コード例 #1
0
ファイル: aggs.py プロジェクト: rv404674/TUID
def es_aggsop(es, frum, query):
    query = query.copy()  # WE WILL MARK UP THIS QUERY
    schema = frum.schema
    select = listwrap(query.select)

    es_query = Data()
    new_select = Data()  # MAP FROM canonical_name (USED FOR NAMES IN QUERY) TO SELECT MAPPING
    formula = []
    for s in select:
        if s.aggregate == "count" and isinstance(s.value, Variable) and s.value.var == ".":
            if schema.query_path == ".":
                s.pull = jx_expression_to_function("doc_count")
            else:
                s.pull = jx_expression_to_function({"coalesce": ["_nested.doc_count", "doc_count", 0]})
        elif isinstance(s.value, Variable):
            if s.aggregate == "count":
                new_select["count_"+literal_field(s.value.var)] += [s]
            else:
                new_select[literal_field(s.value.var)] += [s]
        elif s.aggregate:
            formula.append(s)

    for canonical_name, many in new_select.items():
        for s in many:
            columns = frum.schema.values(s.value.var)

            if s.aggregate == "count":
                canonical_names = []
                for column in columns:
                    cn = literal_field(column.es_column + "_count")
                    if column.jx_type == EXISTS:
                        canonical_names.append(cn + ".doc_count")
                        es_query.aggs[cn].filter.range = {column.es_column: {"gt": 0}}
                    else:
                        canonical_names.append(cn+ ".value")
                        es_query.aggs[cn].value_count.field = column.es_column
                if len(canonical_names) == 1:
                    s.pull = jx_expression_to_function(canonical_names[0])
                else:
                    s.pull = jx_expression_to_function({"add": canonical_names})
            elif s.aggregate == "median":
                if len(columns) > 1:
                    Log.error("Do not know how to count columns with more than one type (script probably)")
                # ES USES DIFFERENT METHOD FOR PERCENTILES
                key = literal_field(canonical_name + " percentile")

                es_query.aggs[key].percentiles.field = columns[0].es_column
                es_query.aggs[key].percentiles.percents += [50]
                s.pull = jx_expression_to_function(key + ".values.50\\.0")
            elif s.aggregate == "percentile":
                if len(columns) > 1:
                    Log.error("Do not know how to count columns with more than one type (script probably)")
                # ES USES DIFFERENT METHOD FOR PERCENTILES
                key = literal_field(canonical_name + " percentile")
                if isinstance(s.percentile, text_type) or s.percetile < 0 or 1 < s.percentile:
                    Log.error("Expecting percentile to be a float from 0.0 to 1.0")
                percent = Math.round(s.percentile * 100, decimal=6)

                es_query.aggs[key].percentiles.field = columns[0].es_column
                es_query.aggs[key].percentiles.percents += [percent]
                es_query.aggs[key].percentiles.tdigest.compression = 2
                s.pull = jx_expression_to_function(key + ".values." + literal_field(text_type(percent)))
            elif s.aggregate == "cardinality":
                canonical_names = []
                for column in columns:
                    cn = literal_field(column.es_column + "_cardinality")
                    canonical_names.append(cn)
                    es_query.aggs[cn].cardinality.field = column.es_column
                if len(columns) == 1:
                    s.pull = jx_expression_to_function(canonical_names[0] + ".value")
                else:
                    s.pull = jx_expression_to_function({"add": [cn + ".value" for cn in canonical_names], "default": 0})
            elif s.aggregate == "stats":
                if len(columns) > 1:
                    Log.error("Do not know how to count columns with more than one type (script probably)")
                # REGULAR STATS
                stats_name = literal_field(canonical_name)
                es_query.aggs[stats_name].extended_stats.field = columns[0].es_column

                # GET MEDIAN TOO!
                median_name = literal_field(canonical_name + "_percentile")
                es_query.aggs[median_name].percentiles.field = columns[0].es_column
                es_query.aggs[median_name].percentiles.percents += [50]

                s.pull = get_pull_stats(stats_name, median_name)
            elif s.aggregate == "union":
                pulls = []
                for column in columns:
                    script = {"scripted_metric": {
                        'init_script': 'params._agg.terms = new HashSet()',
                        'map_script': 'for (v in doc['+quote(column.es_column)+'].values) params._agg.terms.add(v);',
                        'combine_script': 'return params._agg.terms.toArray()',
                        'reduce_script': 'HashSet output = new HashSet(); for (a in params._aggs) { if (a!=null) for (v in a) {output.add(v)} } return output.toArray()',
                    }}
                    stats_name = encode_property(column.es_column)
                    if column.nested_path[0] == ".":
                        es_query.aggs[stats_name] = script
                        pulls.append(jx_expression_to_function(stats_name + ".value"))
                    else:
                        es_query.aggs[stats_name] = {
                            "nested": {"path": column.nested_path[0]},
                            "aggs": {"_nested": script}
                        }
                        pulls.append(jx_expression_to_function(stats_name + "._nested.value"))

