def es_aggsop(es, frum, query): query = query.copy() # WE WILL MARK UP THIS QUERY schema = frum.schema select = listwrap(query.select) es_query = Data() new_select = Data() # MAP FROM canonical_name (USED FOR NAMES IN QUERY) TO SELECT MAPPING formula = [] for s in select: if s.aggregate == "count" and isinstance(s.value, Variable) and s.value.var == ".": if schema.query_path == ".": s.pull = jx_expression_to_function("doc_count") else: s.pull = jx_expression_to_function({"coalesce": ["_nested.doc_count", "doc_count", 0]}) elif isinstance(s.value, Variable): if s.aggregate == "count": new_select["count_"+literal_field(s.value.var)] += [s] else: new_select[literal_field(s.value.var)] += [s] elif s.aggregate: formula.append(s) for canonical_name, many in new_select.items(): for s in many: columns = frum.schema.values(s.value.var) if s.aggregate == "count": canonical_names = [] for column in columns: cn = literal_field(column.es_column + "_count") if column.jx_type == EXISTS: canonical_names.append(cn + ".doc_count") es_query.aggs[cn].filter.range = {column.es_column: {"gt": 0}} else: canonical_names.append(cn+ ".value") es_query.aggs[cn].value_count.field = column.es_column if len(canonical_names) == 1: s.pull = jx_expression_to_function(canonical_names[0]) else: s.pull = jx_expression_to_function({"add": canonical_names}) elif s.aggregate == "median": if len(columns) > 1: Log.error("Do not know how to count columns with more than one type (script probably)") # ES USES DIFFERENT METHOD FOR PERCENTILES key = literal_field(canonical_name + " percentile") es_query.aggs[key].percentiles.field = columns[0].es_column es_query.aggs[key].percentiles.percents += [50] s.pull = jx_expression_to_function(key + ".values.50\\.0") elif s.aggregate == "percentile": if len(columns) > 1: Log.error("Do not know how to count columns with more than one type (script probably)") # ES USES DIFFERENT METHOD FOR PERCENTILES key = literal_field(canonical_name + " percentile") if isinstance(s.percentile, text_type) or s.percetile < 0 or 1 < s.percentile: Log.error("Expecting percentile to be a float from 0.0 to 1.0") percent = Math.round(s.percentile * 100, decimal=6) es_query.aggs[key].percentiles.field = columns[0].es_column es_query.aggs[key].percentiles.percents += [percent] es_query.aggs[key].percentiles.tdigest.compression = 2 s.pull = jx_expression_to_function(key + ".values." + literal_field(text_type(percent))) elif s.aggregate == "cardinality": canonical_names = [] for column in columns: cn = literal_field(column.es_column + "_cardinality") canonical_names.append(cn) es_query.aggs[cn].cardinality.field = column.es_column if len(columns) == 1: s.pull = jx_expression_to_function(canonical_names[0] + ".value") else: s.pull = jx_expression_to_function({"add": [cn + ".value" for cn in canonical_names], "default": 0}) elif s.aggregate == "stats": if len(columns) > 1: Log.error("Do not know how to count columns with more than one type (script probably)") # REGULAR STATS stats_name = literal_field(canonical_name) es_query.aggs[stats_name].extended_stats.field = columns[0].es_column # GET MEDIAN TOO! median_name = literal_field(canonical_name + "_percentile") es_query.aggs[median_name].percentiles.field = columns[0].es_column es_query.aggs[median_name].percentiles.percents += [50] s.pull = get_pull_stats(stats_name, median_name) elif s.aggregate == "union": pulls = [] for column in columns: script = {"scripted_metric": { 'init_script': 'params._agg.terms = new HashSet()', 'map_script': 'for (v in doc['+quote(column.es_column)+'].values) params._agg.terms.add(v);', 'combine_script': 'return params._agg.terms.toArray()', 'reduce_script': 'HashSet output = new HashSet(); for (a in params._aggs) { if (a!