コード例 #1
0
ファイル: pyecm.py プロジェクト: frarteaga/myScripts
def greatest_n(phi_max):
    '''Finds the greatest n such that phi(n) < phi_max.

Returns the greatest n such that phi(n) < phi_max.'''
    phi_product = 1
    product = 1
    prime = 1
    while phi_product <= phi_max:
        prime = next_prime(prime)
        phi_product *= prime - 1
        product *= prime

    n_max = (phi_max * product) / phi_product

    phi_values = range(n_max)

    prime = 2
    while prime <= n_max:
        for i in xrange(0, n_max, prime):
            phi_values[i] -= phi_values[i] / prime

        prime = next_prime(prime)

    for i in xrange(n_max - 1, 0, -1):
        if phi_values[i] <= phi_max:
            return i
コード例 #2
0
def factor_bounded_pm1(n, b, degree='auto'):
    print 'start'
    a = 2
    i = 0
    q = 2
    if degree == 'auto':
        while q < b:
            i += 1
            if i % 1000 == 0:
                print 'Progress:', q, b
            base = q**int(math.floor(1 / math.log(q, n)))
            a = pow(a, base, n)
            g = gmpy.gcd(a - 1, n)
            if g != 1 and g != n:
                return int(g)
            q = gmpy.next_prime(q)
        return None
    else:
        while q < b:
            i += 1
            if i % 1000 == 0:
                print 'Progress:', q, b
            base = q**degree
            a = pow(a, base, n)
            g = gmpy.gcd(a - 1, n)
            if g != 1 and g != n:
                return int(g)
            q = gmpy.next_prime(q)
        return None
コード例 #3
0
ファイル: boggart.py プロジェクト: four1er/ctf-archives
def main():
    year = 3
    bits = 512
    boggart_fear = 31337
    boggart_danger = 16

    neutral_magic, light_magic, dark_magic = [
        getrandbits(bits) for _ in range(3)
    ]
    magic = next_prime(neutral_magic | light_magic) * next_prime(neutral_magic
                                                                 | dark_magic)

    print(
        'Hello. I am Professor Remus Lupin. Today I\'m going to show you how to deal with the boggart.'
    )

    print(neutral_magic)
    print(magic)

    with open('flag.txt', 'rb') as file:
        flag = file.read().strip()

    # some young wizards without knowledge of the riddikulus charm
    harry_potter = Wizard(magic, year, bytes_to_long(b'the boy who lived'))
    you = Wizard(magic, year, bytes_to_long(flag))

    for boggart in Wardrobe.create_boggarts(boggart_fear, boggart_danger):
        # wizards should train to learn the riddikulus charm
        harry_potter.cast_riddikulus(boggart)
        you.cast_riddikulus(boggart)

    # wizard's experience should be increased
    print(harry_potter.experience)
    print(you.experience)
コード例 #4
0
ファイル: pyecm.py プロジェクト: elhb/borgstrom
def greatest_n(phi_max):
	'''Finds the greatest n such that phi(n) < phi_max.

Returns the greatest n such that phi(n) < phi_max.'''
	phi_product = 1
	product = 1
	prime = 1
	while phi_product <= phi_max:
		prime = next_prime(prime)
		phi_product *= prime - 1
		product *= prime

	n_max = (phi_max * product) / phi_product

	phi_values = range(n_max)

	prime = 2
	while prime <= n_max:
		for i in xrange(0, n_max, prime):
			phi_values[i] -= phi_values[i] / prime

		prime = next_prime(prime)

	for i in xrange(n_max - 1, 0, -1):
		if phi_values[i] <= phi_max:
			return i
コード例 #5
0
ファイル: rsa.py プロジェクト: 5l1v3r1/ctf-14
def ext_rsa_encrypt(p, q, e, msg):
    m = bytes_to_long(msg)
    while True:
        n = p * q
        try:
            phi = (p - 1) * (q - 1)
            d = gmpy.invert(e, phi)
            pubkey = RSA.construct((long(n), long(e)))
            key = PKCS1_v1_5.new(pubkey)
            enc = key.encrypt(msg).encode('base64')
            return enc
        except:
            p = gmpy.next_prime(p**2 + q**2)
            q = gmpy.next_prime(2 * p * q)
            e = gmpy.next_prime(e**2)
コード例 #6
0
ファイル: rsa.py プロジェクト: Frosne/CTF
def ext_rsa_encrypt(p, q, e, msg):
    m = bytes_to_long(msg)
    while True:
        n = p * q
        try:
            phi = (p - 1)*(q - 1)
            d = gmpy.invert(e, phi)
            pubkey = RSA.construct((long(n), long(e)))
            key = PKCS1_v1_5.new(pubkey)
            enc = key.encrypt(msg).encode('base64')
            return enc
        except:
            p = gmpy.next_prime(p**2 + q**2)
            q = gmpy.next_prime(2*p*q)
            e = gmpy.next_prime(e**2)
コード例 #7
0
ファイル: elgamal.py プロジェクト: pombredanne/pol-1
def _find_safe_prime(bits, randfunc=None):
    """ Finds a safe prime of `bits` bits """
    r = gmpy.mpz(number.getRandomNBitInteger(bits-1, randfunc))
    q = gmpy.next_prime(r)
    p = 2*q+1
    if gmpy.is_prime(p):
        return p
コード例 #8
0
def factorize(x=c):
    r'''
    (Takes about 25ms, on c, on a first-generation Macbook Pro)
    >>> factorize(a)
    [3, 41]
    >>> factorize(b)
    [2, 2, 2, 3, 19]
    >>>
    '''
    import gmpy as _g
    savex = x
    prime = 2
    x = _g.mpz(x)
    factors = []
    while x >= prime:
        newx, mult = x.remove(prime)
        if mult:
            factors.extend([int(prime)] * mult)
            x = newx
        prime = _g.next_prime(prime)
    for factor in factors:
        assert _g.is_prime(factor)
    from operator import mul
    assert reduce(mul, factors) == savex
    return factors
コード例 #9
0
def sq(q):
    assert is_prime(q)
    p = 2
    while True:
        if p != q:
            yield p * p * q * q * q
        p = int(next_prime(p))
コード例 #10
0
def exploit(mp) :
    p = mp - 9000000
    while True :
        q = n//p
        if p*q == n :
            return p,q
        p = next_prime(p)
コード例 #11
0
def sq(q):
    assert is_prime(q)
    p = 2
    while True:
	if p != q:
	    yield p*p*q*q*q
	p = int(next_prime(p))
コード例 #12
0
ファイル: pyecm.py プロジェクト: elhb/borgstrom
def could_be_prime(n):
	'''Performs some trials to compute whether n could be prime. Run time is O(N^3 / (log N)^2) for N bits.

