コード例 #1
0
ファイル: merge_tiles.py プロジェクト: rendrom/merge_tiles
 def create_raster_worldfile(self, path, xy_range=None):
     from globalmaptiles import GlobalMercator
     x_y = xy_range or self.xy_range
     im = Image.open(path)
     gw_path = ''.join(os.path.split(path)[-1].split('.')[:-1])
     world_file_path = os.path.join(
         os.path.curdir, os.path.join(self.output_dir, "%s.jgw" % gw_path))
     with open(world_file_path, 'w') as world:
         min_y, min_x = num2deg(x_y['xMin'], x_y['yMax'] + 1, self.zoom)
         max_y, max_x = num2deg(x_y['xMax'] + 1, x_y['yMin'], self.zoom)
         gm = GlobalMercator()
         min_x, min_y = gm.LatLonToMeters(min_y, min_x)
         max_x, max_y = gm.LatLonToMeters(max_y, max_x)
         x_pixel_size = (max_x - min_x) / im.size[0]
         y_pixel_size = (max_y - min_y) / im.size[1]
         world.write(b"%f\n" % x_pixel_size
                     )  # pixel size in the x-direction in map units/pixel
         world.write(b"%f\n" % 0)  # rotation about y-axis
         world.write(b"%f\n" % 0)  # rotation about x-axis
         world.write(
             b"%f\n" % -(abs(y_pixel_size))
         )  # pixel size in the y-direction in map units. Always negative
         world.write(
             b"%f\n" %
             min_x)  # x-coordinate of the center of the upper left pixel
         world.write(
             b"%f\n" %
             max_y)  # y-coordinate of the center of the upper left pixel
コード例 #2
0
def GetGridID(Coord):
  lat=Coord[0]/1000
  lon=Coord[1]/1000

  tz=8

  mercator = GlobalMercator()
  mx, my = mercator.LatLonToMeters( Coord[0]/1000.0, Coord[1]/1000.0 )
  tx, ty = mercator.MetersToTile( mx, my, tz )

  gx, gy = mercator.GoogleTile(tx, ty, tz)
	#print "\tGoogle:", gx, gy

  #print tx, ty

  return ("%03d" % gx)+("%03d" % gy)
コード例 #3
0
def main():

    merc = GlobalMercator()

    file = open('pts1990.csv', 'rb')
    reader = csv.DictReader(file, delimiter=',')
    print "x,y,quad,category"

    for row in reader:
        lat = float(row['lat'])
        long = float(row['long'])
        x, y = merc.LatLonToMeters(lat, long)
        tx, ty = merc.MetersToTile(x, y, 21)

        # Create a unique quadkey for each point object

        quadkey = merc.QuadTree(tx, ty, 21)

        # Create categorical variable for the race category

        # Export data to the database file

        print "{},{},{},{}".format(x, y, quadkey, row['group'])
コード例 #4
0
def main(shapes_file_list, db_file, groups):
    field_ids = {}
    # Create a GlobalMercator object for later conversions

    merc = GlobalMercator()

    # Set-up the output db

    conn = sqlite3.connect(db_file)
    c = conn.cursor()
    #c.execute("drop table if exists people_by_group")
    c.execute(
        "create table if not exists people_by_group (x real, y real, quadkey text, rand real, group_type text)"
    )
    c.execute("drop index if exists i_quadkey")

    # Open the shapefiles

    for input_filename in shapes_file_list:
        print "Processing file {0}".format(input_filename)
        ds = ogr.Open(input_filename)

        if ds is None:
            print "Open failed.\n"
            sys.exit(1)

        # Obtain the first (and only) layer in the shapefile

        lyr = ds.GetLayerByIndex(0)

        lyr.ResetReading()

        # Obtain the field definitions in the shapefile layer

        feat_defn = lyr.GetLayerDefn()
        field_defns = [
            feat_defn.GetFieldDefn(i) for i in range(feat_defn.GetFieldCount())
        ]

        # Set up a coordinate transformation to latlon
        wgs84 = osr.SpatialReference()
        wgs84.SetWellKnownGeogCS("WGS84")
        sr = lyr.GetSpatialRef()
        xformer = osr.CoordinateTransformation(sr, wgs84)

        # Obtain the index of the group fields
        for i, defn in enumerate(field_defns):
            if defn.GetName() in groups:
                field_ids[defn.GetName()] = i

        # Obtain the number of features (Census Blocks) in the layer
        n_features = len(lyr)

        # Iterate through every feature (Census Block Ploygon) in the layer,
        # obtain the population counts, and create a point for each person within
        # that feature.
        start_time = time.time()
        for j, feat in enumerate(lyr):

            # Print a progress read-out for every 1000 features and export to hard disk
            if j % 1000 == 0:
                conn.commit()
                perc_complete = (j + 1) / float(n_features)
                time_left = (1 - perc_complete) * (
                    (time.time() - start_time) / perc_complete)
                print "%s/%s (%0.2f%%) est. time remaining %0.2f mins" % (
                    j + 1, n_features, 100 * perc_complete, time_left / 60)

            # Obtain total population, racial counts, and state fips code of the individual census block

            counts = {}
            for f in field_ids:
                val = feat.GetField(field_ids[f])
                if val:
                    counts[f] = int(val)
                else:
                    counts[f] = 0

            # Obtain the OGR polygon object from the feature
            geom = feat.GetGeometryRef()
            if geom is None:
                continue

            # Convert the OGR Polygon into a Shapely Polygon
            poly = loads(geom.ExportToWkb())

            if poly is None:
                continue

            # Obtain the "boundary box" of extreme points of the polygon
            bbox = poly.bounds

            if not bbox:
                continue

            leftmost, bottommost, rightmost, topmost = bbox

            # Generate a point object within the census block for every person by race

            for f in field_ids:
                for i in range(counts[f]):
                    # Choose a random longitude and latitude within the boundary box
                    # and within the orginial ploygon of the census block
                    while True:
                        samplepoint = Point(uniform(leftmost, rightmost),
                                            uniform(bottommost, topmost))
                        if samplepoint is None:
                            break
                        if poly.contains(samplepoint):
                            break