                if len(pulls) == 0:
                    s.pull = NULL
                elif len(pulls) == 1:
                    s.pull = pulls[0]
                else:
                    s.pull = lambda row: UNION(p(row) for p in pulls)
            else:
                if len(columns) > 1:
                    Log.error("Do not know how to count columns with more than one type (script probably)")
                elif len(columns) <1:
                    # PULL VALUE OUT OF THE stats AGGREGATE
                    s.pull = jx_expression_to_function({"null":{}})
                else:
                    # PULL VALUE OUT OF THE stats AGGREGATE
                    es_query.aggs[literal_field(canonical_name)].extended_stats.field = columns[0].es_column
                    s.pull = jx_expression_to_function({"coalesce": [literal_field(canonical_name) + "." + aggregates[s.aggregate], s.default]})

    for i, s in enumerate(formula):
        canonical_name = literal_field(s.name)

        if isinstance(s.value, TupleOp):
            if s.aggregate == "count":
                # TUPLES ALWAYS EXIST, SO COUNTING THEM IS EASY
                s.pull = "doc_count"
            elif s.aggregate in ('max', 'maximum', 'min', 'minimum'):
                if s.aggregate in ('max', 'maximum'):
                    dir = 1
                    op = "max"
                else:
                    dir = -1
                    op = 'min'

                nully = TupleOp("tuple", [NULL]*len(s.value.terms)).partial_eval().to_es_script(schema).expr
                selfy = s.value.partial_eval().to_es_script(schema).expr

                script = {"scripted_metric": {
                    'init_script': 'params._agg.best = ' + nully + ';',
                    'map_script': 'params._agg.best = ' + expand_template(MAX_OF_TUPLE, {"expr1": "params._agg.best", "expr2": selfy, "dir": dir, "op": op}) + ";",
                    'combine_script': 'return params._agg.best',
                    'reduce_script': 'return params._aggs.stream().max(' + expand_template(COMPARE_TUPLE, {"dir": dir, "op": op}) + ').get()',
                }}
                if schema.query_path[0] == ".":
                    es_query.aggs[canonical_name] = script
                    s.pull = jx_expression_to_function(literal_field(canonical_name) + ".value")
                else:
                    es_query.aggs[canonical_name] = {
                        "nested": {"path": schema.query_path[0]},
                        "aggs": {"_nested": script}
                    }
                    s.pull = jx_expression_to_function(literal_field(canonical_name) + "._nested.value")
            else:
               Log.error("{{agg}} is not a supported aggregate over a tuple", agg=s.aggregate)
        elif s.aggregate == "count":
            es_query.aggs[literal_field(canonical_name)].value_count.script = s.value.partial_eval().to_es_script(schema).script(schema)
            s.pull = jx_expression_to_function(literal_field(canonical_name) + ".value")
        elif s.aggregate == "median":
            # ES USES DIFFERENT METHOD FOR PERCENTILES THAN FOR STATS AND COUNT
            key = literal_field(canonical_name + " percentile")

            es_query.aggs[key].percentiles.script = s.value.to_es_script(schema).script(schema)
            es_query.aggs[key].percentiles.percents += [50]
            s.pull = jx_expression_to_function(key + ".values.50\\.0")
        elif s.aggregate == "percentile":
            # ES USES DIFFERENT METHOD FOR PERCENTILES THAN FOR STATS AND COUNT
            key = literal_field(canonical_name + " percentile")
            percent = Math.round(s.percentile * 100, decimal=6)

            es_query.aggs[key].percentiles.script = s.value.to_es_script(schema).script(schema)
            es_query.aggs[key].percentiles.percents += [percent]
            s.pull = jx_expression_to_function(key + ".values." + literal_field(text_type(percent)))
        elif s.aggregate == "cardinality":
            # ES USES DIFFERENT METHOD FOR CARDINALITY
            key = canonical_name + " cardinality"

            es_query.aggs[key].cardinality.script = s.value.to_es_script(schema).script(schema)
            s.pull = jx_expression_to_function(key + ".value")
        elif s.aggregate == "stats":
            # REGULAR STATS
            stats_name = literal_field(canonical_name)
            es_query.aggs[stats_name].extended_stats.script = s.value.to_es_script(schema).script(schema)