Returns whether it is possible for n to be prime (True or False).
'''
	if n < 2:
		return False
	if n == 2:
		return True
	if not n & 1:
		return False

	product = ONE
	log_n = int(math.log(n)) + 1
	bound = int(math.log(n) / (LOG_2 * math.log(math.log(n))**2)) + 1
	if bound * log_n >= n:
		bound = 1
		log_n = int(sqrt(n))
	prime_bound = 0
	prime = 3

	for _ in xrange(bound):
		p = []
		prime_bound += log_n
		while prime <= prime_bound:
			p.append(prime)
			prime = next_prime(prime)
		if p != []:
			p = prod(p)
			product = (product * p) % n

	return gcd(n, product) == 1
コード例 #13
0
ファイル: prev_prime.py プロジェクト: qsdj/CTF-writeup
def prev_prime(p):
    lo = find_low(p)
    pp = next_prime(lo)
    hi = p

    while lo < hi:
        mid = (lo + hi) // 2
        print mid
        mid_p = next_prime(mid)
        if (mid_p == p):
            hi = mid
        else:
            pp = mid_p
            lo = mid + 1

    return pp
コード例 #14
0
ファイル: babyRSA.py プロジェクト: rafiem/ctf-archive-2020
def main():

    rsa1 = RSA(3, getPrime(2048), getPrime(2048))
    p = getPrime(2048)
    rsa2 = RSA(65537, p, next_prime(p))
    rsa3 = RSA(65537, getPrime(128), getPrime(128))
    random.seed(os.urandom(8))

    list_rsa = [rsa1, rsa2, rsa3]
    random.shuffle(list_rsa)

    print("""
Complete the following three questions
""")
    try:
        for i in range(3):
            m = int(os.urandom(16).encode("hex"), 16)
            print("e :" + list_rsa[i].getExponent())
            print("N :" + list_rsa[i].getModulus())
            print("c :" + list_rsa[i].encrypt(m))
            ans = raw_input("m >> ").strip()
            print ans

            if ans != str(m):
                print("Wrong !!")
                exit(0)

        print flag
    except Exception:
        print("Error occurred")
        exit(0)
コード例 #15
0
def generate_safe_prime(nbits):
    """ Finds a safe prime of nbits using probabilistic method rather than deterministic;
    because a large prime number is required. """
    q = number.getRandomNBitInteger(nbits)
    while not gmpy.is_prime(q):
        q = gmpy.next_prime(q)
    return int(q)
コード例 #16
0
ファイル: pyecm.py プロジェクト: frarteaga/myScripts
def could_be_prime(n):
    '''Performs some trials to compute whether n could be prime. Run time is O(N^3 / (log N)^2) for N bits.

Returns whether it is possible for n to be prime (True or False).
'''
    if n < 2:
        return False
    if n == 2:
        return True
    if not n & 1:
        return False

    product = ONE
    log_n = int(math.log(n)) + 1
    bound = int(math.log(n) / (LOG_2 * math.log(math.log(n))**2)) + 1
    if bound * log_n >= n:
        bound = 1
        log_n = int(sqrt(n))
    prime_bound = 0
    prime = 3

    for _ in xrange(bound):
        p = []
        prime_bound += log_n
        while prime <= prime_bound:
            p.append(prime)
            prime = next_prime(prime)
        if p != []:
            p = prod(p)
            product = (product * p) % n

    return gcd(n, product) == 1
コード例 #17
0
ファイル: boggart.py プロジェクト: four1er/ctf-archives
    def create_boggarts(fear, danger):
        # for each level of danger we're increasing fear
        while danger > 0:
            fear = next_prime(fear)

            if getrandbits(1):
                yield fear
                danger -= 1
コード例 #18
0
def getPrimes(moduleDigits):

    prime_list = []
    x = 1

    # Agafem el ultim primer amb un menor numero de digits
    while len(str(x)) < moduleDigits:
        x = gmpy.next_prime(x)

    x = gmpy.next_prime(x)

    while len(str(x)) < moduleDigits + 1:

        prime_list.append(str(x)[:])
        x = gmpy.next_prime(x)

