def test_init(self): """Tests the __init__() function of the AttractorField""" # testing without args: field = AttractorField() self.assertIsNone(field._occupancy_grid) self.assertIsNone(field._goal) # testing with provided occupancy_grid: field = AttractorField(occupancy_grid=self.occupancy_grid) self.assertTrue((field._occupancy_grid == self.occupancy_grid).all()) self.assertIsNone(field._goal) self.assertEqual((self.N, self.M), field._grid_shape) self.assertTrue((np.array([self.N, self.M]) == field._grid_shape_arr).all()) # testing with provided goal: field = AttractorField(goal=self.goal) self.assertIsNone(field._occupancy_grid) self.assertTrue((field._goal == self.goal).all()) # testing with provided occupancy grid and goal: field = AttractorField(occupancy_grid=self.occupancy_grid, goal=self.goal) self.assertTrue((field._occupancy_grid == self.occupancy_grid).all()) self.assertTrue((field._goal == self.goal).all()) self.assertEqual((self.N, self.M), field._grid_shape) self.assertTrue((np.array([self.N, self.M]) == field._grid_shape_arr).all()) self.assertIsNotNone(field._field)
def __init__(self, occupancy_grid, goal_pos, goal_ang, R, params): """Initializes the GradController object.""" self._occupancy_grid = occupancy_grid self.set_new_goal(goal_pos, goal_ang) self._R = R # creating the attractive and repulsive gradient fields: self._attractor = AttractorField(occupancy_grid=self._occupancy_grid, goal=self._goal_pos) self._repulsive = RepulsiveField(occupancy_grid=self._occupancy_grid, R=self._R) # setting up some params based on the json file if provided: self._set_from_params(params)
def test_expand_pixel(self): """Tests the _expand_pixel method of the AttractorField""" # if expanding again any pixels without changing their values, nothing should change: # field1 is left as it was and field2 is modified. field1 = AttractorField(occupancy_grid=self.occupancy_grid, goal=self.goal) field2 = AttractorField(occupancy_grid=self.occupancy_grid, goal=self.goal) for ind in [[1, 1], [5, 5], [3, 7], [8, 1], [8, 4]]: field2._expand_pixel(np.array(ind)) for i in range(self.N): for j in range(self.M): self.assertEqual(field1._field[i, j].value, field2._field[i, j].value) self.assertTrue((field1._field[i, j].grad == field2._field[i, j].grad).all()) ### placing an obstacle and then removing it from field2: ### occ_grid = self.occupancy_grid.copy() occ_grid[7, 5] = 1 field1 = AttractorField(occupancy_grid=occ_grid, goal=self.goal) field2 = AttractorField(occupancy_grid=occ_grid, goal=self.goal) field2._field[7, 5].value = 0 field2._expand_pixel(np.array([6, 5])) # indices where the value did not change: for ind in [(5, 5), (6, 5), (6, 6), (7, 6), (8, 6), (9, 6), (6, 4), (7, 4), (8, 4), (9, 4), (9, 5)]: self.assertEqual(field1._field[ind].value, field2._field[ind].value) # indices where the gradient did not change: for ind in [(5, 5), (6, 5), (6, 6), (7, 7), (8, 7), (9, 7), (6, 4), (7, 3), (8, 3), (9, 3)]: self.assertEqual(field1._field[ind].value, field2._field[ind].value) self.assertTrue((field1._field[ind].grad == field2._field[ind].grad).all()) # indices where the value has changed: self.assertEqual(field1._field[6, 5].value - 1, field2._field[7, 5].value) self.assertEqual(field1._field[8, 5].value + 2, field2._field[8, 5].value) # some indices with different gradients: self.assertTrue((field2._field[7, 5].grad == np.array([-1, 0])).all()) self.assertTrue((field2._field[8, 5].grad == np.array([-1, 0])).all()) self.assertTrue((field2._field[7, 6].grad == np.array([-1 / np.sqrt(2), -1 / np.sqrt(2)])).all()) self.assertTrue((field2._field[8, 6].grad == np.array([-1 / np.sqrt(2), -1 / np.sqrt(2)])).all()) self.assertTrue((field2._field[7, 4].grad == np.array([-1 / np.sqrt(2), 1 / np.sqrt(2)])).all()) self.assertTrue((field2._field[8, 4].grad == np.array([-1 / np.sqrt(2), 1 / np.sqrt(2)])).all())