            # GET MEDIAN TOO!
            median_name = literal_field(canonical_name + " percentile")
            es_query.aggs[median_name].percentiles.script = s.value.to_es_script(schema).script(schema)
            es_query.aggs[median_name].percentiles.percents += [50]

            s.pull = get_pull_stats(stats_name, median_name)
        elif s.aggregate == "union":
            # USE TERMS AGGREGATE TO SIMULATE union
            stats_name = literal_field(canonical_name)
            es_query.aggs[stats_name].terms.script_field = s.value.to_es_script(schema).script(schema)
            s.pull = jx_expression_to_function(stats_name + ".buckets.key")
        else:
            # PULL VALUE OUT OF THE stats AGGREGATE
            s.pull = jx_expression_to_function(canonical_name + "." + aggregates[s.aggregate])
            es_query.aggs[canonical_name].extended_stats.script = s.value.to_es_script(schema).script(schema)

    decoders = get_decoders_by_depth(query)
    start = 0

    # <TERRIBLE SECTION> THIS IS WHERE WE WEAVE THE where CLAUSE WITH nested
    split_where = split_expression_by_depth(query.where, schema=frum.schema)

    if len(split_field(frum.name)) > 1:
        if any(split_where[2::]):
            Log.error("Where clause is too deep")

        for d in decoders[1]:
            es_query = d.append_query(es_query, start)
            start += d.num_columns

        if split_where[1]:
            #TODO: INCLUDE FILTERS ON EDGES
            filter_ = AndOp("and", split_where[1]).to_esfilter(schema)
            es_query = Data(
                aggs={"_filter": set_default({"filter": filter_}, es_query)}
            )

        es_query = wrap({
            "aggs": {"_nested": set_default(
                {"nested": {"path": schema.query_path[0]}},
                es_query
            )}
        })
    else:
        if any(split_where[1::]):
            Log.error("Where clause is too deep")

    if decoders:
        for d in jx.reverse(decoders[0]):
            es_query = d.append_query(es_query, start)
            start += d.num_columns

    if split_where[0]:
        #TODO: INCLUDE FILTERS ON EDGES
        filter = AndOp("and", split_where[0]).to_esfilter(schema)
        es_query = Data(
            aggs={"_filter": set_default({"filter": filter}, es_query)}
        )
    # </TERRIBLE SECTION>

    if not es_query:
        es_query = wrap({"query": {"match_all": {}}})

    es_query.size = 0

    with Timer("ES query time") as es_duration:
        result = es_post(es, es_query, query.limit)

    try:
        format_time = Timer("formatting")
        with format_time:
            decoders = [d for ds in decoders for d in ds]
            result.aggregations.doc_count = coalesce(result.aggregations.doc_count, result.hits.total)  # IT APPEARS THE OLD doc_count IS GONE

            formatter, groupby_formatter, aggop_formatter, mime_type = format_dispatch[query.format]
            if query.edges:
                output = formatter(decoders, result.aggregations, start, query, select)
            elif query.groupby:
                output = groupby_formatter(decoders, result.aggregations, start, query, select)
            else:
                output = aggop_formatter(decoders, result.aggregations, start, query, select)

        output.meta.timing.formatting = format_time.duration
        output.meta.timing.es_search = es_duration.duration
        output.meta.content_type = mime_type
        output.meta.es_query = es_query
        return output
    except Exception as e:
        if query.format not in format_dispatch:
            Log.error("Format {{format|quote}} not supported yet", format=query.format, cause=e)
        Log.error("Some problem", cause=e)
コード例 #2
0
ファイル: aggs.py プロジェクト: klahnakoski/tuid_experiment
def es_aggsop(es, frum, query):
    query = query.copy()  # WE WILL MARK UP THIS QUERY
    schema = frum.schema
    select = listwrap(query.select)

    es_query = Data()
    new_select = Data()  # MAP FROM canonical_name (USED FOR NAMES IN QUERY) TO SELECT MAPPING
    formula = []
    for s in select:
        if s.aggregate == "count" and isinstance(s.value, Variable) and s.value.var == ".":
            if schema.query_path == ".":
                s.pull = jx_expression_to_function("doc_count")
            else:
                s.pull = jx_expression_to_function({"coalesce": ["_nested.doc_count", "doc_count", 0]})
        elif isinstance(s.value, Variable):
            if s.aggregate == "count":
                new_select["count_"+literal_field(s.value.var)] += [s]
            else:
                new_select[literal_field(s.value.var)] += [s]
        elif s.aggregate:
            formula.append(s)

    for canonical_name, many in new_select.items():
        for s in many:
            columns = frum.schema.values(s.value.var)