                    # Convert the longitude and latitude coordinates to meters and
                    # a tile reference

                    try:
                        # In general we don't know the coordinate system of input data
                        # so transform it to latlon
                        lon, lat, z = xformer.TransformPoint(
                            samplepoint.x, samplepoint.y)
                        x, y = merc.LatLonToMeters(lat, lon)
                    except:
                        print "Failed to convert ", lat, lon
                        sys.exit(-1)
                    tx, ty = merc.MetersToTile(x, y, 21)

                    # Create a unique quadkey for each point object
                    quadkey = merc.QuadTree(tx, ty, 21)

                    # Create categorical variable for the race category
                    group_type = f

                    # Export data to the database file
                    try:
                        c.execute(
                            "insert into people_by_group values (?,?,?,random(),?)",
                            (x, y, quadkey, group_type))
                    except:
                        print "Failed to insert ", x, y, tx, ty, group_type
                        sys.exit(-1)

        c.execute(
            "create index if not exists i_quadkey on people_by_group(x, y, quadkey, rand, group_type)"
        )
        conn.commit()
コード例 #5
0
def main(input_filename, output_filename):

    # Create a GlobalMercator object for later conversions

    merc = GlobalMercator()

    # Open the shapefile

    ds = ogr.Open(input_filename)

    if ds is None:
        print "Open failed.\n"
        sys.exit(1)

    # Obtain the first (and only) layer in the shapefile

    lyr = ds.GetLayerByIndex(0)

    lyr.ResetReading()

    # Obtain the field definitions in the shapefile layer

    feat_defn = lyr.GetLayerDefn()
    field_defns = [
        feat_defn.GetFieldDefn(i) for i in range(feat_defn.GetFieldCount())
    ]

    # Obtain the index of the field for the count for whites, blacks, Asians,
    # Others, and Hispanics.

    for i, defn in enumerate(field_defns):

        if defn.GetName() == "POP10":
            pop_field = i

        if defn.GetName() == "nh_white_n":
            white_field = i

        if defn.GetName() == "nh_black_n":
            black_field = i

        if defn.GetName() == "nh_asian_n":
            asian_field = i

        if defn.GetName() == "hispanic_n":
            hispanic_field = i

        if defn.GetName() == "NH_Other_n":
            other_field = i

        if defn.GetName() == "STATEFP10":
            statefips_field = i

    # Set-up the output file

    conn = sqlite3.connect(output_filename)
    c = conn.cursor()
    c.execute(
        "create table if not exists people_by_race (statefips text, x text, y text, quadkey text, race_type text)"
    )

    # Obtain the number of features (Census Blocks) in the layer

    n_features = len(lyr)

    # Iterate through every feature (Census Block Ploygon) in the layer,
    # obtain the population counts, and create a point for each person within
    # that feature.

    for j, feat in enumerate(lyr):

        # Print a progress read-out for every 1000 features and export to hard disk

        if j % 1000 == 0:
            conn.commit()
            print "%s/%s (%0.2f%%)" % (j + 1, n_features, 100 *
                                       ((j + 1) / float(n_features)))

        # Obtain total population, racial counts, and state fips code of the individual census block

        pop = int(feat.GetField(pop_field))
        white = int(feat.GetField(white_field))
        black = int(feat.GetField(black_field))
        asian = int(feat.GetField(asian_field))
        hispanic = int(feat.GetField(hispanic_field))
        other = int(feat.GetField(other_field))
        statefips = feat.GetField(statefips_field)

        # Obtain the OGR polygon object from the feature

        geom = feat.GetGeometryRef()

        if geom is None:
            continue

        # Convert the OGR Polygon into a Shapely Polygon

        poly = loads(geom.ExportToWkb())

        if poly is None:
            continue

        # Obtain the "boundary box" of extreme points of the polygon

        bbox = poly.bounds

        if not bbox:
            continue

        leftmost, bottommost, rightmost, topmost = bbox

        # Generate a point object within the census block for every person by race

        for i in range(white):

            # Choose a random longitude and latitude within the boundary box
            # and within the orginial ploygon of the census block

            while True:

                samplepoint = Point(uniform(leftmost, rightmost),
                                    uniform(bottommost, topmost))

                if samplepoint is None:
                    break

                if poly.contains(samplepoint):
                    break

            # Convert the longitude and latitude coordinates to meters and
            # a tile reference

            x, y = merc.LatLonToMeters(samplepoint.y, samplepoint.x)
            tx, ty = merc.MetersToTile(x, y, 21)

            # Create a unique quadkey for each point object

            quadkey = merc.QuadTree(tx, ty, 21)

            # Create categorical variable for the race category

            race_type = 'w'

            # Export data to the database file

            c.execute("insert into people_by_race values (?,?,?,?,?)",
                      (statefips, x, y, quadkey, race_type))

        for i in range(black):

            # Choose a random longitude and latitude within the boundary box
            # points and within the orginial ploygon of the census block

            while True:

                samplepoint = Point(uniform(leftmost, rightmost),
                                    uniform(bottommost, topmost))

                if samplepoint is None:
                    break

                if poly.contains(samplepoint):
                    break

            # Convert the longitude and latitude coordinates to meters and
            # a tile reference

            x, y = merc.LatLonToMeters(samplepoint.y, samplepoint.x)
            tx, ty = merc.MetersToTile(x, y, 21)

            # Create a unique quadkey for each point object

            quadkey = merc.QuadTree(tx, ty, 21)

            # Create categorical variable for the race category

            race_type = 'b'

            # Export data to the database file

            c.execute("insert into people_by_race values (?,?,?,?,?)",
                      (statefips, x, y, quadkey, race_type))

        for i in range(asian):

            # Choose a random longitude and latitude within the boundary box
            # points and within the orginial ploygon of the census block

            while True:

                samplepoint = Point(uniform(leftmost, rightmost),
                                    uniform(bottommost, topmost))

                if samplepoint is None:
                    break

                if poly.contains(samplepoint):
                    break

            # Convert the longitude and latitude coordinates to meters and
            # a tile reference

            x, y = merc.LatLonToMeters(samplepoint.y, samplepoint.x)
            tx, ty = merc.MetersToTile(x, y, 21)

            # Create a unique quadkey for each point object

            quadkey = merc.QuadTree(tx, ty, 21)

            # Create categorical variable for the race category

            race_type = 'a'

            # Export data to the database file

            c.execute("insert into people_by_race values (?,?,?,?,?)",
                      (statefips, x, y, quadkey, race_type))

        for i in range(hispanic):

