def testOrient3Model(): env = Environment() calibrator = ScaleAndOffsetCalibrator(env, 1000, 1 / 100, 10) for i in range(3): imu = Orient3IMU() cal = calibrator.calibrate(imu) sim = Simulation(environment=env) traj = RandomTrajectory() imu.simulation = sim imu.trajectory = traj sim.time = imu.trajectory.startTime BasicIMUBehaviour(imu, 1 / 256, calibration=cal, initialTime=sim.time) sim.run(traj.endTime) t = imu.accelerometer.calibratedMeasurements.timestamps r = traj.rotation(t) a = r.rotateFrame( traj.acceleration(t) - env.gravitationalField(traj.position(t), t)) m = r.rotateFrame(env.magneticField(traj.position(t), t)) w = r.rotateFrame(traj.rotationalVelocity(t)) g = env.gravitationalField.nominalMagnitude a_within_5g = abs(a) < 5 * g for i in range(3): yield assert_array_almost_equal, \ np.array([a[i ,a_within_5g[i]]]), \ np.array([imu.accelerometer.calibratedMeasurements(t) [i, a_within_5g[i]]]), -2 yield assert_array_almost_equal, m, \ imu.magnetometer.calibratedMeasurements(t), 0 yield assert_array_almost_equal, w, \ imu.gyroscope.calibratedMeasurements(t), 0
def testOrient3Model(): env = Environment() calibrator = ScaleAndOffsetCalibrator(env, 1000, 1/100, 10) for i in range(3): imu = Orient3IMU() cal = calibrator.calibrate(imu) sim = Simulation(environment=env) traj = RandomTrajectory() imu.simulation = sim imu.trajectory = traj sim.time = imu.trajectory.startTime BasicIMUBehaviour(imu, 1/256, calibration=cal, initialTime=sim.time) sim.run(traj.endTime) t = imu.accelerometer.calibratedMeasurements.timestamps r = traj.rotation(t) a = r.rotateFrame(traj.acceleration(t) - env.gravitationalField(traj.position(t), t)) m = r.rotateFrame(env.magneticField(traj.position(t), t)) w = r.rotateFrame(traj.rotationalVelocity(t)) g = env.gravitationalField.nominalMagnitude a_within_5g = abs(a) < 5*g for i in range(3): yield assert_array_almost_equal, \ np.array([a[i ,a_within_5g[i]]]), \ np.array([imu.accelerometer.calibratedMeasurements(t) [i, a_within_5g[i]]]), -2 yield assert_array_almost_equal, m, \ imu.magnetometer.calibratedMeasurements(t), 0 yield assert_array_almost_equal, w, \ imu.gyroscope.calibratedMeasurements(t), 0
def checkSystemSimulation(filterClass): sim = Simulation() env = sim.environment samplingPeriod = 1.0 / 100 calibrator = ScaleAndOffsetCalibrator(env, 1000, samplingPeriod, 20) simModel = SplinedBodyModel(loadBVHFile(testMotion, conversionFactor=0.01)) sim.time = simModel.startTime slotTime = 0.001 schedule = Schedule(slotTime, slotTime, range(len(list(simModel.joints)))) def setupIMU(id, joint): platform = MagicIMU() calibration = calibrator.calibrate(platform) platform.simulation = sim platform.trajectory = joint filter = filterClass( initialRotation=joint.rotation(simModel.startTime), initialTime=sim.time, initialRotationalVelocity=joint.rotation( simModel.startTime).rotateFrame( joint.rotationalVelocity(simModel.startTime)), gravFieldReference=env.gravitationalField.nominalValue, magFieldReference=env.magneticField.nominalValue, **filterParameters.get(filterClass, {})) def handleSample(behaviour): rotation = filter.rotation.latestValue packet = DataPacket(id, [('rotation', rotation)]) behaviour.mac.queuePacket(packet) behaviour = BasicIMUBehaviour(platform, samplingPeriod, calibration, filter, handleSample, initialTime=sim.time) behaviour.mac = SlaveMAC(platform.radio, behaviour.timerMux, schedule, id) return behaviour imus = [setupIMU(i, joint) for i, joint in enumerate(simModel.joints)] basestation = IdealBasestation(sim, StaticTrajectory()) recModel = SampledBodyModel.structureCopy(simModel) reconstructor = BodyModelReconstructor(recModel, initialTime=sim.time) def handleFrame(packets): for packet in packets: packet['jointName'] = recModel.jointNames[packet.source] reconstructor.handleData(packets, schedule.framePeriod) MasterMAC(basestation.radio, TimerMultiplexer(basestation.timer), schedule, handleFrame) sim.run(simModel.endTime) for simJoint, recJoint in zip(simModel.joints, recModel.joints): times = simJoint.rotationKeyFrames.timestamps assert_quaternions_correlated(simJoint.rotation(times), recJoint.rotation(times), 0.9)
def checkSystemSimulation(filterClass): sim = Simulation() env = sim.environment samplingPeriod = 1.0/100 calibrator = ScaleAndOffsetCalibrator(env, 1000, samplingPeriod, 20) simModel = SplinedBodyModel(loadBVHFile(testMotion, conversionFactor=0.01)) sim.time = simModel.startTime slotTime = 0.001 schedule = Schedule(slotTime, slotTime, range(len(list(simModel.joints)))) def setupIMU(id, joint): platform = MagicIMU() calibration = calibrator.calibrate(platform) platform.simulation = sim platform.trajectory = joint filter = filterClass(initialRotation=joint.rotation(simModel.startTime), initialTime=sim.time, initialRotationalVelocity=joint.rotation(simModel.startTime) .rotateFrame(joint.rotationalVelocity(simModel.startTime)), gravFieldReference=env.gravitationalField.nominalValue, magFieldReference=env.magneticField.nominalValue, **filterParameters.get(filterClass, {})) def handleSample(behaviour): rotation = filter.rotation.latestValue packet = DataPacket(id, [('rotation', rotation)]) behaviour.mac.queuePacket(packet) behaviour = BasicIMUBehaviour(platform, samplingPeriod, calibration, filter, handleSample, initialTime=sim.time) behaviour.mac = SlaveMAC(platform.radio, behaviour.timerMux, schedule, id) return behaviour imus = [setupIMU(i, joint) for i, joint in enumerate(simModel.joints)] basestation = IdealBasestation(sim, StaticTrajectory()) recModel = SampledBodyModel.structureCopy(simModel) reconstructor = BodyModelReconstructor(recModel, initialTime=sim.time) def handleFrame(packets): for packet in packets: packet['jointName'] = recModel.jointNames[packet.source] reconstructor.handleData(packets, schedule.framePeriod) MasterMAC(basestation.radio, TimerMultiplexer(basestation.timer), schedule, handleFrame) sim.run(simModel.endTime) for simJoint, recJoint in zip(simModel.joints, recModel.joints): times = simJoint.rotationKeyFrames.timestamps assert_quaternions_correlated(simJoint.rotation(times), recJoint.rotation(times), 0.9)
def calibrate(self, imu): calibration = {} position = vectors.vector(0, 0, 0) expected = {} measured = {} for sensor in imu.sensors: expected[sensor] = [] measured[sensor] = [] for trajectory in self.testTrajectories(): sim = Simulation(environment=self.environment) sim.time = 0 imu.simulation = sim imu.trajectory = trajectory BasicIMUBehaviour(imu, self.samplingPeriod) sim.run(self.samplingPeriod * self.samples, printProgress=False) t = sensor.rawMeasurements.timestamps for sensor in imu.sensors: expected[sensor].append(sensor.trueValues(t)) measured[sensor].append(sensor.rawMeasurements.values) for sensor in imu.sensors: calibration[sensor] = ScaleAndOffsetCalibration.fromMeasurements( np.hstack(expected[sensor]), np.hstack(measured[sensor])) return calibration