            if s.aggregate == "count":
                canonical_names = []
                for column in columns:
                    cn = literal_field(column.es_column + "_count")
                    if column.jx_type == EXISTS:
                        canonical_names.append(cn + ".doc_count")
                        es_query.aggs[cn].filter.range = {column.es_column: {"gt": 0}}
                    else:
                        canonical_names.append(cn+ ".value")
                        es_query.aggs[cn].value_count.field = column.es_column
                if len(canonical_names) == 1:
                    s.pull = jx_expression_to_function(canonical_names[0])
                else:
                    s.pull = jx_expression_to_function({"add": canonical_names})
            elif s.aggregate == "median":
                if len(columns) > 1:
                    Log.error("Do not know how to count columns with more than one type (script probably)")
                # ES USES DIFFERENT METHOD FOR PERCENTILES
                key = literal_field(canonical_name + " percentile")

                es_query.aggs[key].percentiles.field = columns[0].es_column
                es_query.aggs[key].percentiles.percents += [50]
                s.pull = jx_expression_to_function(key + ".values.50\\.0")
            elif s.aggregate == "percentile":
                if len(columns) > 1:
                    Log.error("Do not know how to count columns with more than one type (script probably)")
                # ES USES DIFFERENT METHOD FOR PERCENTILES
                key = literal_field(canonical_name + " percentile")
                if isinstance(s.percentile, text_type) or s.percetile < 0 or 1 < s.percentile:
                    Log.error("Expecting percentile to be a float from 0.0 to 1.0")
                percent = Math.round(s.percentile * 100, decimal=6)

                es_query.aggs[key].percentiles.field = columns[0].es_column
                es_query.aggs[key].percentiles.percents += [percent]
                s.pull = jx_expression_to_function(key + ".values." + literal_field(text_type(percent)))
            elif s.aggregate == "cardinality":
                canonical_names = []
                for column in columns:
                    cn = literal_field(column.es_column + "_cardinality")
                    canonical_names.append(cn)
                    es_query.aggs[cn].cardinality.field = column.es_column
                if len(columns) == 1:
                    s.pull = jx_expression_to_function(canonical_names[0] + ".value")
                else:
                    s.pull = jx_expression_to_function({"add": [cn + ".value" for cn in canonical_names], "default": 0})
            elif s.aggregate == "stats":
                if len(columns) > 1:
                    Log.error("Do not know how to count columns with more than one type (script probably)")
                # REGULAR STATS
                stats_name = literal_field(canonical_name)
                es_query.aggs[stats_name].extended_stats.field = columns[0].es_column

                # GET MEDIAN TOO!
                median_name = literal_field(canonical_name + "_percentile")
                es_query.aggs[median_name].percentiles.field = columns[0].es_column
                es_query.aggs[median_name].percentiles.percents += [50]

                s.pull = get_pull_stats(stats_name, median_name)
            elif s.aggregate == "union":
                pulls = []
                for column in columns:
                    script = {"scripted_metric": {
                        'init_script': 'params._agg.terms = new HashSet()',
                        'map_script': 'for (v in doc['+quote(column.es_column)+'].values) params._agg.terms.add(v)',
                        'combine_script': 'return params._agg.terms.toArray()',
                        'reduce_script': 'HashSet output = new HashSet(); for (a in params._aggs) { if (a!=null) for (v in a) {output.add(v)} } return output.toArray()',
                    }}
                    stats_name = encode_property(column.es_column)
                    if column.nested_path[0] == ".":
                        es_query.aggs[stats_name] = script
                        pulls.append(jx_expression_to_function(stats_name + ".value"))
                    else:
                        es_query.aggs[stats_name] = {
                            "nested": {"path": column.nested_path[0]},
                            "aggs": {"_nested": script}
                        }
                        pulls.append(jx_expression_to_function(stats_name + "._nested.value"))

                if len(pulls) == 0:
                    s.pull = NULL
                elif len(pulls) == 1:
                    s.pull = pulls[0]
                else:
                    s.pull = lambda row: UNION(p(row) for p in pulls)
            else:
                if len(columns) > 1:
                    Log.error("Do not know how to count columns with more than one type (script probably)")
                elif len(columns) <1:
                    # PULL VALUE OUT OF THE stats AGGREGATE
                    s.pull = jx_expression_to_function({"null":{}})
                else:
                    # PULL VALUE OUT OF THE stats AGGREGATE
                    es_query.aggs[literal_field(canonical_name)].extended_stats.field = columns[0].es_column
                    s.pull = jx_expression_to_function({"coalesce": [literal_field(canonical_name) + "." + aggregates[s.aggregate], s.default]})

    for i, s in enumerate(formula):
        canonical_name = literal_field(s.name)

