graph.connect_nodes(pad_phase_retrieve, fft_phase_retrieve)
    graph.connect_nodes(fft_phase_retrieve, phase_retrieve)
    graph.connect_nodes(phase_retrieve, ifft_phase_retrieve)
    graph.connect_nodes(ifft_phase_retrieve, crop_phase_retrieve)

    return (pad_phase_retrieve, crop_phase_retrieve)
コード例 #9
0
    def initialize(self):
        self.data    = self.get("DataStore").data()
        self.graph   = Ufo.TaskGraph()
        self.sched   = Ufo.Scheduler()

        manager = Ufo.PluginManager()
        self.read = manager.get_task('memory-in')
        self.sino = manager.get_task('transpose-projections')
        self.pad  = manager.get_task('pad')
        self.fft  = manager.get_task('fft')
        self.fltr = manager.get_task('filter')
        self.ifft = manager.get_task('ifft')
        self.bp   = manager.get_task('backproject')
        self.crop = manager.get_task('crop')
        self.write= manager.get_task('memory-out')
        self.LogInfo("initialized, UFO Reconstruction")
        return True
コード例 #10
0
def ufo_dfi(tomo, center, recon, theta, **kwargs):
    """
    Reconstruct object using UFO's Direct Fourier pipeline
    """
    import gi
    gi.require_version('Ufo', '0.0')
    from gi.repository import Ufo

    theta = theta[1] - theta[0]
    center = center[0]

    g = Ufo.TaskGraph()
    pm = Ufo.PluginManager()
    sched = Ufo.Scheduler()

    input_task = Ufo.InputTask()
    output_task = Ufo.OutputTask()
    pad = pm.get_task('zeropad')
    fft = pm.get_task('fft')
    ifft = pm.get_task('ifft')
    dfi = pm.get_task('dfi-sinc')
    swap_forward = pm.get_task('swap-quadrants')
    swap_backward = pm.get_task('swap-quadrants')

    pad.set_properties(oversampling=1, center_of_rotation=center)
    fft.set_properties(dimensions=1, auto_zeropadding=False)
    ifft.set_properties(dimensions=2)
    dfi.set_properties(angle_step=theta)

    g.connect_nodes(input_task, pad)
    g.connect_nodes(pad, fft)
    g.connect_nodes(fft, dfi)
    g.connect_nodes(dfi, swap_forward)
    g.connect_nodes(swap_forward, ifft)
    g.connect_nodes(ifft, swap_backward)
    g.connect_nodes(swap_backward, output_task)

    args = (input_task, output_task, tomo, recon)
    thread = threading.Thread(target=_process_data, args=args)
    thread.start()
    sched.run(g)
    thread.join()

    logger.info("UFO+DFI run time: {}s".format(sched.props.time))
コード例 #11
0
ファイル: test-transpose.py プロジェクト: ufo-kit/ufo-tests
def transpose_ufo(width, height, path):
    pm = Ufo.PluginManager()
    graph = Ufo.TaskGraph()
    sched = Ufo.Scheduler()
    input_path = 'data/transpose.tif'

    image = make_input(width, height)
    tifffile.imsave(input_path, image)

    reader = pm.get_task('read')
    transpose = pm.get_task('transpose')
    writer = pm.get_task('write')

    reader.props.path = input_path
    writer.props.filename = path

    graph.connect_nodes(reader, transpose)
    graph.connect_nodes(transpose, writer)
    sched.run(graph)
コード例 #12
0
def test_core_issue_64_fixed_expansion():
    g = Ufo.TaskGraph()
    pm = Ufo.PluginManager()
    sched = Ufo.FixedScheduler()
    arch = Ufo.ArchGraph()
    gpus = arch.get_gpu_nodes()
    sched.set_gpu_nodes(arch, gpus)

    generate = pm.get_task('generate')
    null = pm.get_task('null')

    generate.set_properties(number=5, width=512, height=512)

    for gpu in gpus:
        median = pm.get_task('median-filter')
        median.set_proc_node(gpu)
        g.connect_nodes(generate, median)
        g.connect_nodes(median, null)

    sched.run(g)
コード例 #13
0
def ufo_fbp(tomo, center, recon, theta, **kwargs):
    """
    Reconstruct object using UFO's FBP pipeline
    """
    import gi
    gi.require_version('Ufo', '0.0')
    from gi.repository import Ufo