            # Choose a random longitude and latitude within the boundary box
            # points and within the orginial ploygon of the census block

            while True:

                samplepoint = Point(uniform(leftmost, rightmost),
                                    uniform(bottommost, topmost))

                if samplepoint is None:
                    break

                if poly.contains(samplepoint):
                    break

            # Convert the longitude and latitude coordinates to meters and
            # a tile reference

            x, y = merc.LatLonToMeters(samplepoint.y, samplepoint.x)
            tx, ty = merc.MetersToTile(x, y, 21)

            # Create a unique quadkey for each point object

            quadkey = merc.QuadTree(tx, ty, 21)

            # Create categorical variable for the race category

            race_type = 'h'

            # Export data to the database file

            c.execute("insert into people_by_race values (?,?,?,?,?)",
                      (statefips, x, y, quadkey, race_type))

        for i in range(other):

            # Choose a random longitude and latitude within the boundary box
            # points and within the orginial ploygon of the census block

            while True:

                samplepoint = Point(uniform(leftmost, rightmost),
                                    uniform(bottommost, topmost))

                if samplepoint is None:
                    break

                if poly.contains(samplepoint):
                    break

            # Convert the longitude and latitude coordinates to meters and
            # a tile reference

            x, y = merc.LatLonToMeters(samplepoint.y, samplepoint.x)
            tx, ty = merc.MetersToTile(x, y, 21)

            # Create a unique quadkey for each point object

            quadkey = merc.QuadTree(tx, ty, 21)

            # Create categorical variable for the race category

            race_type = 'o'

            # Export data to the database file

            c.execute("insert into people_by_race values (?,?,?,?,?)",
                      (statefips, x, y, quadkey, race_type))

    conn.commit()
コード例 #6
0
    if zoomlevel == None or lat == None or lon == None:
        Usage("ERROR: Specify at least 'zoomlevel', 'lat' and 'lon'.")
    if latmax is not None and lonmax is None:
        Usage("ERROR: Both 'latmax' and 'lonmax' must be given.")

    if latmax != None and lonmax != None:
        if latmax < lat:
            Usage("ERROR: 'latmax' must be bigger then 'lat'")
        if lonmax < lon:
            Usage("ERROR: 'lonmax' must be bigger then 'lon'")
        boundingbox = (lon, lat, lonmax, latmax)

    tz = zoomlevel
    mercator = GlobalMercator()

    mx, my = mercator.LatLonToMeters(lat, lon)
    print "Spherical Mercator (ESPG:900913) coordinates for lat/lon: "
    print(mx, my)
    tminx, tminy = mercator.MetersToTile(mx, my, tz)

    if boundingbox:
        mx, my = mercator.LatLonToMeters(latmax, lonmax)
        print "Spherical Mercator (ESPG:900913) cooridnate for maxlat/maxlon: "
        print(mx, my)
        tmaxx, tmaxy = mercator.MetersToTile(mx, my, tz)
    else:
        tmaxx, tmaxy = tminx, tminy

    for ty in range(tminy, tmaxy + 1):
        for tx in range(tminx, tmaxx + 1):
            tilefilename = "%s/%s/%s" % (tz, tx, ty)
コード例 #7
0
ファイル: dotfile_wac.py プロジェクト: sloreti/jobmaps
def main(input_filename, wac_filename, output_filename):
    
    wac = pd.io.parsers.read_csv(wac_filename)
    wac.set_index(wac['w_geocode'],inplace = True)
    
    #Create columns for four megasectors
    
    wac['makers'] = wac['CNS01']+wac['CNS02']+wac['CNS03']+wac['CNS04']+wac['CNS05']+wac['CNS06']+wac['CNS08']
    wac['services'] = wac['CNS07']+wac['CNS14'] + wac['CNS17'] + wac['CNS18']
    wac['professions'] = wac['CNS09'] + wac['CNS10'] + wac['CNS11'] + wac['CNS12'] + wac['CNS13']
    wac['support'] = wac['CNS15'] + wac['CNS16'] + wac['CNS19'] + wac['CNS20']

    assert sum(wac['C000'] -(wac['makers']+wac['services']+wac['professions']+wac['support'])) == 0 or rw[1]['abbrev'] == 'ny'

    #In NY there's one block in Brooklyn with 177000 jobs. It appears to be rounding entries > 100k, which is making the assertion fail.
    #This is the Brooklyn Post Office + Brooklyn Law School + Borough Hall. So maybe weirdness around post office? 

    #Set up outfile as csv
    outf = open(output_filename,'w')
    outf.write('x,y,sect,inctype,quadkey\n')
    
    # Create a GlobalMercator object for later conversions
    
    merc = GlobalMercator()

    # Open the shapefile
    
    ds = ogr.Open(input_filename)
    
    if ds is None:
        print "Open failed.\n"
        sys.exit( 1 )

    # Obtain the first (and only) layer in the shapefile
    
    lyr = ds.GetLayerByIndex(0)

    lyr.ResetReading()

    # Obtain the field definitions in the shapefile layer

    feat_defn = lyr.GetLayerDefn()
    field_defns = [feat_defn.GetFieldDefn(i) for i in range(feat_defn.GetFieldCount())]

    # Obtain the index of the field for the count for whites, blacks, Asians, 
    # Others, and Hispanics.
    
    for i, defn in enumerate(field_defns):
        print defn.GetName()
        #GEOID is what we want to merge on
        if defn.GetName() == "GEOID10":
            fips = i

    # Set-up the output file
    
    #conn = sqlite3.connect( output_filename )
    #c = conn.cursor()
    #c.execute( "create table if not exists people_by_race (statefips text, x text, y text, quadkey text, race_type text)" )

    # Obtain the number of features (Census Blocks) in the layer
    
    n_features = len(lyr)

    # Iterate through every feature (Census Block Ploygon) in the layer,
    # obtain the population counts, and create a point for each person within
    # that feature.

    for j, feat in enumerate( lyr ):
        # Print a progress read-out for every 1000 features and export to hard disk
        
        if j % 1000 == 0:
            #conn.commit()
            print "%s/%s (%0.2f%%)"%(j+1,n_features,100*((j+1)/float(n_features)))
            