        if isinstance(s.value, TupleOp):
            if s.aggregate == "count":
                # TUPLES ALWAYS EXIST, SO COUNTING THEM IS EASY
                s.pull = "doc_count"
            elif s.aggregate in ('max', 'maximum', 'min', 'minimum'):
                if s.aggregate in ('max', 'maximum'):
                    dir = 1
                    op = "max"
                else:
                    dir = -1
                    op = 'min'

                nully = TupleOp("tuple", [NULL]*len(s.value.terms)).partial_eval().to_es_script(schema).expr
                selfy = s.value.partial_eval().to_es_script(schema).expr

                script = {"scripted_metric": {
                    'init_script': 'params._agg.best = ' + nully + ';',
                    'map_script': 'params._agg.best = ' + expand_template(MAX_OF_TUPLE, {"expr1": "params._agg.best", "expr2": selfy, "dir": dir, "op": op}) + ";",
                    'combine_script': 'return params._agg.best',
                    'reduce_script': 'return params._aggs.stream().max(' + expand_template(COMPARE_TUPLE, {"dir": dir, "op": op}) + ').get()',
                }}
                if schema.query_path[0] == ".":
                    es_query.aggs[canonical_name] = script
                    s.pull = jx_expression_to_function(literal_field(canonical_name) + ".value")
                else:
                    es_query.aggs[canonical_name] = {
                        "nested": {"path": schema.query_path[0]},
                        "aggs": {"_nested": script}
                    }
                    s.pull = jx_expression_to_function(literal_field(canonical_name) + "._nested.value")
            else:
               Log.error("{{agg}} is not a supported aggregate over a tuple", agg=s.aggregate)
        elif s.aggregate == "count":
            es_query.aggs[literal_field(canonical_name)].value_count.script = s.value.partial_eval().to_es_script(schema).script(schema)
            s.pull = jx_expression_to_function(literal_field(canonical_name) + ".value")
        elif s.aggregate == "median":
            # ES USES DIFFERENT METHOD FOR PERCENTILES THAN FOR STATS AND COUNT
            key = literal_field(canonical_name + " percentile")

            es_query.aggs[key].percentiles.script = s.value.to_es_script(schema).script(schema)
            es_query.aggs[key].percentiles.percents += [50]
            s.pull = jx_expression_to_function(key + ".values.50\\.0")
        elif s.aggregate == "percentile":
            # ES USES DIFFERENT METHOD FOR PERCENTILES THAN FOR STATS AND COUNT
            key = literal_field(canonical_name + " percentile")
            percent = Math.round(s.percentile * 100, decimal=6)

            es_query.aggs[key].percentiles.script = s.value.to_es_script(schema).script(schema)
            es_query.aggs[key].percentiles.percents += [percent]
            s.pull = jx_expression_to_function(key + ".values." + literal_field(text_type(percent)))
        elif s.aggregate == "cardinality":
            # ES USES DIFFERENT METHOD FOR CARDINALITY
            key = canonical_name + " cardinality"

            es_query.aggs[key].cardinality.script = s.value.to_es_script(schema).script(schema)
            s.pull = jx_expression_to_function(key + ".value")
        elif s.aggregate == "stats":
            # REGULAR STATS
            stats_name = literal_field(canonical_name)
            es_query.aggs[stats_name].extended_stats.script = s.value.to_es_script(schema).script(schema)

            # GET MEDIAN TOO!
            median_name = literal_field(canonical_name + " percentile")
            es_query.aggs[median_name].percentiles.script = s.value.to_es_script(schema).script(schema)
            es_query.aggs[median_name].percentiles.percents += [50]

            s.pull = get_pull_stats(stats_name, median_name)
        elif s.aggregate == "union":
            # USE TERMS AGGREGATE TO SIMULATE union
            stats_name = literal_field(canonical_name)
            es_query.aggs[stats_name].terms.script_field = s.value.to_es_script(schema).script(schema)
            s.pull = jx_expression_to_function(stats_name + ".buckets.key")
        else:
            # PULL VALUE OUT OF THE stats AGGREGATE
            s.pull = jx_expression_to_function(canonical_name + "." + aggregates[s.aggregate])
            es_query.aggs[canonical_name].extended_stats.script = s.value.to_es_script(schema).script(schema)

    decoders = get_decoders_by_depth(query)
    start = 0

    #<TERRIBLE SECTION> THIS IS WHERE WE WEAVE THE where CLAUSE WITH nested
    split_where = split_expression_by_depth(query.where, schema=frum.schema)

    if len(split_field(frum.name)) > 1:
        if any(split_where[2::]):
            Log.error("Where clause is too deep")

        for d in decoders[1]:
            es_query = d.append_query(es_query, start)
            start += d.num_columns

        if split_where[1]:
            #TODO: INCLUDE FILTERS ON EDGES
            filter_ = AndOp("and", split_where[1]).to_esfilter(schema)
            es_query = Data(
                aggs={"_filter": set_default({"filter": filter_}, es_query)}
            )

