def test_median_relative_absolute_error(): # See https://github.com/torch/torch7/pull/182 # For even number of elements, PyTorch returns middle element # NumPy returns average of middle elements # Size of dataset will be odd for these tests size = 51 np_y_pred = np.random.rand(size,) np_y = np.random.rand(size,) np_median_absolute_relative_error = np.median(np.abs(np_y - np_y_pred) / np.abs(np_y - np_y.mean())) m = MedianRelativeAbsoluteError() y_pred = torch.from_numpy(np_y_pred) y = torch.from_numpy(np_y) m.reset() m.update((y_pred, y)) assert np_median_absolute_relative_error == pytest.approx(m.compute())
def test_median_relative_absolute_error_2(): np.random.seed(1) size = 105 np_y_pred = np.random.rand(size, 1) np_y = np.random.rand(size, 1) np.random.shuffle(np_y) np_median_absolute_relative_error = np.median(np.abs(np_y - np_y_pred) / np.abs(np_y - np_y.mean())) m = MedianRelativeAbsoluteError() y_pred = torch.from_numpy(np_y_pred) y = torch.from_numpy(np_y) m.reset() batch_size = 16 n_iters = size // batch_size + 1 for i in range(n_iters + 1): idx = i * batch_size m.update((y_pred[idx: idx + batch_size], y[idx: idx + batch_size])) assert np_median_absolute_relative_error == pytest.approx(m.compute())