    return int(''.join(random.sample(prime_list, 1)))
コード例 #19
0
ファイル: pairing.py プロジェクト: elliptic-shiho/ecpy
 def gen_prime():
   from ecpy.util import is_prime
   from random import randint
   while True:
     p = int(next_prime(randint(2**(bits - 1), 2**bits)))
     if is_prime(p * 6 - 1):
       break
   return p * 6 - 1, p
コード例 #20
0
ファイル: btrsync.py プロジェクト: RobinMorisset/Btrsync
def p_gen():
    small_p = mpz(1)
    k = P_SIZE
    while True:
        small_p = gmpy.next_prime(small_p)
        p = small_p ** int(k / (small_p.bit_length() - 1))
        yield p
        k *= 2
コード例 #21
0
 def get_primes(self, min, max):
     primes = []
     while True:
         prime = int(gmpy.next_prime(min))
         if prime <= max:
             primes += [prime]
             min = prime
         else:
             return primes
コード例 #22
0
def make_participants_key(l, nbit):
    while True:
        p, q = getPrime(nbit), getPrime(nbit)
        N, phi = p * q, (p-1)*(q-1)
        x = random.randint(1, N)
        if (N % 8 == 1) and (phi % 8 == 4) and (p != q):
            if pow(q ** 2 * x, (p-1)/2, p) + pow(p ** 2 * x, (q-1)/2, q) == N - phi - 1:
                break
    participants_key = []
    r, s = [getPrime(nbit) for _ in '01']
    for i in range(l):
        u, v = gmpy.next_prime(r), gmpy.next_prime(s)
        u -= u % 4
        v -= v % 8
        participants_key.append((long(u), long(v)))
        r, s = u + 2 * v, v + 3 * u
    e0 = phi + sum([participants_key[i][0] for i in range(len(participants_key))]) + 
        sum([participants_key[i][1] for i in range(len(participants_key))])
コード例 #23
0
ファイル: exp.py プロジェクト: zlnoufa/ctf-wiki
def ext_rsa_decrypt(p, q, e, msg):
    m = bytes_to_long(msg)
    while True:
        n = p * q
        try:
            phi = (p - 1) * (q - 1)
            d = gmpy.invert(e, phi)
            privatekey = RSA.construct(
                (long(n), long(e), long(d), long(p), long(q)))
            key = PKCS1_v1_5.new(privatekey)
            de_error = ''
            enc = key.decrypt(msg.decode('base64'), de_error)
            return enc
        except Exception as error:
            print error
            p = gmpy.next_prime(p**2 + q**2)
            q = gmpy.next_prime(2 * p * q)
            e = gmpy.next_prime(e**2)
コード例 #24
0
ファイル: primes.py プロジェクト: sebbcn/python-pkcs1
def get_prime(size=128, rnd=random.SystemRandom, k=DEFAULT_ITERATION, algorithm=None):
    if callable(rnd):
        rnd = rnd()
    while True:
        n = rnd.getrandbits(size-2)
        n = 2 ** (size-1) + n * 2 + 1
        if is_prime(n, rnd=rnd, k=k, algorithm=algorithm):
            return n
        if algorithm == 'gmpy-miller-rabin':
            return gmpy.next_prime(n)
コード例 #25
0
def squbes():
    last_prime = 2
    last_it = sq(last_prime)
    h = HeapIter(last_it)
 
    for s, it in h:
	yield s
	if it == last_it:
	    last_prime = int(next_prime(last_prime))
	    last_it = sq(last_prime)
	    h.add(last_it)
コード例 #26
0
def squbes():
    last_prime = 2
    last_it = sq(last_prime)
    h = HeapIter(last_it)

    for s, it in h:
        yield s
        if it == last_it:
            last_prime = int(next_prime(last_prime))
            last_it = sq(last_prime)
            h.add(last_it)
コード例 #27
0
ファイル: part2.py プロジェクト: chesarin/fcm801-Spring2014
def calculate_division(test, n):
    # print n
    # print 'number of digits in test is {} in base 2'.format(_g.numdigits(test,2))
    # print 'number of digits in n is {} in base 2'.format(_g.numdigits(n,2))
    prime = _g.next_prime(test)
    # print prime
    if _g.is_prime(prime):
        # print 'I got a prime {}'.format(prime)
        if n % prime == 0:
            print n
            print 'success'
コード例 #28
0
def calculate_division(test, n):
    # print n
    # print 'number of digits in test is {} in base 2'.format(_g.numdigits(test,2))
    # print 'number of digits in n is {} in base 2'.format(_g.numdigits(n,2))
    prime = _g.next_prime(test)
    # print prime
    if _g.is_prime(prime):
        # print 'I got a prime {}'.format(prime)
        if n % prime == 0:
            print n
            print 'success'
コード例 #29
0
ファイル: cryp_RSA.py プロジェクト: htx1219/Python
def brute_find2(i, t = 20):
    j = 0
    n_i = n[i]
    c_i = c_int[i]
    e_i = e[i]
    for i in range(2**t):
        j = gmpy.next_prime(j)
        g, d, y = xgcd(j, n_i)
        if g != 1:
            print j
            return j
    pass
コード例 #30
0
ファイル: ShoupProtocol.py プロジェクト: vs-uulm/PriCloud
 def setup():
     """Computes a (public, private)-keypair.
     
     >>> (publickey, secretkey) = ShoupProtocol.setup()
     """
     # generate the primes
     p = 0
     while p % 4 != 3:
         p = random.SystemRandom().getrandbits(1024)
         p = int(gmpy.next_prime(p))
     q = 4
     while q % 4 != 3:
         q = random.SystemRandom().getrandbits(1024)
         q = int(gmpy.next_prime(q))
     n = p * q
     # search for a quadratic residue mod n
     y = random.SystemRandom().getrandbits(1024) % n
     y = pow(y, 2, n)
     publickey = (y, n)
     secretkey = (p, q)
     return (publickey, secretkey)
コード例 #31
0
 def setup():
     """Computes a (public, private)-keypair.
     
     >>> (publickey, secretkey) = GQProtocol.setup()
     """
     # generate the primes
     p = random.SystemRandom().getrandbits(1024)
     p = int(gmpy.next_prime(p))
     q = random.SystemRandom().getrandbits(1024)
     q = int(gmpy.next_prime(q))
     n = p * q
     e = 65537
     J = random.SystemRandom().getrandbits(2048)
     while J > n:
         J = random.SystemRandom().getrandbits(2048)
     publickey = (J, e, n)
     # compute the private key
     d = gmpy.invert(e, (p - 1) * (q - 1))
     B = pow(gmpy.invert(J, n), d, n)
     secretkey = (B, d)
     return (publickey, secretkey)
コード例 #32
0
ファイル: factor.py プロジェクト: 5l1v3r1/ctf-tools-5
def alg_231(n, improved=True):
    """ Page 197: Trial Division """
    # [1]
    t = 0
    k = 2
    dk = 2
    sqrt_n = math.sqrt(n)
    count = 0
    while True:

        if count > sqrt_n:
            break
        if int(n) == 1:
            break  # [2]

        if improved:
            dk = int(gmpy.next_prime(dk))