        # Obtain total population, racial counts, and state fips code of the individual census block
        blkfips = int(feat.GetField(fips))
        
        try:
            jobs = {'m':wac.loc[blkfips,'makers'],'s':wac.loc[blkfips,'services'],'p':wac.loc[blkfips,'professions'],'t':wac.loc[blkfips,'support']}
        except KeyError:
            #print "no"
#            missing.append(blkfips) #Missing just means no jobs there. Lots of blocks have this.
            continue            
        income = {'l':wac.loc[blkfips,'CE01'],'m':wac.loc[blkfips,'CE02'],'h':wac.loc[blkfips,'CE03']}
        # Obtain the OGR polygon object from the feature

        geom = feat.GetGeometryRef()
        
        if geom is None:
            continue
        
        # Convert the OGR Polygon into a Shapely Polygon
        
        poly = loads(geom.ExportToWkb())
        
        if poly is None:
            continue        
            
        # Obtain the "boundary box" of extreme points of the polygon

        bbox = poly.bounds
        
        if not bbox:
            continue
     
        leftmost,bottommost,rightmost,topmost = bbox
    
        # Generate a point object within the census block for every person by race
        inccnt = 0
        incord = ['l','m','h']
        shuffle(incord)
        
        for sect in ['m','s','p','t']:
            for i in range(int(jobs[sect])):

                # Choose a random longitude and latitude within the boundary box
                # and within the orginial ploygon of the census block
                    
                while True:
                        
                    samplepoint = Point(uniform(leftmost, rightmost),uniform(bottommost, topmost))
                        
                    if samplepoint is None:
                        break
                    
                    if poly.contains(samplepoint):
                        break
        
                x, y = merc.LatLonToMeters(samplepoint.y,samplepoint.x)
                tx,ty = merc.MetersToTile(x, y, 21)
                    
                    
                #Determine the right income
                inccnt += 1
                inctype = ''
                assert inccnt <= income[incord[0]] + income[incord[1]] + income[incord[2]] or rw[1]['abbrev'] == 'ny'
                if inccnt <= income[incord[0]]:
                    inctype = incord[0]
                elif inccnt <= income[incord[0]] + income[incord[1]]:
                    inctype = incord[1]
                elif inccnt <= income[incord[0]] + income[incord[1]] + income[incord[2]]:
                    inctype = incord[2]
                        
                # Create a unique quadkey for each point object
                    
                quadkey = merc.QuadTree(tx, ty, 21)       
                 
                outf.write("%s,%s,%s,%s,%s\n" %(x,y,sect,inctype,quadkey))
                # Convert the longitude and latitude coordinates to meters and
                # a tile reference

    outf.close() 
コード例 #8
0
sd_lat = lat.std()
sd_lon = lon.std()
print sd_lat, sd_lon

# In[184]:

from globalmaptiles import GlobalMercator

# In[185]:

merc = GlobalMercator()

# In[186]:

meanX, meanY = merc.LatLonToMeters(mean_lat, mean_lon)
print meanX, meanY

# In[187]:

lat_sdMet = merc.LatLonToMeters(mean_lat + sd_lat, mean_lon)
lon_sdMet = merc.LatLonToMeters(mean_lat, mean_lon + sd_lon)
print lat_sdMet, lon_sdMet

# In[188]:

import scipy.spatial as sp

# In[191]:

lat_dist = sp.distance.euclidean([meanX, meanY], lat_sdMet) / 1000.0
コード例 #9
0
class Downloader(object):
    '''
    Based on http://www.wellho.net/solutions/python-python-threads-a-first-example.html
    '''
    def __init__(self, mapdir, minzoom, maxzoom):
        self.mercator = GlobalMercator(256)
        self.minzoom = minzoom
        self.maxzoom = maxzoom
        self.TopRightLat = None
        self.TopRightLon = None
        self.BottomLeftLat = None
        self.BottomLeftLon = None
        self.mminx = None
        self.mminy = None
        self.mmaxx = None
        self.mmaxy = None
        self.mapdir = mapdir
        self.jobs = Queue.Queue()

    def download(self, toprightlat, toprightlon, bottomleftlat, bottomleftlon):
        self.TopRightLat = toprightlat
        self.TopRightLon = toprightlon
        self.BottomLeftLat = bottomleftlat
        self.BottomLeftLon = bottomleftlon
        self.mminx, self.mminy = self.mercator.LatLonToMeters(
            toprightlat, toprightlon)
        self.mmaxx, self.mmaxy = self.mercator.LatLonToMeters(
            bottomleftlat, bottomleftlon)

        map(self.addJobForZoom, range(self.minzoom, self.maxzoom + 1))

        self.runJobs()

    def addJobForZoom(self, zoom):
        tminx, tminy = self.mercator.MetersToTile(self.mminx, self.mminy, zoom)
        tmaxx, tmaxy = self.mercator.MetersToTile(self.mmaxx, self.mmaxy, zoom)

        if tminx > tmaxx:
            tminx, tmaxx = tmaxx, tminx
        if tminy > tmaxy:
            tminy, tmaxy = tmaxy, tminy

        for tx in range(tminx, tmaxx + 1):
            for ty in range(tminy, tmaxy + 1):
                gx, gy = self.mercator.GoogleTile(tx, ty, zoom)
                self.jobs.put({'x': gx, 'y': gy, 'z': zoom})

    def runJobs(self):
        workers = []
        for threadNum in range(0, MAX_THREADS):
            subdownloader = self.SubDownloader(self)
            workers.append(subdownloader)
            workers[-1].start()

        for worker in workers:
            worker.join(20)

        print "Finished!"

