コード例 #1
0
ファイル: test_routing.py プロジェクト: systemshift/hivemind
def test_ids_basic():
    # basic functionality tests
    for i in range(100):
        id1, id2 = DHTID.generate(), DHTID.generate()
        assert DHTID.MIN <= id1 < DHTID.MAX and DHTID.MIN <= id2 <= DHTID.MAX
        assert DHTID.xor_distance(id1, id1) == DHTID.xor_distance(id2,
                                                                  id2) == 0
        assert DHTID.xor_distance(id1, id2) > 0 or (id1 == id2)
        assert DHTID.from_bytes(bytes(id1)) == id1 and DHTID.from_bytes(
            id2.to_bytes()) == id2
コード例 #2
0
async def simple_traverse_dht(
    query_id: DHTID,
    initial_nodes: Collection[DHTID],
    beam_size: int,
    get_neighbors: Callable[[DHTID], Awaitable[Tuple[Collection[DHTID],
                                                     bool]]],
    visited_nodes: Collection[DHTID] = ()
) -> Tuple[List[DHTID], Set[DHTID]]:
    """
    Traverse the DHT graph using get_neighbors function, find :beam_size: nearest nodes according to DHTID.xor_distance.

    :note: This is a simplified (but working) algorithm provided for documentation purposes. Actual DHTNode uses
       `traverse_dht` - a generalization of this this algorithm that allows multiple queries and concurrent workers.

    :param query_id: search query, find k_nearest neighbors of this DHTID
    :param initial_nodes: nodes used to pre-populate beam search heap, e.g. [my_own_DHTID, ...maybe_some_peers]
    :param beam_size: beam search will not give up until it exhausts this many nearest nodes (to query_id) from the heap
        Recommended value: A beam size of k_nearest * (2-5) will yield near-perfect results.
    :param get_neighbors: A function that returns neighbors of a given node and controls beam search stopping criteria.
        async def get_neighbors(node: DHTID) -> neighbors_of_that_node: List[DHTID], should_continue: bool
        If should_continue is False, beam search will halt and return k_nearest of whatever it found by then.
    :param visited_nodes: beam search will neither call get_neighbors on these nodes, nor return them as nearest
    :returns: a list of k nearest nodes (nearest to farthest), and a set of all visited nodes (including visited_nodes)
    """
    visited_nodes = set(
        visited_nodes
    )  # note: copy visited_nodes because we will add more nodes to this collection.
    initial_nodes = [
        node_id for node_id in initial_nodes if node_id not in visited_nodes
    ]
    if not initial_nodes:
        return [], visited_nodes

    unvisited_nodes = [(distance, uid) for uid, distance in zip(
        initial_nodes, query_id.xor_distance(initial_nodes))]
    heapq.heapify(
        unvisited_nodes)  # nearest-first heap of candidates, unlimited size

    nearest_nodes = [
        (-distance, node_id)
        for distance, node_id in heapq.nsmallest(beam_size, unvisited_nodes)
    ]
    heapq.heapify(
        nearest_nodes
    )  # farthest-first heap of size beam_size, used for early-stopping and to select results
    while len(nearest_nodes) > beam_size:
        heapq.heappop(nearest_nodes)

    visited_nodes |= set(initial_nodes)
    upper_bound = -nearest_nodes[0][
        0]  # distance to farthest element that is still in beam
    was_interrupted = False  # will set to True if host triggered beam search to stop via get_neighbors

    while (not was_interrupted) and len(
            unvisited_nodes) != 0 and unvisited_nodes[0][0] <= upper_bound:
        _, node_id = heapq.heappop(
            unvisited_nodes
        )  # note: this  --^ is the smallest element in heap (see heapq)
        neighbors, was_interrupted = await get_neighbors(node_id)
        neighbors = [
            node_id for node_id in neighbors if node_id not in visited_nodes
        ]
        visited_nodes.update(neighbors)

        for neighbor_id, distance in zip(neighbors,
                                         query_id.xor_distance(neighbors)):
            if distance <= upper_bound or len(nearest_nodes) < beam_size:
                heapq.heappush(unvisited_nodes, (distance, neighbor_id))

                heapq_add_or_replace = heapq.heappush if len(
                    nearest_nodes) < beam_size else heapq.heappushpop
                heapq_add_or_replace(nearest_nodes, (-distance, neighbor_id))
                upper_bound = -nearest_nodes[0][
                    0]  # distance to beam_size-th nearest element found so far

    return [
        node_id for _, node_id in heapq.nlargest(beam_size, nearest_nodes)
    ], visited_nodes