    width = tomo.shape[2]
    theta = theta[1] - theta[0]
    center = center[0]

    g = Ufo.TaskGraph()
    pm = Ufo.PluginManager()
    sched = Ufo.Scheduler()

    input_task = Ufo.InputTask()
    output_task = Ufo.OutputTask()
    fft = pm.get_task('fft')
    ifft = pm.get_task('ifft')
    fltr = pm.get_task('filter')
    backproject = pm.get_task('backproject')

    ifft.set_properties(crop_width=width)
    backproject.set_properties(axis_pos=center,
                               angle_step=theta,
                               angle_offset=np.pi)

    g.connect_nodes(input_task, fft)
    g.connect_nodes(fft, fltr)
    g.connect_nodes(fltr, ifft)
    g.connect_nodes(ifft, backproject)
    g.connect_nodes(backproject, output_task)

    args = (input_task, output_task, tomo, recon)
    thread = threading.Thread(target=_process_data, args=args)
    thread.start()
    sched.run(g)
    thread.join()

    logger.info("UFO+FBP run time: {}s".format(sched.props.time))
コード例 #14
0
def create_projection_filtering_pipeline(args, graph, processing_node=None):
    pm = Ufo.PluginManager()
    pad = get_task('pad', processing_node=processing_node)
    crop = get_task('crop', processing_node=processing_node)
    fft = get_task('fft', processing_node=processing_node)
    ifft = get_task('ifft', processing_node=processing_node)
    fltr = get_task('filter', processing_node=processing_node)

    setup_padding(pad, crop, args.width, args.height,
                  args.projection_padding_mode)
    fft.props.dimensions = 1
    ifft.props.dimensions = 1
    fltr.props.filter = args.projection_filter
    fltr.props.scale = args.projection_filter_scale

    graph.connect_nodes(pad, fft)
    graph.connect_nodes(fft, fltr)
    graph.connect_nodes(fltr, ifft)
    graph.connect_nodes(ifft, crop)

    return (pad, crop)
コード例 #15
0
ファイル: preprocess.py プロジェクト: decarlof/tofu
def create_sinogram_pipeline(args, graph):
    """Create sinogram generating pipeline based on arguments from *args*."""
    pm = Ufo.PluginManager()
    sinos = pm.get_task('transpose-projections')

    if args.number:
        region = (args.start, args.start + args.number, args.step)
        num_projections = len(range(*region))
    else:
        num_projections = len(get_filenames(args.projections))

    sinos.props.number = num_projections

    if args.darks and args.flats:
        start = create_flat_correct_pipeline(args, graph)
    else:
        start = pm.get_task('read')
        start.props.path = args.projections
        set_node_props(start, args)

    graph.connect_nodes(start, sinos)

    return sinos
コード例 #16
0
import os
import logging
import glob
import tempfile
import sys
import numpy as np
from gi.repository import Ufo
from tofu.preprocess import create_flat_correct_pipeline
from tofu.util import (set_node_props, setup_read_task, get_filenames,
                       get_first_filename, next_power_of_two, read_image,
                       determine_shape)
from tofu.tasks import get_writer


LOG = logging.getLogger(__name__)
pm = Ufo.PluginManager()


def get_task(name, **kwargs):
    task = pm.get_task(name)
    task.set_properties(**kwargs)
    return task


def get_dummy_reader(params):
    if params.width is None and params.height is None:
        raise RuntimeError("You have to specify --width and --height when generating data.")

    width, height = params.width, params.height
    reader = get_task('dummy-data', width=width, height=height, number=params.number or 1)
    return reader, width, height
コード例 #17
0
 def __init__(self):
     self.env = Environment(Ufo.PluginManager())
     self.task_names = self.env.pm.get_all_task_names()
コード例 #18
0
ファイル: test_plugins.py プロジェクト: yodamaster/ufo-core
def have_camera_plugin():
    from gi.repository import Ufo

    return 'camera' in Ufo.PluginManager().get_all_task_names()
コード例 #19
0
ファイル: preprocess.py プロジェクト: decarlof/tofu
def create_flat_correct_pipeline(args, graph):
    """
    Create flat field correction pipeline. All the settings are provided in
    *args*. *graph* is used for making the connections. Returns the flat field
    correction task which can be used for further pipelining.
    """
    pm = Ufo.PluginManager()

    if args.projections is None or args.flats is None or args.darks is None:
        raise RuntimeError(
            "You must specify --projections, --flats and --darks.")