def calibrate(self, imu): calibration = {} position = vectors.vector(0,0,0) expected = {} measured = {} for sensor in imu.sensors: expected[sensor] = [] measured[sensor] = [] for trajectory in self.testTrajectories(): sim = Simulation(environment=self.environment) sim.time = 0 imu.simulation = sim imu.trajectory = trajectory BasicIMUBehaviour(imu, self.samplingPeriod) sim.run(self.samplingPeriod * self.samples, printProgress=False) t = sensor.rawMeasurements.timestamps for sensor in imu.sensors: expected[sensor].append(sensor.trueValues(t)) measured[sensor].append(sensor.rawMeasurements.values) for sensor in imu.sensors: calibration[sensor] = ScaleAndOffsetCalibration.fromMeasurements( np.hstack(expected[sensor]), np.hstack(measured[sensor])) return calibration
def testDistLinAccSimulation(): sim = Simulation() samplingPeriod = 1.0 / 100 calibrator = ScaleAndOffsetCalibrator(sim.environment, 1000, samplingPeriod, 20) bvhFile = path.join(path.dirname(__file__), "walk.bvh") sampledModel = loadBVHFile(bvhFile, conversionFactor=0.01) posTimes = sampledModel.positionKeyFrames.timestamps sampledModel.positionKeyFrames = TimeSeries(posTimes, np.zeros((3, len(posTimes)))) simModel = SplinedBodyModel(sampledModel) joints = list(simModel.joints) sim.time = simModel.startTime k = 128 slotTime = 0.001 txSlots = range(2, len(joints)) + [0, 1] auxRxSlots = range(1, len(joints)) auxTxSlots = [joints.index(j.parent) for j in joints[1:]] schedule = InterSlaveSchedule(slotTime, slotTime, txSlots, auxTxSlots, auxRxSlots) def setupIMU(id, joint): offset = randomPosition((-0.1, 0.1)) platform = IdealIMU() calibration = calibrator.calibrate(platform) platform.simulation = sim platform.trajectory = OffsetTrajectory(joint, offset) filter = DistLinAccelCF(samplingPeriod, platform.trajectory.rotation(simModel.startTime), k, joint, offset) def updateChildren(): for child in filter.children: childID = joints.index(child) childAccel = filter.childAcceleration(child.positionOffset, samplingPeriod) if childAccel is not None: auxPacket = AuxPacket(id, childID, [("linearAcceleration", childAccel)]) mac.queueAuxPacket(auxPacket) def handlePacket(packet): filter.handleLinearAcceleration(packet["linearAcceleration"], samplingPeriod) updateChildren() def handleSample(behaviour): rotation = filter.rotation.latestValue packet = DataPacket(id, [("rotation", rotation)]) mac.queuePacket(packet) if not filter.joint.hasParent: updateChildren() behaviour = BasicIMUBehaviour(platform, samplingPeriod, calibration, filter, handleSample, initialTime=sim.time) mac = InterSlaveMAC(platform.radio, behaviour.timerMux, schedule, id, handlePacket) imus = [setupIMU(i, joint) for i, joint in enumerate(joints)] basestation = IdealBasestation(sim, StaticTrajectory()) recModel = SampledBodyModel.structureCopy(simModel) reconstructor = BodyModelReconstructor(recModel, initialTime=sim.time) def handleFrame(packets): for packet in packets: packet["jointName"] = recModel.jointNames[packet.source] reconstructor.handleData(packets, schedule.framePeriod) basestation.radio.channel = schedule.dataChannel MasterMAC(basestation.radio, TimerMultiplexer(basestation.timer), schedule, handleFrame) sim.run(simModel.endTime) for simJoint, recJoint in zip(joints, recModel.joints): times = simJoint.rotationKeyFrames.timestamps assert_quaternions_correlated(simJoint.rotation(times), recJoint.rotation(times), 0.85)