        # [3]
        if improved:
            q = n / dk
            r = n % dk
        else:
            q = n / k
            r = n % k

        if r != 0:

            if improved:
                if q > dk:
                    k += 1
                else:
                    t += 1
                    pt = n
            else:
                if q > k:  # [4]
                    k += 1
                else:
                    t += 1
                    pt = n
        else:
            t += 1
            if improved:
                pt = dk
            else:
                pt = k
            n = q
            break

        count += 1
        # print( q, r )

    print(n, pt)
コード例 #33
0
ファイル: factor.py プロジェクト: Allen-smith/ctf-tools
def alg_231(n, improved=True):
    """ Page 197: Trial Division """
    # [1]
    t = 0
    k = 2
    dk = 2
    sqrt_n = math.sqrt(n)
    count = 0
    while True:

        if count > sqrt_n:
            break
        if int(n) == 1:
            break    # [2]

        if improved:
            dk = int(gmpy.next_prime(dk))

        # [3]
        if improved:
            q = n / dk
            r = n % dk
        else:
            q = n / k
            r = n % k

        if r != 0:

            if improved:
                if q > dk:
                    k += 1
                else:
                    t += 1
                    pt = n
            else:
                if q > k:       # [4]
                    k += 1
                else:
                    t += 1
                    pt = n
        else:
            t += 1
            if improved:
                pt = dk
            else:
                pt = k
            n = q
            break

        count += 1
        # print( q, r )

    print(n, pt)
コード例 #34
0
def brute_find2(i, t=20):
    j = 0
    n_i = n[i]
    c_i = c_int[i]
    e_i = e[i]
    for i in range(2**t):
        j = gmpy.next_prime(j)
        g, d, y = xgcd(j, n_i)
        if g != 1:
            print j
            return j
    pass
コード例 #35
0
def count_safe_primes(bits):
    randfunc = Crypto.Random.new().read
    started = time.time()
    ret = []
    while True:
        r = gmpy.mpz(number.getRandomNBitInteger(bits-1, randfunc))
        q = gmpy.next_prime(r)
        p = 2*q + 1
        germain = gmpy.is_prime(p)
        ret.append((germain, int(q - r)))
        if time.time() - started > 60:
            break
    return ret
コード例 #36
0
ファイル: q26.py プロジェクト: mwcz/euler
def pf( _num, _pf=[], _p=2 ):
    "returns the prime factorization of _num"

    assert _num >= 2

    if is_prime(_num): 
        _pf.append(_num)
        return _pf

    if _num % _p == 0:
        _pf.append(_p)
        return pf( _num / _p, _pf )
    else:
        return pf( _num, _pf, next_prime( _p ) )
コード例 #37
0
ファイル: pyecm.py プロジェクト: elhb/borgstrom
def factors(n, veb, ra, ov, pr):
	'''Generates factors of n.
Strips small primes, then feeds to ecm function.

Input:
	n   -- An integer to factor
	veb -- If True, be verbose
	ra  -- If True, select sigma values randomly
	ov  -- How asymptotically fast the calculation is
	pr  -- What portion of the total processing power this run gets

Output: Factors of n, via a generator.

Notes:
1. A good value of ov for typical numbers is somewhere around 10. If this parameter is too high, overhead and memory usage grow.
2. If ra is set to False and veb is set to True, then results are reproducible. If ra is set to True, then one number may be done in parallel on disconnected machines (at only a small loss of efficiency, which is less if pr is set correctly).'''


	if type(n) not in T:
		raise ValueError, 'Number given must be integer or long.'

	if not 0 < pr <= 1:
		yield 'Error: pr must be between 0 and 1'
		return

	while not n & 1:
		n >>= 1
		yield 2

	n = mpz(n)
	k = inv_const(n)
	prime = 2
	trial_division_bound = max(10 * k**2, 100)

	while prime < trial_division_bound:
		prime = next_prime(prime)
		while not n % prime:
			n /= prime
			yield prime

	if isprime(n):
		yield n
		return

	if n == 1:
		return

	for factor in ecm(n, ra, ov, veb, trial_division_bound, pr):
		yield factor
コード例 #38
0
ファイル: decrypt.py プロジェクト: poisonedPawn/ctf-writeup
def decrypt_RSA(cipherfile):
    n = 98099407767975360290660227117126057014537157468191654426411230468489043009977
    e = 12405943493775545863
    p = 311155972145869391293781528370734636009
    q = 315274063651866931016337573625089033553
    cipher = open(cipherfile, "r").read()
    while True:
        try:
            # key = open(privkey, "r").read()
            phi = (p - 1) * (q - 1)
            d = gmpy.invert(e, phi)
            # pubkey = RSA.construct((long(n), long(e)))

            privkey = RSA.construct((long(n), long(e), long(d)))
            key = PKCS1_v1_5.new(privkey)
            decrypted = key.decrypt(base64.b64decode(cipher), None)
            print decrypted
            break
        except Exception as ex:
            print ex
            p = gmpy.next_prime(p**2 + q**2)
            q = gmpy.next_prime(2 * p * q)
            e = gmpy.next_prime(e**2)
            n = long(p) * long(q)
コード例 #39
0
def El_Gamal_ParamGen():
    p = 4
    while not gmpy.is_prime(p):
        r = randint(0, 2**64)
        q = gmpy.next_prime(2**64 + r)
        p = 2 * q + 1
    g_prime = randint(1, int(p - 1))
    g = pow(g_prime, 2, p)  # generator of the group
    assert pow(g, q, p) == 1
    G = g, p, q
    x = randint(1, int(q - 1))  # secret key
    y = pow(g, x, p)  # public key
    pk = El_Gamal_PublicKey(G, y)
    sk = El_Gamal_SecretKey(G, x)
    return pk, sk
コード例 #40
0
ファイル: pyecm.py プロジェクト: frarteaga/myScripts
def factors(n, veb, ra, ov, pr):
    '''Generates factors of n.
Strips small primes, then feeds to ecm function.

Input:
	n   -- An integer to factor
	veb -- If True, be verbose
	ra  -- If True, select sigma values randomly
	ov  -- How asymptotically fast the calculation is
	pr  -- What portion of the total processing power this run gets

Output: Factors of n, via a generator.