def test_update_pixel(self): """Tests the _update_pixel method of the AttractorField""" field = AttractorField(occupancy_grid=self.occupancy_grid, goal=self.goal) # setting some pixels: for ind in [(6, 5), (6, 6), (5, 6), (4, 6), (4, 5), (4, 4), (6, 4)]: field._field[ind].value = -3 field._field[5, 4].value = -2 # the pixel value is already bigger: field._field[5, 5].value = -1 new_pix = field._field[5, 5] new_pix = field._update_pixel(new_pix) self.assertEqual(new_pix.value, -1) self.assertTrue((new_pix.grad == np.array([0, 0])).all()) # the pixel value has to be changed: field._field[5, 5].value = -4 new_pix = field._field[5, 5] new_pix = field._update_pixel(new_pix) self.assertEqual(new_pix.value, -3) self.assertTrue((new_pix.grad == np.array([0, -1])).all())
def test_list_expandable_indices(self): """Tests the _list_expandable_indices method of the AttractorField""" field = AttractorField(occupancy_grid=self.occupancy_grid, goal=self.goal) field._changed_indices = [np.array([0, 5]), np.array([5, 5])] # expected list: etalon_indices = [np.array([1, 5]), np.array([4, 5]), np.array([6, 5]), np.array([5, 4]), np.array([5, 6])] # run function: indices = field._list_expandable_indices() # check if the list members are the same: self.assertEqual(len(etalon_indices), len(indices)) for index in etalon_indices: self.assertTrue(array_is_in_list(index, indices)) # check the order of the list: for i, index in enumerate(indices[: -1]): next_index = indices[i + 1] value = field._field[index[0], index[1]].value next_value = field._field[next_index[0], next_index[1]].value self.assertTrue(value >= next_value)
def test_update_occupancy_grid(self): """Tests the update_occupancy_grid method of the AttractorField""" # testing without original occupancy grid: field = AttractorField(goal=self.goal) field.update_field(self.occupancy_grid) self.assertTrue((field._occupancy_grid == self.occupancy_grid).all()) self.assertEqual((self.N, self.M), field._grid_shape) self.assertTrue((np.array([self.N, self.M]) == field._grid_shape_arr).all()) # testing with original occupancy grid: field = AttractorField(occupancy_grid=self.occupancy_grid, goal=self.goal) # test wrong shape assertion: with self.assertRaises(AssertionError): field.update_field(np.zeros((self.N - 1, self.M))) # check if nothing has changed: new_grid = self.occupancy_grid.copy() field.update_field(new_grid) self.assertTrue((field._occupancy_grid == new_grid).all()) with self.assertRaises(AttributeError): a = field._changed_indices # check if something has changed: new_grid[5, 5] = 1 new_grid[0, 3] = 0 etalon_changes = np.sort(np.array([[5, 5], [0, 3]]), axis=0) field.update_field(new_grid) changes = np.sort(np.array(field._changed_indices), axis=0) self.assertTrue((field._occupancy_grid == new_grid).all()) self.assertEqual(len(field._changed_indices), 2) i = 0 for ind in changes: self.assertTrue((ind == etalon_changes[i]).all()) i += 1
def test_set_new_goal(self): """Tests the set_new_goal method of the AttractorField""" field = AttractorField() # checking assertion errors: with self.assertRaises(AssertionError): field.set_new_goal(np.array([1, 2, 3])) field.set_new_goal(np.array([[1, 1]])) # checking goal setting without occupancy_grid: field.set_new_goal(self.goal) self.assertTrue((field._goal == self.goal).all()) self.assertIsNone(field._occupancy_grid) # checking goal setting with occupancy grid: field = AttractorField() field._occupancy_grid = self.occupancy_grid field.set_new_goal(self.goal) self.assertTrue((field._goal == self.goal).all()) self.assertIsNotNone(field._field)
