def test_zero_sample(): m = MedianRelativeAbsoluteError() with pytest.raises( NotComputableError, match= r"EpochMetric must have at least one example before it can be computed" ): m.compute()
def test_median_relative_absolute_error(): # See https://github.com/torch/torch7/pull/182 # For even number of elements, PyTorch returns middle element # NumPy returns average of middle elements # Size of dataset will be odd for these tests size = 51 np_y_pred = np.random.rand(size,) np_y = np.random.rand(size,) np_median_absolute_relative_error = np.median(np.abs(np_y - np_y_pred) / np.abs(np_y - np_y.mean())) m = MedianRelativeAbsoluteError() y_pred = torch.from_numpy(np_y_pred) y = torch.from_numpy(np_y) m.reset() m.update((y_pred, y)) assert np_median_absolute_relative_error == pytest.approx(m.compute())
def _test(metric_device): metric_device = torch.device(metric_device) m = MedianRelativeAbsoluteError(device=metric_device) torch.manual_seed(10 + rank) size = 151 y_pred = torch.randint(1, 10, size=(size, 1), dtype=torch.double, device=device) y = torch.randint(1, 10, size=(size, 1), dtype=torch.double, device=device) m.update((y_pred, y)) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y_pred = y_pred.cpu().numpy().ravel() np_y = y.cpu().numpy().ravel() res = m.compute() e = np.abs(np_y - np_y_pred) / np.abs(np_y - np_y.mean()) # The results between numpy.median() and torch.median() are Inconsistant # when the length of the array/tensor is even. So this is a hack to avoid that. # issue: https://github.com/pytorch/pytorch/issues/1837 if np_y_pred.shape[0] % 2 == 0: e_prepend = np.insert(e, 0, e[0], axis=0) np_res_prepend = np.median(e_prepend) assert pytest.approx(res) == np_res_prepend else: np_res = np.median(e) assert pytest.approx(res) == np_res
def test_median_relative_absolute_error_2(): np.random.seed(1) size = 105 np_y_pred = np.random.rand(size, 1) np_y = np.random.rand(size, 1) np.random.shuffle(np_y) np_median_absolute_relative_error = np.median(np.abs(np_y - np_y_pred) / np.abs(np_y - np_y.mean())) m = MedianRelativeAbsoluteError() y_pred = torch.from_numpy(np_y_pred) y = torch.from_numpy(np_y) m.reset() batch_size = 16 n_iters = size // batch_size + 1 for i in range(n_iters + 1): idx = i * batch_size m.update((y_pred[idx: idx + batch_size], y[idx: idx + batch_size])) assert np_median_absolute_relative_error == pytest.approx(m.compute())