    class SubDownloader(Thread):
        def __init__(self, parent):
            Thread.__init__(self)
            self.parent = parent

        def run(self):
            while 1:
                try:
                    job = self.parent.jobs.get(0)
                except Queue.Empty:
                    return
                mt = random.randrange(0, 4)
                filename = '%i/gm_%i_%i_%i.png' % (job['z'], job['x'],
                                                   job['y'], job['z'])
                if os.path.isfile('%s%s' % (self.parent.mapdir, filename)):
                    #                    print "skippnig", filename, "left:", self.parent.jobs.qsize()
                    continue
                if not os.path.isdir('%s%s' % (self.parent.mapdir, job['z'])):
                    os.mkdir('%s%s' % (self.parent.mapdir, job['z']))
#                http://mt1.google.com/vt/lyrs=m@115&hl=en&x=39141&s=&y=26445&z=16&s=Gali
                url = 'http://mt%i.google.com/vt/lyrs=m@115&hl=en&x=%i&y=%i&z=%i&s=' % (
                    mt, job['x'], job['y'], job['z'])
                try:
                    tile = urllib2.urlopen(url=url, timeout=20).read()
                except:
                    #                    print "Can't open", url, "left:", self.parent.jobs.qsize()
                    continue
                fh = open(filename, 'wb')
                fh.write(tile)
                fh.close()
コード例 #10
0
ファイル: core.py プロジェクト: adamchainz/lascaux
def pdfer(data, page_size=PAGE_SIZES['letter'], output='pdf'):

    shape_overlays = data.get('shape_overlays')
    point_overlays = data.get('point_overlays')

    grid = {'zoom': data.get('zoom')}
    center_lon, center_lat = data['center']
    center_tile_x, center_tile_y = tileXY(float(center_lat), float(center_lon),
                                          int(data['zoom']))

    dim_across, dim_up = data['dimensions']

    if dim_across > dim_up:
        page_height, page_width, tiles_up, tiles_across = page_size
    else:
        page_width, page_height, tiles_across, tiles_up = page_size

    min_tile_x = center_tile_x - (tiles_across / 2)
    min_tile_y = center_tile_y - (tiles_up / 2)
    max_tile_x = min_tile_x + tiles_across
    max_tile_y = min_tile_y + tiles_up

    # Get base layer tiles
    base_pattern = 'http://d.tile.stamen.com/toner/{z}/{x}/{y}.png'
    if data.get('base_tiles'):
        base_pattern = data['base_tiles']

    base_links = generateLinks(base_pattern, grid['zoom'], min_tile_x,
                               min_tile_y, max_tile_x, max_tile_y)

    base_names = dl_write_all(base_links, 'base')

    # Get overlay tiles
    overlay_pattern = None
    if data.get('overlay_tiles'):
        overlay_pattern = data['overlay_tiles']
        overlay_links = generateLinks(overlay_pattern, grid['zoom'],
                                      min_tile_x, min_tile_y, max_tile_x,
                                      max_tile_y)

        overlay_names = dl_write_all(overlay_links, 'overlay')

    now = datetime.now()
    date_string = datetime.strftime(now, '%Y-%m-%d_%H-%M-%S')
    outp_name = os.path.join('/tmp', '{0}.png'.format(date_string))
    base_image_names = ['-'.join(l.split('/')[-3:]) for l in base_names]
    base_image_names = sorted([i.split('-')[-3:] for i in base_image_names],
                              key=itemgetter(1))

    for parts in base_image_names:
        z, x, y = parts
        y = y.rstrip('.png').rstrip('.jpg')
        z = z.rsplit('_', 1)[1]
        key = '-'.join([z, x, y])
        grid[key] = {'bbox': tileEdges(float(x), float(y), int(z))}

    keys = sorted(grid.keys())

    mercator = GlobalMercator()
    bb_poly = None

    bmin_rx = None
    bmin_ry = None

    if shape_overlays or point_overlays:
        polys = []
        for k, v in grid.items():
            try:
                one, two, three, four = grid[k]['bbox']
                polys.append(box(two, one, four, three))
            except TypeError:
                pass
        mpoly = MultiPolygon(polys)
        bb_poly = box(*mpoly.bounds)
        min_key = keys[0]
        max_key = keys[-2]
        bminx, bminy = grid[min_key]['bbox'][0], grid[min_key]['bbox'][1]
        bmaxx, bmaxy = grid[max_key]['bbox'][2], grid[max_key]['bbox'][3]
        bmin_mx, bmin_my = mercator.LatLonToMeters(bminx, bminy)
        bmax_mx, bmax_my = mercator.LatLonToMeters(bmaxx, bmaxy)
        bmin_px, bmin_py = mercator.MetersToPixels(bmin_mx, bmin_my,
                                                   float(grid['zoom']))
        bmax_px, bmax_py = mercator.MetersToPixels(bmax_mx, bmax_my,
                                                   float(grid['zoom']))
        bmin_rx, bmin_ry = mercator.PixelsToRaster(bmin_px, bmin_py,
                                                   int(grid['zoom']))

        if shape_overlays:
            all_polys = []
            for shape_overlay in shape_overlays:
                shape_overlay = json.loads(shape_overlay)
                if shape_overlay.get('geometry'):
                    shape_overlay = shape_overlay['geometry']
                coords = shape_overlay['coordinates'][0]
                all_polys.append(Polygon(coords))
            mpoly = MultiPolygon(all_polys)

            one, two, three, four, five = list(
                box(*mpoly.bounds).exterior.coords)

            left, right = LineString([one, two]), LineString([three, four])
            top, bottom = LineString([two, three]), LineString([four, five])

            left_to_right = left.distance(right)
            top_to_bottom = top.distance(bottom)

            if left_to_right > top_to_bottom:
                page_height, page_width, _, _ = page_size
            else:
                page_width, page_height, _, _ = page_size

            center_lon, center_lat = list(mpoly.centroid.coords)[0]

        if point_overlays:
            all_points = []

            for point_overlay in point_overlays:
                point_overlay = json.loads(point_overlay)
                for p in point_overlay['points']:
                    if p[0] and p[1]:
                        all_points.append(p)

            mpoint = MultiPoint(all_points)
            center_lon, center_lat = list(mpoint.centroid.coords)[0]

            one, two, three, four, five = list(
                box(*mpoint.bounds).exterior.coords)

            left, right = LineString([one, two]), LineString([three, four])
            top, bottom = LineString([two, three]), LineString([four, five])

            left_to_right = left.distance(right)
            top_to_bottom = top.distance(bottom)

            if left_to_right > top_to_bottom:
                page_height, page_width, _, _ = page_size
            else:
                page_width, page_height, _, _ = page_size

            center_lon, center_lat = list(mpoint.centroid.coords)[0]

            print(center_lon, center_lat)