def test_init_field(self): """Tests the _init_field method of the AttractorField""" # testing without args: field = AttractorField() with self.assertRaises(AssertionError): field._init_field() with self.assertRaises(AttributeError): field._field # testing with provided occupancy grid: field = AttractorField(occupancy_grid=self.occupancy_grid) with self.assertRaises(AssertionError): field._init_field() with self.assertRaises(AttributeError): field._field # testing with provided goal: field = AttractorField(goal=self.goal) with self.assertRaises(AssertionError): field._init_field() with self.assertRaises(AttributeError): field._field # testing with everything provided: field = AttractorField(occupancy_grid=self.occupancy_grid, goal=self.goal) field._init_field() self.assertIsNotNone(field._field)
def test_update_occupancy_grid(self): """Tests the update_occupancy_grid method of the AttractorField""" # testing without original occupancy grid: field = AttractorField(goal=self.goal) field.update_occupancy_grid(self.occupancy_grid) self.assertTrue((field._occupancy_grid == self.occupancy_grid).all()) self.assertEqual((self.N, self.M), field._grid_shape) self.assertTrue((np.array([self.N, self.M]) == field._grid_shape_arr).all()) # testing with original occupancy grid: field = AttractorField(occupancy_grid=self.occupancy_grid, goal=self.goal) # test wrong shape assertion: with self.assertRaises(AssertionError): field.update_occupancy_grid(np.zeros((self.N - 1, self.M))) # check if nothing has changed: new_grid = self.occupancy_grid.copy() field.update_occupancy_grid(new_grid) self.assertTrue((field._occupancy_grid == new_grid).all()) with self.assertRaises(AttributeError): a = field._changed_indices # check if something has changed: new_grid[5, 5] = 1 new_grid[0, 3] = 0 etalon_changes = np.sort(np.array([[5, 5], [0, 3]]), axis=0) field.update_occupancy_grid(new_grid) changes = np.sort(np.array(field._changed_indices), axis=0) self.assertTrue((field._occupancy_grid == new_grid).all()) self.assertEqual(len(field._changed_indices), 2) i = 0 for ind in changes: self.assertTrue((ind == etalon_changes[i]).all()) i += 1 ######################################################### # Test with changes in the occupancy grid goal = np.array([3, 3]) occ_grid_no_obst = self.occupancy_grid.copy() # occupancy grid with an U shaped obstacle: occ_grid_with_obst = self.occupancy_grid.copy() occ_grid_with_obst[6, 4: 7] = 1 occ_grid_with_obst[7, 4] = 1 occ_grid_with_obst[7, 6] = 1 # testing the insertion of new obstacle: field1 = AttractorField(occupancy_grid=occ_grid_with_obst, goal=goal) field2 = AttractorField(occupancy_grid=occ_grid_no_obst, goal=goal) field2.update_occupancy_grid(occ_grid_with_obst) # testing the values: result_vals1 = get_values_from_field(field1._field) result_vals2 = get_values_from_field(field2._field) self.assertTrue((result_vals1 == result_vals2).all()) # testing the grads: for i in range(self.N): for j in range(self.M): self.assertTrue((field1._field[i, j].grad == field2._field[i, j].grad).all()) # testing when the obstacle dissappears: field1 = AttractorField(occupancy_grid=occ_grid_no_obst, goal=goal) field2 = AttractorField(occupancy_grid=occ_grid_with_obst, goal=goal) field2.update_occupancy_grid(occ_grid_no_obst) # testing the values: result_vals1 = get_values_from_field(field1._field) result_vals2 = get_values_from_field(field2._field) self.assertTrue((result_vals1 == result_vals2).all()) # testing the grads: for i in range(self.N): for j in range(self.M): self.assertTrue((field1._field[i, j].grad == field2._field[i, j].grad).all())