        es_query = wrap({
            "aggs": {"_nested": set_default(
                {"nested": {"path": schema.query_path[0]}},
                es_query
            )}
        })
    else:
        if any(split_where[1::]):
            Log.error("Where clause is too deep")

    if decoders:
        for d in jx.reverse(decoders[0]):
            es_query = d.append_query(es_query, start)
            start += d.num_columns

    if split_where[0]:
        #TODO: INCLUDE FILTERS ON EDGES
        filter = AndOp("and", split_where[0]).to_esfilter(schema)
        es_query = Data(
            aggs={"_filter": set_default({"filter": filter}, es_query)}
        )
    # </TERRIBLE SECTION>

    if not es_query:
        es_query = wrap({"query": {"match_all": {}}})

    es_query.size = 0

    with Timer("ES query time") as es_duration:
        result = es_post(es, es_query, query.limit)

    try:
        format_time = Timer("formatting")
        with format_time:
            decoders = [d for ds in decoders for d in ds]
            result.aggregations.doc_count = coalesce(result.aggregations.doc_count, result.hits.total)  # IT APPEARS THE OLD doc_count IS GONE

            formatter, groupby_formatter, aggop_formatter, mime_type = format_dispatch[query.format]
            if query.edges:
                output = formatter(decoders, result.aggregations, start, query, select)
            elif query.groupby:
                output = groupby_formatter(decoders, result.aggregations, start, query, select)
            else:
                output = aggop_formatter(decoders, result.aggregations, start, query, select)

        output.meta.timing.formatting = format_time.duration
        output.meta.timing.es_search = es_duration.duration
        output.meta.content_type = mime_type
        output.meta.es_query = es_query
        return output
    except Exception as e:
        if query.format not in format_dispatch:
            Log.error("Format {{format|quote}} not supported yet", format=query.format, cause=e)
        Log.error("Some problem", cause=e)
コード例 #3
0
ファイル: deep.py プロジェクト: klahnakoski/annotations
def es_deepop(es, query):
    schema = query.frum.schema
    query_path = schema.query_path[0]

    # TODO: FIX THE GREAT SADNESS CAUSED BY EXECUTING post_expressions
    # THE EXPRESSIONS SHOULD BE PUSHED TO THE CONTAINER:  ES ALLOWS
    # {"inner_hit":{"script_fields":[{"script":""}...]}}, BUT THEN YOU
    # LOOSE "_source" BUT GAIN "fields", FORCING ALL FIELDS TO BE EXPLICIT
    post_expressions = {}
    es_query, es_filters = es_query_template(query_path)

    # SPLIT WHERE CLAUSE BY DEPTH
    wheres = split_expression_by_depth(query.where, schema)
    for f, w in zip_longest(es_filters, wheres):
        script = ES52[AndOp(w)].partial_eval().to_esfilter(schema)
        set_default(f, script)

    if not wheres[1]:
        # INCLUDE DOCS WITH NO NESTED DOCS
        more_filter = {
            "bool": {
                "filter": [AndOp(wheres[0]).partial_eval().to_esfilter(schema)],
                "must_not": {
                    "nested": {
                        "path": query_path,
                        "query": MATCH_ALL
                    }
                }
            }
        }
    else:
        more_filter = None

    es_query.size = coalesce(query.limit, DEFAULT_LIMIT)

    map_to_es_columns = schema.map_to_es()
    query_for_es = query.map(map_to_es_columns)
    es_query.sort = jx_sort_to_es_sort(query_for_es.sort, schema)

    es_query.stored_fields = []

    is_list = is_list_(query.select)
    selects = wrap([unwrap(s.copy()) for s in listwrap(query.select)])
    new_select = FlatList()

    put_index = 0
    for select in selects:
        if is_op(select.value, LeavesOp) and is_op(select.value.term, Variable):
            # IF THERE IS A *, THEN INSERT THE EXTRA COLUMNS
            leaves = schema.leaves(select.value.term.var)
            col_names = set()
            for c in leaves:
                if c.nested_path[0] == ".":
                    if c.jx_type == NESTED:
                        continue
                    es_query.stored_fields += [c.es_column]
                c_name = untype_path(relative_field(c.name, query_path))
                col_names.add(c_name)
                new_select.append({
                    "name": concat_field(select.name, c_name),
                    "nested_path": c.nested_path[0],
                    "put": {"name": concat_field(select.name, literal_field(c_name)), "index": put_index, "child": "."},
                    "pull": get_pull_function(c)
                })
                put_index += 1