Notes:
1. A good value of ov for typical numbers is somewhere around 10. If this parameter is too high, overhead and memory usage grow.
2. If ra is set to False and veb is set to True, then results are reproducible. If ra is set to True, then one number may be done in parallel on disconnected machines (at only a small loss of efficiency, which is less if pr is set correctly).'''

    if type(n) not in T:
        raise ValueError, 'Number given must be integer or long.'

    if not 0 < pr <= 1:
        yield 'Error: pr must be between 0 and 1'
        return

    while not n & 1:
        n >>= 1
        yield 2

    n = mpz(n)
    k = inv_const(n)
    prime = 2
    trial_division_bound = max(10 * k**2, 100)

    while prime < trial_division_bound:
        prime = next_prime(prime)
        while not n % prime:
            n /= prime
            yield prime

    if isprime(n):
        yield n
        return

    if n == 1:
        return

    for factor in ecm(n, ra, ov, veb, trial_division_bound, pr):
        yield factor
コード例 #41
0
ファイル: primes.py プロジェクト: ALSchwalm/python-pkcs1
def get_prime(size=128, rnd=default_crypto_random, k=DEFAULT_ITERATION, algorithm=None):
    '''Generate a prime number of the giver size using the is_prime() helper function.
    
       size - size in bits of the prime, default to 128
       rnd - a random generator to use
       k - the number of iteration to use for the probabilistic primality algorithms,
       algorithm - the name of the primality algorithm to use, default is the
       probabilistic Miller-Rabin algorithm.

       Return value: a prime number, as a long integer
    '''
    while True:
        n = rnd.getrandbits(size-2)
        n = 2 ** (size-1) + n * 2 + 1
        if is_prime(n, rnd=rnd, k=k, algorithm=algorithm):
            return n
        if algorithm == 'gmpy-miller-rabin':
            return gmpy.next_prime(n)
コード例 #42
0
ファイル: SmallFactor.py プロジェクト: DanielHomann/kc
	def __init__(self, engine=None, parameter=10000, shared=None):		
		super(SmallFactor,self).__init__(engine, parameter, shared)
		
		connection = self.engine.connect()
		s = select([db.smallFactorTable.c.product]).where(db.smallFactorTable.c.up_to==self.parameter)
		res = connection.execute(s).first()
		
		if res is None:
			n = 2
			self.product = mpz('1')		
			while n < self.parameter:
				self.product = self.product * n
				n = gmp.next_prime(n)
			connection.execute(db.smallFactorTable.insert(), up_to=self.parameter, 
				product = str(self.product))
		else:
			self.product = mpz(res[0])
				
コード例 #43
0
ファイル: generate.py プロジェクト: mahmoudimus/tasty
def find_random_prime(k):
    """Find a random *k* bit prime number.

    The prime has exactly *k* significant bits:

    @type k: int
    @param k: number of significant bits

    @rtype: mpz
    @return: prime number

    >>> 2 <= _find_random_prime(10) < 2**10
    True
    """

    while True:
        prime = gmpy.next_prime(rand.randint(2**(k - 1), 2**k - 1))
        if prime < 2**k:
            return prime
コード例 #44
0
ファイル: pyecm.py プロジェクト: elhb/borgstrom
def isprime(n): 
	''' Tests for primality of n trying first fastprime and then a slower but accurate algorithm. Time complexity is O(N**3) (assuming quadratic multiplication), where n has N digits.

Returns the primality of n (True or False).'''
	if not fastprime(n):
		return False
	elif n < SMALLEST_COUNTEREXAMPLE_FASTPRIME:
		return True

	do_loop = False
	j = 1
	d = n >> 1
	a = 2
	bound = int(0.75 * math.log(math.log(n)) * math.log(n)) + 1

	while not d & 1:
		d >>= 1
		j += 1

	while a < bound:
		a = next_prime(a)
		p = atdn(a, d, n) 

		if p == 1 or p == n - 1: 
			continue 

		for _ in xrange(j): 
			p = (p * p) % n 

			if p == 1: 
				return False 
			elif p == n - 1: 
				do_loop = True
				break

		if do_loop:
			do_loop = False
			continue

		return False

	return True
コード例 #45
0
ファイル: pyecm.py プロジェクト: frarteaga/myScripts
def isprime(n):
    ''' Tests for primality of n trying first fastprime and then a slower but accurate algorithm. Time complexity is O(N**3) (assuming quadratic multiplication), where n has N digits.

Returns the primality of n (True or False).'''
    if not fastprime(n):
        return False
    elif n < SMALLEST_COUNTEREXAMPLE_FASTPRIME:
        return True

    do_loop = False
    j = 1
    d = n >> 1
    a = 2
    bound = int(0.75 * math.log(math.log(n)) * math.log(n)) + 1

    while not d & 1:
        d >>= 1
        j += 1

    while a < bound:
        a = next_prime(a)
        p = atdn(a, d, n)

        if p == 1 or p == n - 1:
            continue

        for _ in xrange(j):
            p = (p * p) % n

            if p == 1:
                return False
            elif p == n - 1:
                do_loop = True
                break

        if do_loop:
            do_loop = False
            continue

        return False

    return True
コード例 #46
0
def elgamal_param_gen():
    """Generate an El Gamal keypair