    arrays = []
    for k, g in groupby(base_image_names, key=itemgetter(1)):
        images = list(g)
        fnames = ['/tmp/%s' % ('-'.join(f)) for f in images]
        array = []
        for img in fnames:
            i = cv2.imread(img, -1)
            if isinstance(i, type(None)):
                i = np.zeros((256, 256, 4), np.uint8)
            elif i.shape[2] != 4:
                i = cv2.cvtColor(cv2.imread(img), cv2.COLOR_BGR2BGRA)
            array.append(i)
        arrays.append(np.vstack(array))
    outp = np.hstack(arrays)
    cv2.imwrite(outp_name, outp)
    if overlay_pattern:
        overlay_outp_name = os.path.join('/tmp',
                                         'overlay_{0}.png'.format(date_string))
        overlay_image_names = [
            '-'.join(l.split('/')[-3:]) for l in overlay_names
        ]
        overlay_image_names = sorted(
            [i.split('-')[-3:] for i in overlay_image_names],
            key=itemgetter(1))
        arrays = []
        for k, g in groupby(overlay_image_names, key=itemgetter(1)):
            images = list(g)
            fnames = ['/tmp/%s' % ('-'.join(f)) for f in images]
            array = []
            for img in fnames:
                i = cv2.imread(img, -1)
                if isinstance(i, type(None)):
                    i = np.zeros((256, 256, 4), np.uint8)
                elif i.shape[2] != 4:
                    i = cv2.cvtColor(cv2.imread(img), cv2.COLOR_BGR2BGRA)
                array.append(i)
            arrays.append(np.vstack(array))
            nuked = [os.remove(f) for f in fnames]
        outp = np.hstack(arrays)
        cv2.imwrite(overlay_outp_name, outp)
        base = cv2.imread(outp_name, -1)
        overlay = cv2.imread(overlay_outp_name, -1)
        overlay_g = cv2.cvtColor(overlay, cv2.COLOR_BGR2GRAY)
        ret, mask = cv2.threshold(overlay_g, 10, 255, cv2.THRESH_BINARY)
        inverted = cv2.bitwise_not(mask)
        overlay = cv2.bitwise_not(overlay, overlay, mask=inverted)

        base_alpha = 0.55
        overlay_alpha = 1

        for channel in range(3):
            x, y, d = overlay.shape
            base[:,:,channel] = (base[:,:,channel] * base_alpha + \
                                     overlay[:,:,channel] * overlay_alpha * \
                                     (1 - base_alpha)) / \
                                     (base_alpha + overlay_alpha * (1 - base_alpha))

        cv2.imwrite(outp_name, base)

    ###########################################################################
    # Code below here is for drawing vector layers within the PDF             #
    # Leaving it in just because it was a pain to come up with the first time #
    ###########################################################################

    if shape_overlays or point_overlays:

        im = cairo.ImageSurface.create_from_png(outp_name)
        ctx = cairo.Context(im)

        if shape_overlays:
            for shape_overlay in shape_overlays:
                shape_overlay = json.loads(shape_overlay)
                if shape_overlay.get('geometry'):
                    shape_overlay = shape_overlay['geometry']
                color = hex_to_rgb('#f06eaa')
                coords = shape_overlay['coordinates'][0]
                x, y = get_pixel_coords(coords[0], grid['zoom'], bmin_rx,
                                        bmin_ry)
                ctx.move_to(x, y)
                ctx.set_line_width(4.0)
                red, green, blue = [float(c) for c in color]
                ctx.set_source_rgba(red / 255, green / 255, blue / 255, 0.3)
                for p in coords[1:]:
                    x, y = get_pixel_coords(p, grid['zoom'], bmin_rx, bmin_ry)
                    ctx.line_to(x, y)
                ctx.close_path()
                ctx.fill()
                ctx.set_source_rgba(red / 255, green / 255, blue / 255, 0.5)
                for p in coords[1:]:
                    x, y = get_pixel_coords(p, grid['zoom'], bmin_rx, bmin_ry)
                    ctx.line_to(x, y)
                ctx.close_path()
                ctx.stroke()
        ctx.set_line_width(2.0)

        if point_overlays:
            for point_overlay in point_overlays:
                point_overlay = json.loads(point_overlay)
                color = hex_to_rgb(point_overlay['color'])
                for p in point_overlay['points']:
                    if p[0] and p[1]:
                        pt = Point((float(p[0]), float(p[1])))
                        if bb_poly.contains(pt):
                            nx, ny = get_pixel_coords(p, grid['zoom'], bmin_rx,
                                                      bmin_ry)
                            red, green, blue = [float(c) for c in color]
                            ctx.set_source_rgba(red / 255, green / 255,
                                                blue / 255, 0.6)
                            ctx.arc(
                                nx, ny, 5.0, 0,
                                50)  # args: center-x, center-y, radius, ?, ?
                            ctx.fill()
                            ctx.arc(nx, ny, 5.0, 0, 50)
                            ctx.stroke()
        im.write_to_png(outp_name)
    scale = 1

    # Crop image from center

    center_point_x, center_point_y = latlon2xy(float(center_lat),
                                               float(center_lon),
                                               float(data['zoom']))

    offset_x = (center_point_x - float(center_tile_x)) + 50
    offset_y = (center_point_y - float(center_tile_y)) - 50

    outp_image = cv2.imread(outp_name, -1)
    pixels_up, pixels_across, channels = outp_image.shape
    center_x, center_y = (pixels_across / 2) + offset_x, (pixels_up /
                                                          2) + offset_y
    start_y, end_y = center_y - (page_height / 2), center_y + (page_height / 2)
    start_x, end_x = center_x - (page_width / 2), center_x + (page_width / 2)

    cv2.imwrite(outp_name, outp_image[start_y:end_y, start_x:end_x])

    if output == 'pdf':
        outp_file_name = outp_name.rstrip('.png') + '.pdf'

        pdf = cairo.PDFSurface(outp_file_name, page_width, page_height)
        ctx = cairo.Context(pdf)
        image = cairo.ImageSurface.create_from_png(outp_name)
        ctx.set_source_surface(image)
        ctx.paint()
        pdf.finish()
    elif output == 'jpeg':
        outp_file_name = outp_name.rstrip('.png') + '.jpg'
        jpeg = cv2.cvtColor(cv2.imread(outp_name, -1), cv2.COLOR_RGBA2RGB)
        cv2.imwrite(outp_file_name, jpeg)
    return outp_file_name
コード例 #11
0
ファイル: test.py プロジェクト: gboysking/globalmaptiles
zoom = 7
geographic = {'lat': 52.31, 'lon': 13.24}
meters = {'mx': 1473870.058102942, 'my': 6856372.69101939}
pixels = {'px': 17589.134222222223, 'py': 21990.22649522623}
tile = {'tx': 68, 'ty': 85}
googleTile = {'tx': 68, 'ty': 42}
tileBounds = {
    'minx': 1252344.271424327,
    'miny': 6574807.42497772,
    'maxx': 1565430.3392804079,
    'maxy': 6887893.492833804
}
quadKey = "1202120"