    def get_task(name, **kwargs):
        """Get task *name* with properties *kwargs*."""
        task = pm.get_task(name)
        task.set_properties(**kwargs)
        return task

    reader = get_task('read')
    dark_reader = get_task('read')
    flat_before_reader = get_task('read')

    ffc = get_task('flat-field-correct',
                   dark_scale=args.dark_scale,
                   absorption_correct=args.absorptivity,
                   fix_nan_and_inf=args.fix_nan_and_inf)
    mode = args.reduction_mode.lower()
    roi_args = make_subargs(args, ['y', 'height', 'y_step'])
    set_node_props(reader, args)
    set_node_props(dark_reader, roi_args)
    set_node_props(flat_before_reader, roi_args)

    for r, path in ((reader, args.projections), (dark_reader, args.darks),
                    (flat_before_reader, args.flats)):
        setup_read_task(r, path, args)

    LOG.debug(
        "Doing flat field correction using reduction mode `{}'".format(mode))

    if args.flats2:
        flat_after_reader = get_task('read')
        setup_read_task(flat_after_reader, args.flats2, args)
        set_node_props(flat_after_reader, roi_args)
        num_files = len(get_filenames(args.projections))
        can_read = len(range(args.start, num_files, args.step))
        number = args.number if args.number else num_files
        num_read = min(can_read, number)
        flat_interpolate = get_task('interpolate', number=num_read)

    if args.resize:
        LOG.debug("Resize input data by factor of {}".format(args.resize))
        proj_bin = get_task('bin', size=args.resize)
        dark_bin = get_task('bin', size=args.resize)
        flat_bin = get_task('bin', size=args.resize)
        graph.connect_nodes(reader, proj_bin)
        graph.connect_nodes(dark_reader, dark_bin)
        graph.connect_nodes(flat_before_reader, flat_bin)

        reader, dark_reader, flat_before_reader = proj_bin, dark_bin, flat_bin

        if args.flats2:
            flat_bin = get_task('bin', size=args.resize)
            graph.connect_nodes(flat_after_reader, flat_bin)
            flat_after_reader = flat_bin

    if mode == 'median':
        dark_stack = get_task('stack', number=len(get_filenames(args.darks)))
        dark_reduced = get_task('flatten', mode='median')
        flat_before_stack = get_task('stack',
                                     number=len(get_filenames(args.flats)))
        flat_before_reduced = get_task('flatten', mode='median')

        graph.connect_nodes(dark_reader, dark_stack)
        graph.connect_nodes(dark_stack, dark_reduced)
        graph.connect_nodes(flat_before_reader, flat_before_stack)
        graph.connect_nodes(flat_before_stack, flat_before_reduced)

        if args.flats2:
            flat_after_stack = get_task('stack',
                                        number=len(get_filenames(args.flats2)))
            flat_after_reduced = get_task('flatten', mode='median')
            graph.connect_nodes(flat_after_reader, flat_after_stack)
            graph.connect_nodes(flat_after_stack, flat_after_reduced)
    elif mode == 'average':
        dark_reduced = get_task('average')
        flat_before_reduced = get_task('average')
        graph.connect_nodes(dark_reader, dark_reduced)
        graph.connect_nodes(flat_before_reader, flat_before_reduced)

        if args.flats2:
            flat_after_reduced = get_task('average')
            graph.connect_nodes(flat_after_reader, flat_after_reduced)
    else:
        raise ValueError('Invalid reduction mode')

    graph.connect_nodes_full(reader, ffc, 0)
    graph.connect_nodes_full(dark_reduced, ffc, 1)

    if args.flats2:
        graph.connect_nodes_full(flat_before_reduced, flat_interpolate, 0)
        graph.connect_nodes_full(flat_after_reduced, flat_interpolate, 1)
        graph.connect_nodes_full(flat_interpolate, ffc, 2)
    else:
        graph.connect_nodes_full(flat_before_reduced, ffc, 2)

    return ffc
コード例 #20
0
 def __init__(self):
     self._wrapped = Ufo.PluginManager()
コード例 #21
0
import logging
from gi.repository import Ufo