def testAgainstReality(): dir = path.dirname(__file__) filebase = path.join(dir, "swing") refbase = path.join(dir, "stand") magbases = [path.join(dir, f) for f in ['magsweep1', 'magsweep2']] maglookup = {'Upper Leg IMU': '66', 'Orient 8': '8', 'Orient 43': '43'} magSamples = 2000 refTime = 1.0 posStdDev = 0.0005 rotStdDev = 0.004 ref3D = SplinedMarkerCapture(loadQualisysTSVFile(refbase + "_3D.tsv"), positionStdDev=posStdDev) ref6D = SplinedMarkerCapture(loadQualisysTSVFile(refbase + "_6D.tsv"), rotationStdDev=rotStdDev) capture3D = SplinedMarkerCapture(loadQualisysTSVFile(filebase + "_3D.tsv"), positionStdDev=posStdDev) captureSD = SensorDataCapture.load(filebase + ".sdc") hip, thigh, knee, shin, ankle = \ ['Hip', 'Thigh', 'Knee Hinge', 'Shin', 'Ankle'] jointNames = ['Upper Leg', 'Lower Leg', 'Foot'] jointAbbrevs = ['femur', 'tibia', 'foot'] orientIDs = ['66', '43', '8'] jointMarkerNames = [hip, knee, ankle] refMarkerNames = [[thigh, knee], [shin, ankle], []] imuMarkerNames = \ [[j + ' IMU - ' + str(i) for i in range(1,4)] for j in jointNames] jointMarkerSets = lambda c: [ list(map(c.marker, jointMarkerNames)), [list(map(c.marker, r)) for r in refMarkerNames], [list(map(c.marker, i)) for i in imuMarkerNames] ] imuMarkerSets = lambda c: [[ c.marker(i[0]) for i in imuMarkerNames ], [list(map(c.marker, i[1:])) for i in imuMarkerNames]] jointRefTrajectories = [ MultiMarkerTrajectory(j, r + i, refTime=refTime) for j, r, i in zip(*(jointMarkerSets(ref3D))) ] jointTrajectories = [ MultiMarkerTrajectory(j, r + i, refVectors=m.refVectors) \ for j, r, i, m in \ zip(*(jointMarkerSets(capture3D) + [jointRefTrajectories]))] imuRefTrajectories = [ MultiMarkerTrajectory(p, r, refTime=refTime) for p, r in zip(*(imuMarkerSets(ref3D))) ] imuVecTrajectories = [ MultiMarkerTrajectory(p, r, refVectors=m.refVectors) for p, r, m in zip(*(imuMarkerSets(capture3D) + [imuRefTrajectories])) ] imuRefMarkers = [ref6D.marker(j + ' IMU') for j in jointNames] imuOffsets = [ i.position(refTime) - j.position(refTime) for i, j in zip(imuRefTrajectories, jointRefTrajectories) ] imuRotations = [ t.rotation(refTime).conjugate * m.rotation(refTime) for t, m in zip(imuRefTrajectories, imuRefMarkers) ] imuTrajectories = [ OffsetTrajectory(v, o, r) for v, o, r in zip(imuVecTrajectories, imuOffsets, imuRotations) ] imuData = [captureSD.device(i) for i in orientIDs] joints = [] for i in range(len(jointNames)): name = jointNames[i] traj = jointTrajectories[i] if i == 0: model = SampledBodyModel(name) model.positionKeyFrames = traj.posMarker.positionKeyFrames joint = model else: parent = joints[-1] refTraj = jointRefTrajectories[i] parentRefTraj = jointRefTrajectories[i - 1] pos = refTraj.position(refTime) parentPos = parentRefTraj.position(refTime) joint = SampledJoint(joints[-1], name, offset=(pos - parentPos)) joint.rotationKeyFrames = traj.rotationKeyFrames joints.append(joint) model = SplinedBodyModel(model) joints = model.joints imuJointTrajectories = [ OffsetTrajectory(j, o, r) for j, o, r in zip(joints, imuOffsets, imuRotations) ] positionSets = [] valueSets = [] for magbase in magbases: orient = SensorDataCapture.load(magbase + '.sdc') optical = loadQualisysTSVFile(magbase + '_6D.tsv') for marker in optical.markers: device = orient.device(maglookup[marker.id]) magData = device.sensorData('magnetometer').values positionSets.append(marker.positionKeyFrames.values) valueSets.append( marker.rotationKeyFrames.values.rotateVector(magData)) positions = np.hstack(positionSets) values = np.hstack(valueSets) valid = ~np.any(np.isnan(positions), axis=0) & ~np.any(np.isnan(values), axis=0) dev = values - np.median(values[:, valid], axis=1).reshape((3, 1)) step = np.shape(values[:, valid])[1] // magSamples posSamples = positions[:, valid][:, ::step] valSamples = values[:, valid][:, ::step] environment = Environment() environment.magneticField = \ NaturalNeighbourInterpolatedField(posSamples, valSamples) sim = Simulation(environment=environment) sim.time = model.startTime distortIMUs = [] dt = 1 / capture3D.sampled.frameRate for traj in imuJointTrajectories: platform = IdealIMU(sim, traj) distortIMUs.append(BasicIMUBehaviour(platform, dt)) sim.run(model.endTime) for imu in range(3): for sensorName in ['accelerometer', 'magnetometer', 'gyroscope']: sim = getattr(distortIMUs[imu].imu, sensorName).rawMeasurements true = imuData[imu].sensorData(sensorName)(sim.timestamps + model.startTime) yield assert_vectors_correlated, sim.values, true, 0.8
def testDistLinAccSimulation(): sim = Simulation() samplingPeriod = 1.0/100 calibrator = ScaleAndOffsetCalibrator(sim.environment, 1000, samplingPeriod, 20) bvhFile = path.join(path.dirname(__file__), 'walk.bvh') sampledModel = loadBVHFile(bvhFile, conversionFactor=0.01) posTimes = sampledModel.positionKeyFrames.timestamps sampledModel.positionKeyFrames = TimeSeries( posTimes, np.zeros((3,len(posTimes)))) simModel = SplinedBodyModel(sampledModel) joints = list(simModel.joints) sim.time = simModel.startTime k = 128 slotTime = 0.001 txSlots = list(range(2, len(joints))) + [0,1] auxRxSlots = range(1, len(joints)) auxTxSlots = [joints.index(j.parent) for j in joints[1:]] schedule = InterSlaveSchedule(slotTime, slotTime, txSlots, auxTxSlots, auxRxSlots) def setupIMU(id, joint): offset = randomPosition((-0.1, 0.1)) platform = IdealIMU() calibration = calibrator.calibrate(platform) platform.simulation = sim platform.trajectory = OffsetTrajectory(joint, offset) filter = DistLinAccelCF(samplingPeriod, platform.trajectory.rotation(simModel.startTime), k, joint, offset) def updateChildren(): for child in filter.children: childID = joints.index(child) childAccel = filter.childAcceleration(child.positionOffset, samplingPeriod) if childAccel is not None: auxPacket = AuxPacket(id, childID, [('linearAcceleration', childAccel)]) mac.queueAuxPacket(auxPacket) def handlePacket(packet): filter.handleLinearAcceleration(packet['linearAcceleration'], samplingPeriod) updateChildren() def handleSample(behaviour): rotation = filter.rotation.latestValue packet = DataPacket(id, [('rotation', rotation)]) mac.queuePacket(packet) if not filter.joint.hasParent: updateChildren() behaviour = BasicIMUBehaviour(platform, samplingPeriod, calibration, filter, handleSample, initialTime=sim.time) mac = InterSlaveMAC(platform.radio, behaviour.timerMux, schedule, id, handlePacket) imus = [setupIMU(i, joint) for i, joint in enumerate(joints)] basestation = IdealBasestation(sim, StaticTrajectory()) recModel = SampledBodyModel.structureCopy(simModel) reconstructor = BodyModelReconstructor(recModel, initialTime=sim.time) def handleFrame(packets): for packet in packets: packet['jointName'] = recModel.jointNames[packet.source] reconstructor.handleData(packets, schedule.framePeriod) basestation.radio.channel = schedule.dataChannel MasterMAC(basestation.radio, TimerMultiplexer(basestation.timer), schedule, handleFrame) sim.run(simModel.endTime) for simJoint, recJoint in zip(joints, recModel.joints): times = simJoint.rotationKeyFrames.timestamps assert_quaternions_correlated(simJoint.rotation(times), recJoint.rotation(times), 0.85)