result = gm.LatLonToMeters(geographic['lat'], geographic['lon'])
print(result)

result = gm.MetersToLatLon(meters['mx'], meters['my'])
print(result)

result = gm.MetersToPixels(meters['mx'], meters['my'], zoom)
print(result)

result = gm.PixelsToTile(pixels['px'], pixels['py'])
print(result)

result = gm.PixelsToMeters(pixels['px'], pixels['py'], zoom)
print(result)

result = gm.TileBounds(tile['tx'], tile['ty'], zoom)
コード例 #12
0
class TileGrid(object):
    #def __init__(self, parentgeometry, bearing = 0.0, zoomlevel = 16, lat = dec.Decimal('32.829608'), lon = dec.Decimal('35.080498')):
    #def __init__(self, parentgeometry, bearing = 0.0, zoomlevel = 16, lat = dec.Decimal('32.330347'), lon = dec.Decimal('34.851395')):
    def __init__(self,
                 bearing=0.0,
                 zoomlevel=16,
                 lat=decimal.Decimal('32.018300'),
                 lon=decimal.Decimal('34.898161'),
                 parent=None):
        #set initial values
        self.parent = parent
        self.bearingSensitivity = decimal.Decimal('0.00001')
        self.bearing = bearing
        self.zoomlevel = zoomlevel
        self.lat = lat
        self.lon = lon
        self.gx, self.gy = None, None
        self.velocity = 0.0

        self.sysPath = os.path.join(sys.path[0], "")

        self.mapPath = self.sysPath
        self.maxZoomLevel = 16

        self.destlat = decimal.Decimal('32.776250')
        self.destlon = decimal.Decimal('35.028946')

        self.distance = 0

        self.setBounds(parent.geometry().width(), parent.geometry().height())

        self.halfboundx = math.ceil(self.boundx / 2)
        self.halfboundy = math.ceil(self.boundy / 2)

        #make GlobalMercator instance
        self.mercator = GlobalMercator()
        #        create pathways
        self.refresh()

    def setMapPath(self, path):
        if path != "":
            self.mapPath = path + "/"
        print self.mapPath

    def setBounds(self, newx, newy):
        self.boundx, self.boundy = newx, newy
        #        adding 16px to halfbounds height and width to display icons
        self.halfboundx = int(math.ceil(self.boundx / 2)) + 31
        self.halfboundy = int(math.ceil(self.boundy / 2)) + 31

    def getOffset(self):
        'get pixel offset of coordinates from 0,0 of tile'
        offpx = self.px - self.tx * self.mercator.tileSize
        #the y pixel coordinate system begins from top
        offpy = self.mercator.tileSize - (self.py -
                                          self.ty * self.mercator.tileSize)
        return offpx, offpy

    def moveTo(self, lat, lon, calculateBearing=True):
        'move position to lat, lon and update all properties'
        #update bearing from previous position
        if calculateBearing:
            if abs(lon - self.lon) > self.bearingSensitivity \
            or abs(lat - self.lat) > self.bearingSensitivity:
                self.bearing = math.degrees(
                    math.atan2(lon - self.lon, lat - self.lat))
                if self.bearing < 0:
                    self.bearing += 360

        self.lat = lat
        self.lon = lon

        #get meters from lat/lon
        mx, my = self.mercator.LatLonToMeters(float(self.lat), float(self.lon))

        #dx, dy = self.mercator.LatLonToMeters( float(self.destlat), float(self.destlon) )

        #self.distance = math.sqrt(math.pow(mx-dx, 2) + math.pow(my-dy, 2 ))

        #get pixels from meters
        self.px, self.py = self.mercator.MetersToPixels(mx, my, self.zoomlevel)

        #get tile from pixels
        self.tx, self.ty = self.mercator.PixelsToTile(int(self.px),
                                                      int(self.py))

        #get google tile
        self.gx, self.gy = self.mercator.GoogleTile(self.tx, self.ty,
                                                    self.zoomlevel)

        #update offset of tile
        self.offpx, self.offpy = self.getOffset()

        #TODO:  calculate loadRect bounds for peripherial tiles

        self.sizex = int(math.ceil(self.boundx / self.mercator.tileSize)) + 1
        self.sizey = int(math.ceil(self.boundy / self.mercator.tileSize)) + 1

        halfdeltax = int(math.ceil(self.sizex / 2)) + 1
        halfdeltay = int(math.ceil(self.sizey / 2)) + 1

        self.images = set()

        offtilex = halfdeltax * self.mercator.tileSize + self.offpx
        for x in range(self.gx - halfdeltax, self.gx + halfdeltax + 1):
            offtiley = halfdeltay * self.mercator.tileSize + self.offpy
            for y in range(self.gy - halfdeltay, self.gy + halfdeltay + 1):
                fname = "%i/gm_%i_%i_%i.png" % (self.zoomlevel, x, y,
                                                self.zoomlevel)
                if not QtCore.QFile.exists(self.mapPath + fname):
                    fname = "404.png"
                self.images.add((QtCore.QPointF(-offtilex, -offtiley), fname))
                offtiley -= self.mercator.tileSize
            offtilex -= self.mercator.tileSize
#            print fname

        self.bounds = {
            'TL': (self.px - self.halfboundx, self.py - self.halfboundy),
            'TR': (self.px + self.halfboundx, self.py - self.halfboundy),
            'BR': (self.px + self.halfboundx, self.py + self.halfboundy),
            'BL': (self.px - self.halfboundx, self.py + self.halfboundy)
        }

        self.pathways = QtGui.QPolygonF()
        #        create waypoints icons
        self.visible_waypoints = set()
        for wp in self.waypoints_pixels:
            x = wp[0] - self.px
            y = self.py - wp[1]
            self.pathways.append(QtCore.QPointF(x, y))
            if self.isVisible(wp):
                self.visible_waypoints.add(QtCore.QPointF(x - 15, y - 32))