LOG = logging.getLogger(__name__)
PLUGIN_MANAGER = Ufo.PluginManager()


def get_task(name, processing_node=None, **kwargs):
    task = PLUGIN_MANAGER.get_task(name)
    task.set_properties(**kwargs)
    if processing_node and task.uses_gpu():
        LOG.debug("Assigning task '%s' to node %d", name,
                  processing_node.get_index())
        task.set_proc_node(processing_node)

    return task


def get_writer(params):
    if 'dry_run' in params and params.dry_run:
        LOG.debug("Discarding data output")
        return get_task('null', download=True)

    outname = params.output
    LOG.debug("Writing output to {}".format(outname))
    writer = get_task('write', filename=outname)

    writer.props.append = params.output_append

    if params.output_bitdepth != 32:
        writer.props.bits = params.output_bitdepth
コード例 #22
0
ファイル: preprocess.py プロジェクト: ldorofeeva/tofu
def create_phase_retrieval_pipeline(args, graph, processing_node=None):
    LOG.debug('Creating phase retrieval pipeline')
    pm = Ufo.PluginManager()
    # Retrieve phase
    phase_retrieve = get_task('retrieve-phase',
                              processing_node=processing_node)
    pad_phase_retrieve = get_task('pad', processing_node=processing_node)
    crop_phase_retrieve = get_task('crop', processing_node=processing_node)
    fft_phase_retrieve = get_task('fft', processing_node=processing_node)
    ifft_phase_retrieve = get_task('ifft', processing_node=processing_node)
    last = crop_phase_retrieve
    width = args.width
    height = args.height
    default_padded_width = next_power_of_two(width)
    default_padded_height = next_power_of_two(height)

    if not args.retrieval_padded_width:
        args.retrieval_padded_width = default_padded_width
    if not args.retrieval_padded_height:
        args.retrieval_padded_height = default_padded_height
    fmt = 'Phase retrieval padding: {}x{} -> {}x{}'
    LOG.debug(
        fmt.format(width, height, args.retrieval_padded_width,
                   args.retrieval_padded_height))
    x = (args.retrieval_padded_width - width) / 2
    y = (args.retrieval_padded_height - height) / 2
    pad_phase_retrieve.props.x = x
    pad_phase_retrieve.props.y = y
    pad_phase_retrieve.props.width = args.retrieval_padded_width
    pad_phase_retrieve.props.height = args.retrieval_padded_height
    pad_phase_retrieve.props.addressing_mode = args.retrieval_padding_mode
    crop_phase_retrieve.props.x = x
    crop_phase_retrieve.props.y = y
    crop_phase_retrieve.props.width = width
    crop_phase_retrieve.props.height = height
    phase_retrieve.props.method = args.retrieval_method
    phase_retrieve.props.energy = args.energy
    phase_retrieve.props.distance = args.propagation_distance
    phase_retrieve.props.pixel_size = args.pixel_size
    phase_retrieve.props.regularization_rate = args.regularization_rate
    phase_retrieve.props.thresholding_rate = args.thresholding_rate
    phase_retrieve.props.frequency_cutoff = args.frequency_cutoff
    fft_phase_retrieve.props.dimensions = 2
    ifft_phase_retrieve.props.dimensions = 2

    graph.connect_nodes(pad_phase_retrieve, fft_phase_retrieve)
    graph.connect_nodes(fft_phase_retrieve, phase_retrieve)
    graph.connect_nodes(phase_retrieve, ifft_phase_retrieve)
    graph.connect_nodes(ifft_phase_retrieve, crop_phase_retrieve)
    calculate = get_task('calculate', processing_node=processing_node)
    if args.retrieval_method == 'tie':
        expression = '(isinf (v) || isnan (v) || (v <= 0)) ? 0.0f :'
        if args.delta is not None:
            import numpy as np
            lam = 6.62606896e-34 * 299792458 / (args.energy * 1.60217733e-16)
            # Compute mju from the fact that beta = 10^-regularization_rate * delta
            # and mju = 4 * Pi * beta / lambda
            mju = 4 * np.pi * 10**-args.regularization_rate * args.delta / lam
            # Take the logarithm to obtain the projected thickness
            expression += '-log ({} * v) * {}'.format(
                2 / 10**args.regularization_rate, 1 / mju)
        else:
            expression += '-log (v)'
    else:
        expression = '(isinf (v) || isnan (v)) ? 0.0f : -v'
    calculate.props.expression = expression
    graph.connect_nodes(crop_phase_retrieve, calculate)
    last = calculate

    return (pad_phase_retrieve, last)