            # REMOVE DOTS IN PREFIX IF NAME NOT AMBIGUOUS
            for n in new_select:
                if n.name.startswith("..") and n.name.lstrip(".") not in col_names:
                    n.put.name = n.name = n.name.lstrip(".")
                    col_names.add(n.name)
        elif is_op(select.value, Variable):
            net_columns = schema.leaves(select.value.var)
            if not net_columns:
                new_select.append({
                    "name": select.name,
                    "nested_path": ".",
                    "put": {"name": select.name, "index": put_index, "child": "."},
                    "pull": NULL
                })
            else:
                for n in net_columns:
                    pull = get_pull_function(n)
                    if n.nested_path[0] == ".":
                        if n.jx_type == NESTED:
                            continue
                        es_query.stored_fields += [n.es_column]

                    # WE MUST FIGURE OUT WHICH NAMESSPACE s.value.var IS USING SO WE CAN EXTRACT THE child
                    for np in n.nested_path:
                        c_name = untype_path(relative_field(n.name, np))
                        if startswith_field(c_name, select.value.var):
                            # PREFER THE MOST-RELATIVE NAME
                            child = relative_field(c_name, select.value.var)
                            break
                    else:
                        continue

                    new_select.append({
                        "name": select.name,
                        "pull": pull,
                        "nested_path": n.nested_path[0],
                        "put": {
                            "name": select.name,
                            "index": put_index,
                            "child": child
                        }
                    })
            put_index += 1
        else:
            expr = select.value
            for v in expr.vars():
                for c in schema[v.var]:
                    if c.nested_path[0] == ".":
                        es_query.stored_fields += [c.es_column]
                    # else:
                    #     Log.error("deep field not expected")

            pull_name = EXPRESSION_PREFIX + select.name
            map_to_local = MapToLocal(schema)
            pull = jx_expression_to_function(pull_name)
            post_expressions[pull_name] = jx_expression_to_function(expr.map(map_to_local))

            new_select.append({
                "name": select.name if is_list else ".",
                "pull": pull,
                "value": expr.__data__(),
                "put": {"name": select.name, "index": put_index, "child": "."}
            })
            put_index += 1

    es_query.stored_fields = sorted(es_query.stored_fields)

    # <COMPLICATED> ES needs two calls to get all documents
    more = []
    def get_more(please_stop):
        more.append(es_post(
            es,
            Data(
                query=more_filter,
                stored_fields=es_query.stored_fields
            ),
            query.limit
        ))
    if more_filter:
        need_more = Thread.run("get more", target=get_more)

    with Timer("call to ES") as call_timer:
        data = es_post(es, es_query, query.limit)

    # EACH A HIT IS RETURNED MULTIPLE TIMES FOR EACH INNER HIT, WITH INNER HIT INCLUDED
    def inners():
        for t in data.hits.hits:
            for i in t.inner_hits[literal_field(query_path)].hits.hits:
                t._inner = i._source
                for k, e in post_expressions.items():
                    t[k] = e(t)
                yield t
        if more_filter:
            Thread.join(need_more)
            for t in more[0].hits.hits:
                yield t
    # </COMPLICATED>

    try:
        formatter, groupby_formatter, mime_type = format_dispatch[query.format]

        output = formatter(inners(), new_select, query)
        output.meta.timing.es = call_timer.duration
        output.meta.content_type = mime_type
        output.meta.es_query = es_query
        return output
    except Exception as e:
        Log.error("problem formatting", e)
コード例 #4
0
ファイル: deep.py プロジェクト: rv404674/TUID
def es_deepop(es, query):
    schema = query.frum.schema
    query_path = schema.query_path[0]

    # TODO: FIX THE GREAT SADNESS CAUSED BY EXECUTING post_expressions
    # THE EXPRESSIONS SHOULD BE PUSHED TO THE CONTAINER:  ES ALLOWS
    # {"inner_hit":{"script_fields":[{"script":""}...]}}, BUT THEN YOU
    # LOOSE "_source" BUT GAIN "fields", FORCING ALL FIELDS TO BE EXPLICIT
    post_expressions = {}
    es_query, es_filters = es_query_template(query_path)

    # SPLIT WHERE CLAUSE BY DEPTH
    wheres = split_expression_by_depth(query.where, schema)
    for i, f in enumerate(es_filters):
        script = AndOp("and", wheres[i]).partial_eval().to_esfilter(schema)
        set_default(f, script)

    if not wheres[1]:
        more_filter = {
            "bool": {
                "filter": [AndOp("and", wheres[0]).partial_eval().to_esfilter(schema)],
                "must_not": {
                    "nested": {
                        "path": query_path,
                        "query": {
                            "match_all": {}
                        }
                    }
                }
            }
        }
    else:
        more_filter = None

    es_query.size = coalesce(query.limit, DEFAULT_LIMIT)