    :rtype: (ElgamalPublicKey, ElgamalSecretKey)
    """
    p = 4
    while not gmpy.is_prime(p):
        r = randint(0, 2**64)
        q = gmpy.next_prime(2**64 + r)
        p = 2 * q + 1

    g_prime = randint(1, int(p - 1))
    g = pow(g_prime, 2, p)  # generator of the group
    assert pow(g, q, p) == 1
    G = g, p, q
    x = randint(1, int(q - 1))  # secret key
    y = pow(g, x, p)  # public key
    pk = ElgamalPublicKey(G, y)
    sk = ElgamalSecretKey(G, x)
    return pk, sk
コード例 #47
0
ファイル: backdoor.py プロジェクト: YuriFA/rsa_backdoored
def build_key(bits=2048, e=65537, embed='', pos=1, randfunc=None):
    # generate base key
    rsa = RSA.generate(bits, randfunc)
    # extract modulus as a string
    n_str = unhexlify(str(hex(rsa.n))[2:])
    # print(str(hex(rsa.n)), n_str)
    # embed data into the modulus
    n_hex = hexlify(replace_at(n_str, embed, pos))
    n = gmpy.mpz(n_hex, 16)
    p = rsa.p
    # compute a starting point to look for a new q value
    pre_q = n / p
    # use the next prime as the new q value
    q = gmpy.next_prime(gmpy.mpz(pre_q))
    n = p * q
    phi = (p-1) * (q-1)
    # compute new private exponent
    d = gmpy.invert(e, phi)
    # make sure that p is smaller than q
    if p > q:
        (p, q) = (q, p)
    return RSA.construct((int(n), int(e), int(d), int(p), int(q)))
コード例 #48
0
def factorize(x):
    r'''
    >>> factorize(a)
    [3, 41]
    >>> factorize(b)
    [2, 2, 2, 3, 19]
    >>>
    '''
    savex=x
    prime=2
    x=_g.mpz(x)
    factors=[]
    while x>=prime:
        newx,mult=x.remove(prime)
        if mult:
            factors.extend([int(prime)]*mult)
            x=newx
        prime=_g.next_prime(prime)
    for factor in factors: assert _g.is_prime(factor)
    from operator import mul
    from functools import reduce
    assert reduce(mul, factors)==savex
    return factors
コード例 #49
0
def factorize(x=c):
    r'''
    (Takes about 25ms, on c, on a first-generation Macbook Pro)
    >>> factorize(a)
    [3, 41]
    >>> factorize(b)
    [2, 2, 2, 3, 19]
    >>>
    '''
    import gmpy as _g
    savex=x
    prime=2
    x=_g.mpz(x)
    factors=[]
    while x>=prime:
        newx,mult=x.remove(prime)
        if mult:
            factors.extend([int(prime)]*mult)
            x=newx
        prime=_g.next_prime(prime)
    for factor in factors: assert _g.is_prime(factor)
    from operator import mul
    assert reduce(mul, factors)==savex
    return factors
コード例 #50
0
ファイル: schoof.py プロジェクト: elliptic-shiho/ecpy
def schoof(F, E):
  def y2_reduce(pol, x, y, Fx):
    '''
    Reduce `pol` modulo (y^2 - Fx)
      <=> pol over F_q[x, y] / (y^2 - Fx)
    '''
    if pol.degree() < 2:
      return pol
    assert all([len(t) == 1 and t[0] == 0 for t in pol[1::2]])
    for i in xrange(1, (len(pol) - 1) // 2 + 1):
      y2 = (sum(map(lambda t: x**t[0] * t[1], enumerate(pol[2 * i]))))
      pol = pol - (y**(2*i) * y2)  + (y2 * Fx ** i)
    return pol


  @memoize
  def division_polynomial(ell, x, y):
    pol = torsion_polynomial(ell, E, x, y)
    pol.trim()
    return pol

  def get_polynomial(ell, x0, y0):
    if ell == 0:
      return PU.element_class(PU, [0])
    pp0 = division_polynomial(ell, x0, y0)
    pm1 = division_polynomial(ell - 1, x0, y0)
    pp1 = division_polynomial(ell + 1, x0, y0)
    pol_p = x - (pm1 * pp1)
    pol_q = pp0 ** 2
    pol_p = y2_reduce(pol_p, x, y, Fx)
    pol_q = y2_reduce(pol_q, x, y, Fx)
    pol_p = (pol_p.apply(xs, 0))
    pol_q = (pol_q.apply(xs, 0))
    pol = pol_p / pol_q
    if not isinstance(pol, UnivariatePolynomialRing):
      return PU.element_class(PU, [pol])
    return pol


  L = 2
  N = 1
  t = {}
  factors = {}
  q = F.p ** F.degree()
  PR = BivariatePolynomialRing(F, ['x', 'y'])
  PU = UnivariatePolynomialRing(F, 'xs')
  x, y = PR.gens()
  Fx = x**3 + E.a*x + E.b
  xs = PU.gen()

  while N < math.sqrt(F.n) * 4:
    L = int(gmpy.next_prime(L))
    qbar = q % L
    mod_poly = division_polynomial(L, x, y).apply(xs, 0)
    poly1 = get_polynomial(qbar + 1, x, y) % mod_poly
    for tbar in xrange(0, L):
      poly2 = get_polynomial(tbar, x, y) % mod_poly
      if poly1 == poly2:
        factors[L] = tbar
        N *= L
        break
    print(factors)

  t = crt(map(lambda x: factors[x], factors.keys()), factors.keys())
  if t > N // 2:
    t = - (N - t)
  return q + 1 - t
コード例 #51
0
ファイル: cross_check.py プロジェクト: dkohlbre/crypto-vm
flag = '[censored]'

P = []
Q = []
D = []
N = []
pubKey = []
privKey = []
Enc = []

p = random.randint(1 << 510, 1 << 511)
q = random.randint(1 << 510, 1 << 511)

for i in range(0, 3):
    p = gmpy.next_prime(p)
    q = gmpy.next_prime(q)
    P.append(p)
    Q.append(q)


for i in range(0, 3):
    N.append(P[i] * Q[2 - i])
    print N[i]
    D.append(long(gmpy.invert(long(65537), (P[i] - 1) * (Q[2 - i] - 1))))
    privKey.append(RSA.construct((long(N[i]), long(65537), long(D[i]), long(P[i]), long(Q[2 - i]))))
    pubKey.append(RSA.construct((long(N[i]), long(65537))))
    print pubKey[i].exportKey()
    key = PKCS1_v1_5.new(pubKey[i])
    Enc.append(base64.b64encode(key.encrypt(flag[19 * i : 19 * (i + 1)])))
    print Enc[i]
コード例 #52
0
ファイル: q37.py プロジェクト: mwcz/euler
from gmpy import next_prime, is_prime


def truncatable(_s):

    s = str(_s)
    l = len(s)

    for i in range(l):
        if not is_prime(int(s[i:])):
            return False
        if not is_prime(int(s[: i + 1])):
            return False