#        print self.waypoints_pixels

    def isVisible(self, wp):
        return  wp[0] > self.bounds['TL'][0] and \
                wp[0] < self.bounds['TR'][0] and \
                wp[1] > self.bounds['TL'][1] and \
                wp[1] < self.bounds['BL'][1]

    def refresh(self):
        self.waypoints_pixels = set()
        for wp in self.parent.waypoint:
            wpm = self.mercator.LatLonToMeters(wp[0], wp[1])
            wppx = self.mercator.MetersToPixels(wpm[0], wpm[1], self.zoomlevel)
            self.waypoints_pixels.add(wppx)
        self.moveTo(self.lat, self.lon)

    def setZoom(self, zoom):
        self.zoomlevel = zoom
        self.refresh()

    def zoomIn(self):
        if self.zoomlevel < self.maxZoomLevel:
            self.zoomlevel += 1
            self.refresh()

    def zoomOut(self):
        if self.zoomlevel > 0:
            self.zoomlevel -= 1
            self.refresh()

    def setBearing(self, bear):
        self.bearing = bear

    def setVelocity(self, vel):
        self.velocity = vel
コード例 #13
0
class OsmHandler(ContentHandler):
    """Base class for parsing OSM XML data"""
    def __init__(self, client):
        self.proj = GlobalMercator()
        self.nodeRecords = []
        self.wayRecords = []
        self.relationRecords = []
        self.record = {}
        self.nodeLocations = {}
        self.client = client

        self.stats = {'nodes': 0, 'ways': 0, 'relations': 0}
        self.lastStatString = ""
        self.statsCount = 0

    def writeStatsToScreen(self):
        for char in self.lastStatString:
            sys.stdout.write('\b')
        self.lastStatString = "%d nodes, %d ways, %d relations" % (
            self.stats['nodes'], self.stats['ways'], self.stats['relations'])
        sys.stdout.write(self.lastStatString)

    def fillDefault(self, attrs):
        """Fill in default record values"""
        self.record['_id'] = int(attrs['id'])
        self.record['ts'] = self.isoToTimestamp(attrs['timestamp'])
        self.record['tg'] = []
        if attrs.has_key('user'):
            self.record['u'] = attrs['user']
        if attrs.has_key('uid'):
            self.record['uid'] = int(attrs['uid'])
        if attrs.has_key('version'):
            self.record['v'] = int(attrs['version'])
        if attrs.has_key('changeset'):
            self.record['c'] = int(attrs['changeset'])

    def isoToTimestamp(self, isotime):
        """Parse a date and return a time tuple"""
        t = datetime.strptime(isotime, "%Y-%m-%dT%H:%M:%SZ")
        return time.mktime(t.timetuple())

    def quadKey(self, lat, lon, zoom):
        (mx, my) = self.proj.LatLonToMeters(lat, lon)
        (tx, ty) = self.proj.MetersToTile(mx, my, zoom)
        return self.proj.QuadTree(tx, ty, zoom)

    def startElement(self, name, attrs):
        """Parse the XML element at the start"""
        if name == 'node':
            self.fillDefault(attrs)
            self.record['loc'] = {
                'lat': float(attrs['lat']),
                'lon': float(attrs['lon'])
            }
            self.record['qk'] = self.quadKey(float(attrs['lat']),
                                             float(attrs['lon']), 17)
            self.nodeLocations[self.record['_id']] = self.record['qk']
        elif name == 'changeset':
            self.fillDefault(attrs)
        elif name == 'tag':
            k = attrs['k']
            v = attrs['v']
            # MongoDB doesn't let us have dots in the key names.
            #k = k.replace('.', ',,')
            self.record['tg'].append((k, v))
        elif name == 'way':
            self.fillDefault(attrs)
            self.record['n'] = []
            self.record['loc'] = []
        elif name == 'relation':
            self.fillDefault(attrs)
            self.record['m'] = []
        elif name == 'nd':
            ref = int(attrs['ref'])
            self.record['n'].append(ref)
            refLoc = self.nodeLocations[ref]
            if refLoc not in self.record['loc']:
                self.record['loc'].append(refLoc)
        elif name == 'member':
            ref = int(attrs['ref'])
            member = {'type': attrs['type'], 'ref': ref, 'role': attrs['role']}
            self.record['m'].append(member)

            if attrs['type'] == 'way':
                ways2relations = self.client.osm.ways.find_one({'_id': ref})
                if ways2relations:
                    if 'relations' not in ways2relations:
                        ways2relations['relations'] = []
                    ways2relations['relations'].append(self.record['_id'])
                    self.client.osm.ways.save(ways2relations)
            elif attrs['type'] == 'node':
                nodes2relations = self.client.osm.nodes.find_one({'_id': ref})
                if nodes2relations:
                    if 'relations' not in nodes2relations:
                        nodes2relations['relations'] = []
                    nodes2relations['relations'].append(self.record['_id'])
                    self.client.osm.nodes.save(nodes2relations)

    def endElement(self, name):
        """Finish parsing an element
        (only really used with nodes, ways and relations)"""
        if name == 'node':
            self.nodeRecords.append(self.record)
            if len(self.nodeRecords) > 1500:
                self.client.osm.nodes.insert(self.nodeRecords)
                self.nodeRecords = []
                self.writeStatsToScreen()
            self.record = {}
            self.stats['nodes'] = self.stats['nodes'] + 1
        elif name == 'way':
            # Clean up any existing nodes
            if len(self.nodeRecords) > 0:
                self.client.osm.nodes.insert(self.nodeRecords)
                self.nodeRecords = []

            self.wayRecords.append(self.record)
            if len(self.wayRecords) > 100:
                self.client.osm.ways.insert(self.wayRecords)
                self.wayRecords = []
                self.writeStatsToScreen()
            self.record = {}
            self.stats['ways'] = self.stats['ways'] + 1
        elif name == 'relation':
            self.client.osm.relations.save(self.record)
            self.record = {}
            self.statsCount = self.statsCount + 1
            if self.statsCount > 10:
                self.writeStatsToScreen()
                self.statsCount = 0
            self.stats['relations'] = self.stats['relations'] + 1