    # es_query.sort = jx_sort_to_es_sort(query.sort)
    map_to_es_columns = schema.map_to_es()
    # {c.names["."]: c.es_column for c in schema.leaves(".")}
    query_for_es = query.map(map_to_es_columns)
    es_query.sort = jx_sort_to_es_sort(query_for_es.sort, schema)

    es_query.stored_fields = []

    is_list = isinstance(query.select, list)
    new_select = FlatList()

    i = 0
    for s in listwrap(query.select):
        if isinstance(s.value, LeavesOp) and isinstance(s.value.term, Variable):
            # IF THERE IS A *, THEN INSERT THE EXTRA COLUMNS
            leaves = schema.leaves(s.value.term.var)
            col_names = set()
            for c in leaves:
                if c.nested_path[0] == ".":
                    if c.jx_type == NESTED:
                        continue
                    es_query.stored_fields += [c.es_column]
                c_name = untype_path(c.names[query_path])
                col_names.add(c_name)
                new_select.append({
                    "name": concat_field(s.name, c_name),
                    "nested_path": c.nested_path[0],
                    "put": {"name": concat_field(s.name, literal_field(c_name)), "index": i, "child": "."},
                    "pull": get_pull_function(c)
                })
                i += 1

            # REMOVE DOTS IN PREFIX IF NAME NOT AMBIGUOUS
            for n in new_select:
                if n.name.startswith("..") and n.name.lstrip(".") not in col_names:
                    n.put.name = n.name = n.name.lstrip(".")
                    col_names.add(n.name)
        elif isinstance(s.value, Variable):
            net_columns = schema.leaves(s.value.var)
            if not net_columns:
                new_select.append({
                    "name": s.name,
                    "nested_path": ".",
                    "put": {"name": s.name, "index": i, "child": "."},
                    "pull": NULL
                })
            else:
                for n in net_columns:
                    pull = get_pull_function(n)
                    if n.nested_path[0] == ".":
                        if n.jx_type == NESTED:
                            continue
                        es_query.stored_fields += [n.es_column]

                    # WE MUST FIGURE OUT WHICH NAMESSPACE s.value.var IS USING SO WE CAN EXTRACT THE child
                    for np in n.nested_path:
                        c_name = untype_path(n.names[np])
                        if startswith_field(c_name, s.value.var):
                            child = relative_field(c_name, s.value.var)
                            break
                    else:
                        child = relative_field(untype_path(n.names[n.nested_path[0]]), s.value.var)

                    new_select.append({
                        "name": s.name,
                        "pull": pull,
                        "nested_path": n.nested_path[0],
                        "put": {
                            "name": s.name,
                            "index": i,
                            "child": child
                        }
                    })
            i += 1
        else:
            expr = s.value
            for v in expr.vars():
                for c in schema[v.var]:
                    if c.nested_path[0] == ".":
                        es_query.stored_fields += [c.es_column]
                    # else:
                    #     Log.error("deep field not expected")

            pull_name = EXPRESSION_PREFIX + s.name
            map_to_local = MapToLocal(schema)
            pull = jx_expression_to_function(pull_name)
            post_expressions[pull_name] = compile_expression(expr.map(map_to_local).to_python())

            new_select.append({
                "name": s.name if is_list else ".",
                "pull": pull,
                "value": expr.__data__(),
                "put": {"name": s.name, "index": i, "child": "."}
            })
            i += 1

    # <COMPLICATED> ES needs two calls to get all documents
    more = []
    def get_more(please_stop):
        more.append(es_post(
            es,
            Data(
                query=more_filter,
                stored_fields=es_query.stored_fields
            ),
            query.limit
        ))
    if more_filter:
        need_more = Thread.run("get more", target=get_more)

    with Timer("call to ES") as call_timer:
        data = es_post(es, es_query, query.limit)

    # EACH A HIT IS RETURNED MULTIPLE TIMES FOR EACH INNER HIT, WITH INNER HIT INCLUDED
    def inners():
        for t in data.hits.hits:
            for i in t.inner_hits[literal_field(query_path)].hits.hits:
                t._inner = i._source
                for k, e in post_expressions.items():
                    t[k] = e(t)
                yield t
        if more_filter:
            Thread.join(need_more)
            for t in more[0].hits.hits:
                yield t
    #</COMPLICATED>

    try:
        formatter, groupby_formatter, mime_type = format_dispatch[query.format]

        output = formatter(inners(), new_select, query)
        output.meta.timing.es = call_timer.duration
        output.meta.content_type = mime_type
        output.meta.es_query = es_query
        return output
    except Exception as e:
        Log.error("problem formatting", e)