    return True


if __name__ == "__main__":

    primes = []

    p = 7

    while len(primes) < 11:
        p = next_prime(p)
        if truncatable(p):
            primes.append(p)

    print(sum(primes))
コード例 #53
0
ファイル: esign.py プロジェクト: tomasra/studijos
def sign(msg, p, q, x, k, n):
    w = int(math.ceil(float((hash(msg) - pow(x, k, n)) % n) / float(p * q)))
    y = (w * gmpy.invert((k * pow(x, k - 1)), p)) % p
    s = (x + (y * p * q)) % n
    return s

def verify(msg, s, k, n):
    u = pow(s, k, n)
    z = hash(msg)
    zp = z + pow(2, int(math.ceil(float(math.log(n, 2) * 2.0 / 3.0))))
    if (u >= z) and (zp >= u):
        return True
    else:
        return False

p = int(gmpy.next_prime(30000))
q = int(gmpy.next_prime(25000))

n = pow(p, 2) * q
k = 12
x = 4321
x = 14

# p = 285311670673
# q = 387420499
# n = pow(p, 2) * q
# k = 7
# msg = 31111133 
# x = 45767

コード例 #54
0
ファイル: pyecm.py プロジェクト: elhb/borgstrom
def sub_sub_sure_factors(f, u, curve_parameter):
	'''Finds all factors that can be found using ECM with a smoothness bound of u and sigma and give curve parameters. If that fails, checks for being a prime power and does Fermat factoring as well.
	
Yields factors.'''
	while not (f & 1):
		yield 2
		f >>= 1
	
	while not (f % 3):
		yield 3
		f /= 3

	if isprime(f):
		yield f
		return

	log_u = math.log(u)
	u2 = int(_7_OVER_LOG_2 * u * log_u / math.log(log_u))
	primes = []
	still_a_chance = True
	log_mo = math.log(f + 1 + sqrt(f << 2))

	g = gcd(curve_parameter, f)
	if g not in (1, f):
		for factor in sub_sub_sure_factors(g, u, curve_parameter):
			yield factor
		for factor in sub_sub_sure_factors(f/g, u, curve_parameter):
			yield factor
		return

	g2 = gcd(curve_parameter**2 - 5, f)
	if g2 not in (1, f):
		for factor in sub_sub_sure_factors(g2, u, curve_parameter):
			yield factor
		for factor in sub_sub_sure_factors(f / g2, u, curve_parameter):
			yield factor
		return

	if f in (g, g2):
		yield f

	while still_a_chance:
		p1 = get_points([curve_parameter], f)
		for prime in primes:
			p1 = multiply(p1, prime, f)
			if not isinstance(p1, list):
				if p1 != f:
					for factor in sub_sub_sure_factors(p1, u, curve_parameter):
						yield factor
					for factor in sub_sub_sure_factors(f/p1, u, curve_parameter):
						yield factor
					return
				else:
					still_a_chance = False
					break

		if not still_a_chance:
			break

		prime = 1
		still_a_chance = False
		while prime < u2:
			prime = next_prime(prime)
			should_break = False
			for _ in xrange(int(log_mo / math.log(prime))):
				p1 = multiply(p1, prime, f)
				if not isinstance(p1, list):
					if p1 != f:
						for factor in sub_sub_sure_factors(p1, u, curve_parameter):
							yield factor
						for factor in sub_sub_sure_factors(f/p1, u, curve_parameter):
							yield factor
						return

					else:
						still_a_chance = True
						primes.append(prime)
						should_break = True
						break
			if should_break:
				break

	for i in xrange(2, int(math.log(f) / LOG_2) + 2):
		r = root(f, i)
		if r[1]:
			for factor in sub_sub_sure_factors(r[0], u, curve_parameter):
				for _ in xrange(i):
					yield factor
			return
	
	a = 1 + sqrt(f)
	bsq = a * a - f
	iter = 0

	while bsq != sqrt(bsq)**2 and iter < 3:
		a += 1
		iter += 1
		bsq += a + a - 1

	if bsq == sqrt(bsq)**2:
		b = sqrt(bsq)
		for factor in sub_sub_sure_factors(a - b, u, curve_parameter):
			yield factor
		for factor in sub_sub_sure_factors(a + b, u, curve_parameter):
			yield factor
		return

	yield f
	return
コード例 #55
0
ファイル: solution.py プロジェクト: mishok13/codechallenge
def primes(limit):
    prime = 2
    while prime < limit:
        yield prime
        prime = gmpy.next_prime(prime)
コード例 #56
0
ファイル: q26.py プロジェクト: mwcz/euler
if __name__ == "__main__":

    #
    # finds the greatest length cycle in 1/(2..999),
    # but success is based on precision.  higher precision = longer
    # running time.
    #

    precision = 1000

    # set the precision of division
    getcontext().prec = precision

    max = (0,0,"")

    i = 2
    while i < 1000:
        s = str( Decimal(1) / Decimal(int(i)) )[2:]
        seq = get_cycle(s)
        if len(seq) > len(max[2]):
            max = (i,s,seq)
        i = next_prime(i)

    for el in max: print(el)

#    max = 0
#
#    for i in xrange(2,1000):
#        if is_prime(i):
#            max = max if max > i-1 else i-1
コード例 #57
0
ファイル: pyecm.py プロジェクト: elhb/borgstrom
def mainloop(n, u, p1):
	''' Input:	n  -- an integer to (try) to factor.
			u  -- the phase 1 smoothness bound
			p1 -- a list of sigma parameters to try

	Output:	A factor of n. (1 is returned on faliure).