class GradController: """Gradient field based controller.""" def __init__(self, occupancy_grid, goal_pos, goal_ang, R, params): """Initializes the GradController object.""" self._occupancy_grid = occupancy_grid self.set_new_goal(goal_pos, goal_ang) self._R = R # creating the attractive and repulsive gradient fields: self._attractor = AttractorField(occupancy_grid=self._occupancy_grid, goal=self._goal_pos) self._repulsive = RepulsiveField(occupancy_grid=self._occupancy_grid, R=self._R) # setting up some params based on the json file if provided: self._set_from_params(params) def set_new_goal(self, goal_pos, goal_ang): """Sets a new goal.""" self._goal_pos = goal_pos self._goal_ang = goal_ang self._goal_pos_is_reached = False self._goal_ang_is_reached = False def get_cmd_vel(self, pose): """Gets the cmd_vel to send to the low level controller of the robot.""" self._set_pose(pose) if self._goal_pos_is_reached: if self._goal_ang_is_reached: return np.array([0, 0]) else: print("In End mode.") return self._get_cmd_vel_end() if self._goal_is_visible(): print("In Direct mode.") return self._get_cmd_vel_direct() else: print("In Grad mode.") return self._get_cmd_vel_grad() def _set_pose(self, pose): """sets pose related variables.""" self._pos = pose[0:2] self._x = pose[0] self._y = pose[1] self._psi = pose[2] self._i = int(np.floor(pose[0])) self._j = int(np.floor(pose[1])) def _goal_is_visible(self): """Returns true if there is no obstacle between the robot and the goal and the robot is at least self._min_obst_dist away from the nearest obstacle. """ val = self._repulsive.get_val(self._i, self._j) if (0 < val < self._min_obst_dist): return False else: # carry out a raytracing: vect = self._goal_pos - self._pos distance = np.linalg.norm(vect) vect = vect / distance N = int(np.floor(distance)) point = self._pos for _ in range(N): point += vect i, j = int(np.floor(point[0])), int(np.floor(point[1])) if self._occupancy_grid[i, j] == 1: return False return True def _get_cmd_vel_end(self): """Controller for the case when the robot has already reached the goal position, only the orientation has to be changed. """ ang_diff = self._get_ang_diff(self._goal_ang, self._psi) if abs(ang_diff) > self._ang_tolerance: return np.array([0, self._get_ang_vel(ang_diff, self._K_end)]) else: self._goal_ang_is_reached = True return np.array([0, 0]) def _get_cmd_vel_direct(self): """Controller for the case when the goal is visible from the current position of the robot. """ vect = self._goal_pos - self._pos desired_direction = np.arctan2(vect[1], vect[0]) ang_diff = self._get_ang_diff(desired_direction, self._psi) # calculating the desired angular velocity: des_ang_vel = self._get_ang_vel(ang_diff, self._K_direct) # calculating the desired translational velocity: des_trans_vel = self._get_trans_vel(ang_diff, self._boundar_error_direct, self._max_error_direct) return np.array([des_trans_vel, des_ang_vel]) def _get_cmd_vel_grad(self): """Controller for the case when the robot is in the influenced area of obstacles. It uses 3 pixels from the occupancy grid: - 1: The pixel it is in. - 2 and 3: neares neighboring pixels. """ grad1 = self._attractor.get_grad(self._i, self._j) +\ self._repulsive.get_grad(self._i, self._j) # calculating the indices of the neighbours: #i1, j1 = np.round(self._i), np.round(self._j) if ((self._x - self._i) > 0.5): i1 = self._i + 1 else: i1 = self._i - 1 if ((self._y - self._j) > 0.5): j1 = self._j + 1 else: j1 = self._j - 1 #if(abs(self._psi) < np.pi / 2): i1 = self._i + 1 #else: i1 = self._i - 1 # #if(self._psi > 0): j1 = self._j + 1 #else: j1 = self._j - 1 # getting the gradients of the neighbouring cells: if (j1 >= 0) and (j1 < self._occupancy_grid.shape[1]): grad2 = self._attractor.get_grad(self._i, j1) +\ self._repulsive.get_grad(self._i, j1) else: grad2 = np.array([0, 0]) if (i1 >= 0) and (i1 < self._occupancy_grid.shape[0]): grad3 = self._attractor.get_grad(i1, self._j) +\ self._repulsive.get_grad(i1, self._j) else: grad3 = np.array([0, 0]) #grad = self._norm_grad(grad1) + self._norm_grad(grad2) +\ # self._norm_grad(grad3) grad = grad1 + grad2 + grad3 # getting the desired angular and translational velocity: desired_direction = np.arctan2(grad[1], grad[0]) ang_diff = self._get_ang_diff(desired_direction, self._psi) # calculating the desired angular velocity: des_ang_vel = self._get_ang_vel(ang_diff, self._K_grad) # calculating the desired translational velocity: des_trans_vel = self._get_trans_vel(ang_diff, self._boundar_error_grad, self._max_error_grad) return np.array([des_trans_vel, des_ang_vel]) def _norm_grad(self, grad): """Normalizes a gradient""" eps = 1e-6 length = np.linalg.norm(grad) if length > eps: return grad / length else: return np.array([0, 0]) def _get_ang_vel(self, ang_diff, K): """Gets the desired velocity based on a simple proportional relationship with the error. It also respects the max angular velocity.""" des_ang_vel = -self._K_direct * ang_diff if abs(des_ang_vel) > self._max_ang_vel: des_ang_vel = np.sign(des_ang_vel) * self._max_ang_vel return des_ang_vel def _get_trans_vel(self, ang_diff, boundary_error, max_error): """Gets the desired translational velocity for the robot. - if abs(ang_diff) < boundary_error: max velocity - if boundary_error < abs(ang_diff) < max_error: linearly decreasing velocity between max velocity and 0 - else: 0 translational velocity. """ if abs(ang_diff) < boundary_error: return self._max_trans_vel elif abs(ang_diff) < max_error: ratio = (abs(ang_diff) - boundary_error) / (max_error - boundary_error) return self._max_trans_vel * (1 - ratio) else: return 0 def _get_ang_diff(self, desired, real): """gets the orientation difference between the desired and the real orientation. The value is always in the range [-pi, pi] """ diff = real - desired if abs(diff) < np.pi: return diff else: return diff - np.sign(diff) * 2 * np.pi @property def goal_is_reached(self): """Returns true if the goal is reached.""" return self._goal_pos_is_reached and self._goal_ang_is_reached def _set_from_params(self, params): """Sets up some values based on params.""" # general self._pos_tolerance = params["GradController"]["general"][ "pos_tolerance"] self._ang_tolerance = params["GradController"]["general"][ "ang_tolerance"] self._max_trans_vel = params["GradController"]["general"][ "max_trans_vel"] self._max_trans_acc = params["GradController"]["general"][ "max_trans_acc"] self._max_ang_vel = params["GradController"]["general"]["max_ang_vel"] self._max_ang_acc = params["GradController"]["general"]["max_ang_acc"] # grad_mode self._K_grad = params["GradController"]["grad_mode"]["K"] self._boundar_error_grad = params["GradController"]["grad_mode"][ "boundary_error"] self._max_error_grad = params["GradController"]["grad_mode"][ "max_error"] self._grad_vel_scaling = params["GradController"]["grad_mode"][ "grad_vel_scaling"] # direct_mode: self._min_obst_dist = params["GradController"]["direct_mode"][ "min_obst_dist"] self._K_direct = params["GradController"]["direct_mode"]["K"] self._boundar_error_direct = params["GradController"]["direct_mode"][ "boundary_error"] self._max_error_direct = params["GradController"]["direct_mode"][ "max_error"] # end_mode: self._K_end = params["GradController"]["end_mode"]["K_end"]