trajectory = StaticTrajectory() #wconst = np.array([0, 1, 0]).reshape(3,1) #trajectory = StaticContinuousRotationTrajectory(wconst) imu = MPU9250IMU(simulation=sim, trajectory=trajectory) GYRO_SAMPLE_RATE = 1000. dt = 1. / GYRO_SAMPLE_RATE # Set up a behaviour that runs on the # simulated IMU behaviour1 = BasicIMUBehaviour(imu=imu, samplingPeriod=dt) # Set the time inside the simulation sim.time = trajectory.startTime # Run the simulation till the desired # end time simulation_length = 3600 * 3 sim.run(simulation_length) #plt.figure() #plot(imu.gyroscope.rawMeasurements) #plt.legend() #plt.show() t0 = time.time() gdata = imu.gyroscope.rawMeasurements.values savefilename = 'simulated_gyro.npy' np.save(savefilename, gdata) save_elapsed = time.time() - t0 print 'Saved {:d} samples to {}. Saving took {:.2f} seconds'.format( gdata.shape[1], savefilename, save_elapsed)
def testAgainstReality(): dir = path.dirname(__file__) filebase = path.join(dir, "swing") refbase = path.join(dir, "stand") magbases = [path.join(dir, f) for f in ['magsweep1', 'magsweep2']] maglookup = { 'Upper Leg IMU' : '66', 'Orient 8' : '8', 'Orient 43': '43'} magSamples = 2000 refTime = 1.0 posStdDev = 0.0005 rotStdDev = 0.004 ref3D = SplinedMarkerCapture( loadQualisysTSVFile(refbase + "_3D.tsv"), positionStdDev=posStdDev) ref6D = SplinedMarkerCapture( loadQualisysTSVFile(refbase + "_6D.tsv"), rotationStdDev=rotStdDev) capture3D = SplinedMarkerCapture( loadQualisysTSVFile(filebase + "_3D.tsv"), positionStdDev=posStdDev) captureSD = SensorDataCapture.load(filebase + ".sdc") hip, thigh, knee, shin, ankle = \ ['Hip', 'Thigh', 'Knee Hinge', 'Shin', 'Ankle'] jointNames = ['Upper Leg', 'Lower Leg', 'Foot'] jointAbbrevs = ['femur', 'tibia', 'foot'] orientIDs = ['66', '43', '8'] jointMarkerNames = [hip, knee, ankle] refMarkerNames = [[thigh, knee], [shin, ankle], []] imuMarkerNames = \ [[j + ' IMU - ' + str(i) for i in range(1,4)] for j in jointNames] jointMarkerSets = lambda c: [ map(c.marker, jointMarkerNames), [map(c.marker, r) for r in refMarkerNames], [map(c.marker, i) for i in imuMarkerNames]] imuMarkerSets = lambda c: [ [c.marker(i[0]) for i in imuMarkerNames], [map(c.marker,i[1:]) for i in imuMarkerNames]] jointRefTrajectories = [MultiMarkerTrajectory(j, r + i, refTime=refTime) for j, r, i in zip(*(jointMarkerSets(ref3D)))] jointTrajectories = [ MultiMarkerTrajectory(j, r + i, refVectors=m.refVectors) \ for j, r, i, m in \ zip(*(jointMarkerSets(capture3D) + [jointRefTrajectories]))] imuRefTrajectories = [MultiMarkerTrajectory(p, r, refTime=refTime) for p, r in zip(*(imuMarkerSets(ref3D)))] imuVecTrajectories = [MultiMarkerTrajectory(p, r, refVectors=m.refVectors) for p, r, m in zip(*(imuMarkerSets(capture3D) + [imuRefTrajectories]))] imuRefMarkers = [ref6D.marker(j + ' IMU') for j in jointNames] imuOffsets = [i.position(refTime) - j.position(refTime) for i, j in zip(imuRefTrajectories, jointRefTrajectories)] imuRotations = [t.rotation(refTime).conjugate * m.rotation(refTime) for t, m in zip(imuRefTrajectories, imuRefMarkers)] imuTrajectories = [OffsetTrajectory(v, o, r) for v, o, r in zip(imuVecTrajectories, imuOffsets, imuRotations)] imuData = [captureSD.device(i) for i in orientIDs] joints = [] for i in range(len(jointNames)): name = jointNames[i] traj = jointTrajectories[i] if i == 0: model = SampledBodyModel(name) model.positionKeyFrames = traj.posMarker.positionKeyFrames joint = model else: parent = joints[-1] refTraj = jointRefTrajectories[i] parentRefTraj = jointRefTrajectories[i - 1] pos = refTraj.position(refTime) parentPos = parentRefTraj.position(refTime) joint = SampledJoint(joints[-1],name, offset=(pos - parentPos)) joint.rotationKeyFrames = traj.rotationKeyFrames joints.append(joint) model = SplinedBodyModel(model) joints = model.joints imuJointTrajectories = [OffsetTrajectory(j, o, r) for j, o, r in zip(joints, imuOffsets, imuRotations)] positionSets = [] valueSets = [] for magbase in magbases: orient = SensorDataCapture.load(magbase + '.sdc') optical = loadQualisysTSVFile(magbase + '_6D.tsv') for marker in optical.markers: device = orient.device(maglookup[marker.id]) magData = device.sensorData('magnetometer').values positionSets.append(marker.positionKeyFrames.values) valueSets.append( marker.rotationKeyFrames.values.rotateVector(magData)) positions = np.hstack(positionSets) values = np.hstack(valueSets) valid = ~np.any(np.isnan(positions),axis=0) & ~np.any(np.isnan(values),axis=0) dev = values - np.median(values[:,valid],axis=1).reshape((3,1)) step = np.shape(values[:,valid])[1] / magSamples posSamples = positions[:,valid][:,::step] valSamples = values[:,valid][:,::step] environment = Environment() environment.magneticField = \ NaturalNeighbourInterpolatedField(posSamples, valSamples) sim = Simulation(environment=environment) sim.time = model.startTime distortIMUs = [] dt = 1/capture3D.sampled.frameRate for traj in imuJointTrajectories: platform = IdealIMU(sim, traj) distortIMUs.append(BasicIMUBehaviour(platform, dt)) sim.run(model.endTime) for imu in range(3): for sensorName in ['accelerometer', 'magnetometer', 'gyroscope']: sim = getattr(distortIMUs[imu].imu,sensorName).rawMeasurements true = imuData[imu].sensorData(sensorName)(sim.timestamps + model.startTime) yield assert_vectors_correlated, sim.values, true, 0.8
imu = IdealIMU() imu.simulation = sim imu.trajectory = joint def handleSample(behaviour): pass behaviour = BasicIMUBehaviour(imu, samplingPeriod, sampleCallback=handleSample, initialTime=sim.time) return behaviour joint = simModel.getJoint('rfoot') #original_quaternions = joint.rotationKeyFrames behaviour = setupIMU(1, joint) #show() sim.run(simModel.endTime) # get the sensor reading from the IMU at each sample time. accel = behaviour.imu.accelerometer.rawMeasurements mag = behaviour.imu.magnetometer.rawMeasurements gyro = behaviour.imu.gyroscope.rawMeasurements sample_timestamps = accel.timestamps accel_values = accel.values mag_values = mag.values gyro_values = gyro.values # Apply the sensor readings to an orientation complimentary filter to compute the orientation of the IMU at each # sample time
# Set up a behaviour that runs on the # simulated Camera behaviour_camera = DefaultCameraBehaviour(camera) # Set up a behaviour that runs on the # simulated IMU dt = 1. / 200 behaviour_imu = BasicIMUBehaviour(imu, dt) # Set the time inside the simulation sim.time = trajectory.startTime # Run the simulation till the desired # end time sim.run(trajectory.endTime - camera_model.readout) PLOT = False if PLOT: plt.figure() plt.subplot(2, 1, 1) t_camera = behaviour_camera.timestamps t_imu = imu.gyroscope.rawMeasurements.timestamps plt.axhline(1, color='k') plt.axhline(2, color='k') plt.plot(t_camera, 1 * np.ones_like(t_camera), 'o') plt.plot(trajectory.startTime + t_imu, 2 * np.ones_like(t_imu), 'x') plt.ylim(0, 3) plt.subplot(2, 1, 2) ts = np.linspace(trajectory.startTime, trajectory.endTime) plt.plot(ts, trajectory.position(ts).T)