	Notes: 
		1. Other parameters, such as the phase 2 smoothness bound are selected by the mainloop function.
		2. This function uses batch algorithms, so if p1 is not long enough, there will be a loss in efficiency.
		3. Of course, if p1 is too long, then the mainloop will have to use more memory.
		      [The memory is polynomial in the length of p1, log u, and log n].'''
	k = inv_const(n)
	log_u = math.log(u)
	log_log_u = math.log(log_u)
	log_n = math.log(n)
	u2 = int(_7_OVER_LOG_2 * u * log_u / log_log_u)
	ncurves = len(p1)
	w = int(math.sqrt(_3_OVER_LOG_2 * ncurves / k) - 0.5)
	number_of_primes = int((ncurves << w) * math.sqrt(LOG_4_OVER_9 * log_n / k) / log_u) # Lagrange multipliers!
	number_of_primes = min(number_of_primes, int((log_n / math.log(log_n))**2 * ncurves / log_u), int(u / log_u))
	number_of_primes = max(number_of_primes, 1)
	m = math.log(number_of_primes) + log_log_u
	w = min(w, int((m - 2 * math.log(m) + LOG_3_MINUS_LOG_LOG_2) / LOG_2))
	w = max(w, 1)
	max_order = n + sqrt(n << 2) + 1 # By Hasse's theorem.
	det_bound = ((1 << w) - 1 + ((w & 1) << 1)) / 3
	log_mo = math.log(max_order)
	p = range(number_of_primes)
	prime = mpz(2)

	p1 = get_points(p1, n)
	if not isinstance(p1, list):
		return p1

	for _ in xrange(int(log_mo / LOG_2)):
		p1 = double(p1, n)
		if not isinstance(p1, list):
			return p1
	
	for i in xrange(1, det_bound):
		prime  = (i << 1) + 1
		if isprime(prime):
			for _ in xrange(int(log_mo / math.log(prime))):
				p1 = multiply(p1, prime, n)
				if not isinstance(p1, list):
					return p1

	while prime < sqrt(u) and isinstance(p1, list):
		for i in xrange(number_of_primes):
			prime = next_prime(prime)
			p[i] = prime ** max(1, int(log_u / math.log(prime)))
		p1 = fast_multiply(p1, prod(p),  n, w)

	if not isinstance(p1, list):
		return p1

	while prime < u and isinstance(p1, list):
		for i in xrange(number_of_primes):
			prime = next_prime(prime)
			p[i] = prime
		p1 = fast_multiply(p1, prod(p),  n, w)

	if not isinstance(p1, list):
		return p1

	del p

	small_jump = int(greatest_n((1 << (w + 2)) / 3))
	small_jump = max(120, small_jump)
	big_jump = 1 + (int(sqrt((5 << w) / 21)) << 1)
	total_jump = small_jump * big_jump
	big_multiple = max(total_jump << 1, ((int(next_prime(prime)) - (total_jump >> 1)) / total_jump) * total_jump)
	big_jump_2 = big_jump >> 1
	small_jump_2 = small_jump >> 1
	product = ONE

	psmall_jump = multiply(p1, small_jump, n)
	if not isinstance(psmall_jump, list):
		return psmall_jump

	ptotal_jump = multiply(psmall_jump, big_jump, n)
	if not isinstance(ptotal_jump, list):
		return ptotal_jump

	pgiant_step = multiply(p1, big_multiple, n)
	if not isinstance(pgiant_step, list):
		return pgiant_step

	small_multiples = [None]
	for i in xrange(1, small_jump >> 1):
		if gcd(i, small_jump) == 1:
			tmp = multiply(p1, i, n)
			if not isinstance(tmp, list):
				return tmp
			for i in xrange(len(tmp)):
				tmp[i] = tmp[i][0]
			small_multiples.append(tuple(tmp))
		else:
			small_multiples.append(None)
	small_multiples = tuple(small_multiples)

	big_multiples = [None]
	for i in xrange(1, (big_jump + 1) >> 1):
		tmp = multiply(psmall_jump, i, n)
		if not isinstance(tmp, list):
			return tmp
		big_multiples.append(to_tuple(tmp))
	big_multiples = tuple(big_multiples)

	psmall_jump = to_tuple(psmall_jump)
	ptotal_jump = to_tuple(ptotal_jump)
	
	while big_multiple < u2:
		big_multiple += total_jump
		center_up = big_multiple
		center_down = big_multiple
		pgiant_step = add(ptotal_jump, pgiant_step, n)
		if not isinstance(pgiant_step, list):
			return pgiant_step

		prime_up = next_prime(big_multiple - small_jump_2)
		while prime_up < big_multiple + small_jump_2:
			s = small_multiples[abs(int(prime_up) - big_multiple)]
			for j in xrange(ncurves):
				product *= pgiant_step[j][0] - s[j]
				product %= n
			prime_up = next_prime(prime_up)
		
		for i in xrange(1, big_jump_2 + 1):
			center_up += small_jump
			center_down -= small_jump
			
			pmed_step_up, pmed_step_down = add_sub_x_only(big_multiples[i], pgiant_step, n)
			if pmed_step_down == None:
				return pmed_step_up

			while prime_up < center_up + small_jump_2:
				s = small_multiples[abs(int(prime_up) - center_up)]
				for j in xrange(ncurves):
					product *= pmed_step_up[j] - s[j]
					product %= n
				prime_up = next_prime(prime_up)

			prime_down = next_prime(center_down - small_jump_2)
			while prime_down < center_down + small_jump_2:
				s = small_multiples[abs(int(prime_down) - center_down)]
				for j in xrange(ncurves):
					product *= pmed_step_down[j] - s[j]
					product %= n
				prime_down = next_prime(prime_down)

	if gcd(product, n) != 1:
		return gcd(product, n)

	return 1
コード例 #58
0
ファイル: 69c.py プロジェクト: kaizensoze/project-euler
import gmpy
import itertools

from gmpy import mpz, mpq

limit = 10
maxN = 0

"""
once n_count reaches million, we can assume
we've generated all unique n <= million using primes
"""
n_count = 0
primes = (gmpy.next_prime(n) for n in range(1, limit))
print(type(primes))
exit()

"""
we want to generate all unique n as quickly as possible.
to avoid duplicate factorizations, keep records of all
distinct prime combinations tried
"""
tried_combos = {}

""" n -> phi(n) """
pairs = {}

# generate primes
for n in range(1, limit):
    nextPrime =  gmpy.next_prime(n)
    primes.append(nextPrime)