=null) for (v in a) {output.add(v)} } return output.toArray()', }} stats_name = encode_property(column.es_column) if column.nested_path[0] == ".": es_query.aggs[stats_name] = script pulls.append(jx_expression_to_function(stats_name + ".value")) else: es_query.aggs[stats_name] = { "nested": {"path": column.nested_path[0]}, "aggs": {"_nested": script} } pulls.append(jx_expression_to_function(stats_name + "._nested.value")) if len(pulls) == 0: s.pull = NULL elif len(pulls) == 1: s.pull = pulls[0] else: s.pull = lambda row: UNION(p(row) for p in pulls) else: if len(columns) > 1: Log.error("Do not know how to count columns with more than one type (script probably)") elif len(columns) <1: # PULL VALUE OUT OF THE stats AGGREGATE s.pull = jx_expression_to_function({"null":{}}) else: # PULL VALUE OUT OF THE stats AGGREGATE es_query.aggs[literal_field(canonical_name)].extended_stats.field = columns[0].es_column s.pull = jx_expression_to_function({"coalesce": [literal_field(canonical_name) + "." + aggregates[s.aggregate], s.default]}) for i, s in enumerate(formula): canonical_name = literal_field(s.name) if isinstance(s.value, TupleOp): if s.aggregate == "count": # TUPLES ALWAYS EXIST, SO COUNTING THEM IS EASY s.pull = "doc_count" elif s.aggregate in ('max', 'maximum', 'min', 'minimum'): if s.aggregate in ('max', 'maximum'): dir = 1 op = "max" else: dir = -1 op = 'min' nully = TupleOp("tuple", [NULL]*len(s.value.terms)).partial_eval().to_es_script(schema).expr selfy = s.value.partial_eval().to_es_script(schema).expr script = {"scripted_metric": { 'init_script': 'params._agg.best = ' + nully + ';', 'map_script': 'params._agg.best = ' + expand_template(MAX_OF_TUPLE, {"expr1": "params._agg.best", "expr2": selfy, "dir": dir, "op": op}) + ";", 'combine_script': 'return params._agg.best', 'reduce_script': 'return params._aggs.stream().max(' + expand_template(COMPARE_TUPLE, {"dir": dir, "op": op}) + ').get()', }} if schema.query_path[0] == ".": es_query.aggs[canonical_name] = script s.pull = jx_expression_to_function(literal_field(canonical_name) + ".value") else: es_query.aggs[canonical_name] = { "nested": {"path": schema.query_path[0]}, "aggs": {"_nested": script} } s.pull = jx_expression_to_function(literal_field(canonical_name) + "._nested.value") else: Log.error("{{agg}} is not a supported aggregate over a tuple", agg=s.aggregate) elif s.aggregate == "count": es_query.aggs[literal_field(canonical_name)].value_count.script = s.value.partial_eval().to_es_script(schema).script(schema) s.pull = jx_expression_to_function(literal_field(canonical_name) + ".value") elif s.aggregate == "median": # ES USES DIFFERENT METHOD FOR PERCENTILES THAN FOR STATS AND COUNT key = literal_field(canonical_name + " percentile") es_query.aggs[key].percentiles.script = s.value.to_es_script(schema).script(schema) es_query.aggs[key].percentiles.percents += [50] s.pull = jx_expression_to_function(key + ".values.50\\.0") elif s.aggregate == "percentile": # ES USES DIFFERENT METHOD FOR PERCENTILES THAN FOR STATS AND COUNT key = literal_field(canonical_name + " percentile") percent = Math.round(s.percentile * 100, decimal=6) es_query.aggs[key].percentiles.script = s.value.to_es_script(schema).script(schema) es_query.aggs[key].percentiles.percents += [percent] s.pull = jx_expression_to_function(key + ".values." + literal_field(text_type(percent))) elif s.aggregate == "cardinality": # ES USES DIFFERENT METHOD FOR CARDINALITY key = canonical_name + " cardinality" es_query.aggs[key].cardinality.script = s.value.to_es_script(schema).script(schema) s.pull = jx_expression_to_function(key + ".value") elif s.aggregate == "stats": # REGULAR STATS stats_name = literal_field(canonical_name) es_query.aggs[stats_name].extended_stats.script = s.value.to_es_script(schema).script(schema) # GET MEDIAN TOO! median_name = literal_field(canonical_name + " percentile") es_query.aggs[median_name].percentiles.script = s.value.to_es_script(schema).script(schema) es_query.aggs[median_name].percentiles.percents += [50] s.pull = get_pull_stats(stats_name, median_name) elif s.aggregate == "union": # USE TERMS AGGREGATE TO SIMULATE union stats_name = literal_field(canonical_name) es_query.aggs[stats_name].terms.script_field = s.value.to_es_script(schema).script(schema) s.pull = jx_expression_to_function(stats_name + ".buckets.key") else: # PULL VALUE OUT OF THE stats AGGREGATE s.pull = jx_expression_to_function(canonical_name + "." + aggregates[s.aggregate]) es_query.aggs[canonical_name].extended_stats.script = s.value.to_es_script(schema).script(schema) decoders = get_decoders_by_depth(query) start = 0 # <TERRIBLE SECTION> THIS IS WHERE WE WEAVE THE where CLAUSE WITH nested split_where = split_expression_by_depth(query.where, schema=frum.schema) if len(split_field(frum.name)) > 1: if any(split_where[2::]): Log.error("Where clause is too deep") for d in decoders[1]: es_query = d.append_query(es_query, start) start += d.num_columns if split_where[1]: #TODO: INCLUDE FILTERS ON EDGES filter_ = AndOp("and", split_where[1]).to_esfilter(schema) es_query = Data( aggs={"_filter": set_default({"filter": filter_}, es_query)} ) es_query = wrap({ "aggs": {"_nested": set_default( {"nested": {"path": schema.query_path[0]}}, es_query )} }) else: if any(split_where[1::]): Log.error("Where clause is too deep") if decoders: for d in jx.reverse(decoders[0]): es_query = d.append_query(es_query, start) start += d.num_columns if split_where[0]: #TODO: INCLUDE FILTERS ON EDGES filter = AndOp("and", split_where[0]).to_esfilter(schema) es_query = Data( aggs={"_filter": set_default({"filter": filter}, es_query)} ) # </TERRIBLE SECTION> if not es_query: es_query = wrap({"query": {"match_all": {}}}) es_query.size = 0 with Timer("ES query time") as es_duration: result = es_post(es, es_query, query.limit) try: format_time = Timer("formatting") with format_time: decoders = [d for ds in decoders for d in ds] result.aggregations.doc_count = coalesce(result.aggregations.doc_count, result.hits.total) # IT APPEARS THE OLD doc_count IS GONE formatter, groupby_formatter, aggop_formatter, mime_type = format_dispatch[query.format] if query.edges: output = formatter(decoders, result.aggregations, start, query, select) elif query.groupby: output = groupby_formatter(decoders, result.aggregations, start, query, select) else: output = aggop_formatter(decoders, result.aggregations, start, query, select) output.meta.timing.formatting = format_time.duration output.meta.timing.es_search = es_duration.duration output.meta.content_type = mime_type output.meta.es_query = es_query return output except Exception as e: if query.format not in format_dispatch: Log.error("Format {{format|quote}} not supported yet", format=query.format, cause=e) Log.error("Some problem", cause=e)
def es_aggsop(es, frum, query): query = query.copy() # WE WILL MARK UP THIS QUERY schema = frum.schema select = listwrap(query.select) es_query = Data() new_select = Data() # MAP FROM canonical_name (USED FOR NAMES IN QUERY) TO SELECT MAPPING formula = [] for s in select: if s.aggregate == "count" and isinstance(s.value, Variable) and s.value.var == ".": if schema.query_path == ".": s.pull = jx_expression_to_function("doc_count") else: s.pull = jx_expression_to_function({"coalesce": ["_nested.doc_count", "doc_count", 0]}) elif isinstance(s.value, Variable): if s.aggregate == "count": new_select["count_"+literal_field(s.value.var)] += [s] else: new_select[literal_field(s.value.var)] += [s] elif s.aggregate: formula.append(s) for canonical_name, many in new_select.items(): for s in many: columns = frum.schema.values(s.value.var) if s.aggregate == "count": canonical_names = [] for column in columns: cn = literal_field(column.es_column + "_count") if column.jx_type == EXISTS: canonical_names.append(cn + ".doc_count") es_query.aggs[cn].filter.range = {column.es_column: {"gt": 0}} else: canonical_names.append(cn+ ".value") es_query.aggs[cn].value_count.field = column.es_column if len(canonical_names) == 1: s.pull = jx_expression_to_function(canonical_names[0]) else: s.pull = jx_expression_to_function({"add": canonical_names}) elif s.aggregate == "median": if len(columns) > 1: Log.error("Do not know how to count columns with more than one type (script probably)") # ES USES DIFFERENT METHOD FOR PERCENTILES key = literal_field(canonical_name + " percentile") es_query.aggs[key].percentiles.field = columns[0].es_column es_query.aggs[key].percentiles.percents += [50] s.pull = jx_expression_to_function(key + ".values.50\\.0") elif s.aggregate == "percentile": if len(columns) > 1: Log.error("Do not know how to count columns with more than one type (script probably)") # ES USES DIFFERENT METHOD FOR PERCENTILES key = literal_field(canonical_name + " percentile") if isinstance(s.percentile, text_type) or s.percetile < 0 or 1 < s.percentile: Log.error("Expecting percentile to be a float from 0.0 to 1.0") percent = Math.round(s.percentile * 100, decimal=6) es_query.aggs[key].percentiles.field = columns[0].es_column es_query.aggs[key].percentiles.percents += [percent] s.pull = jx_expression_to_function(key + ".values." + literal_field(text_type(percent))) elif s.aggregate == "cardinality": canonical_names = [] for column in columns: cn = literal_field(column.es_column + "_cardinality") canonical_names.append(cn) es_query.aggs[cn].cardinality.field = column.es_column if len(columns) == 1: s.pull = jx_expression_to_function(canonical_names[0] + ".value") else: s.pull = jx_expression_to_function({"add": [cn + ".value" for cn in canonical_names], "default": 0}) elif s.aggregate == "stats": if len(columns) > 1: Log.error("Do not know how to count columns with more than one type (script probably)") # REGULAR STATS stats_name = literal_field(canonical_name) es_query.aggs[stats_name].extended_stats.field = columns[0].es_column # GET MEDIAN TOO! median_name = literal_field(canonical_name + "_percentile") es_query.aggs[median_name].percentiles.field = columns[0].es_column es_query.aggs[median_name].percentiles.percents += [50] s.pull = get_pull_stats(stats_name, median_name) elif s.aggregate == "union": pulls = [] for column in columns: script = {"scripted_metric": { 'init_script': 'params._agg.terms = new HashSet()', 'map_script': 'for (v in doc['+quote(column.es_column)+'].values) params._agg.terms.add(v)', 'combine_script': 'return params._agg.terms.toArray()', 'reduce_script': 'HashSet output = new HashSet(); for (a in params._aggs) { if (a!=null) for (v in a) {output.add(v)} } return output.toArray()', }} stats_name = encode_property(column.es_column) if column.nested_path[0] == ".": es_query.aggs[stats_name] = script pulls.append(jx_expression_to_function(stats_name + ".value")) else: es_query.aggs[stats_name] = { "nested": {"path": column.nested_path[0]}, "aggs": {"_nested": script} } pulls.append(jx_expression_to_function(stats_name + "._nested.value")) if len(pulls) == 0: s.pull = NULL elif len(pulls) == 1: s.pull = pulls[0] else: s.pull = lambda row: UNION(p(row) for p in pulls) else: if len(columns) > 1: Log.error("Do not know how to count columns with more than one type (script probably)") elif len(columns) <1: # PULL VALUE OUT OF THE stats AGGREGATE s.pull = jx_expression_to_function({"null":{}}) else: # PULL VALUE OUT OF THE stats AGGREGATE es_query.aggs[literal_field(canonical_name)].extended_stats.field = columns[0].es_column s.pull = jx_expression_to_function({"coalesce": [literal_field(canonical_name) + "." + aggregates[s.aggregate], s.default]}) for i, s in enumerate(formula): canonical_name = literal_field(s.name) if isinstance(s.value, TupleOp): if s.aggregate == "count": # TUPLES ALWAYS EXIST, SO COUNTING THEM IS EASY s.pull = "doc_count" elif s.aggregate in ('max', 'maximum', 'min', 'minimum'): if s.aggregate in ('max', 'maximum'): dir = 1 op = "max" else: dir = -1 op = 'min' nully = TupleOp("tuple", [NULL]*len(s.value.terms)).partial_eval().to_es_script(schema).expr selfy = s.value.partial_eval().to_es_script(schema).expr script = {"scripted_metric": { 'init_script': 'params._agg.best = ' + nully + ';', 'map_script': 'params._agg.best = ' + expand_template(MAX_OF_TUPLE, {"expr1": "params._agg.best", "expr2": selfy, "dir": dir, "op": op}) + ";", 'combine_script': 'return params._agg.best', 'reduce_script': 'return params._aggs.stream().max(' + expand_template(COMPARE_TUPLE, {"dir": dir, "op": op}) + ').get()', }} if schema.query_path[0] == ".": es_query.aggs[canonical_name] = script s.pull = jx_expression_to_function(literal_field(canonical_name) + ".value") else: es_query.aggs[canonical_name] = { "nested": {"path": schema.query_path[0]}, "aggs": {"_nested": script} } s.pull = jx_expression_to_function(literal_field(canonical_name) + "._nested.value") else: Log.error("{{agg}} is not a supported aggregate over a tuple", agg=s.aggregate) elif s.aggregate == "count": es_query.aggs[literal_field(canonical_name)].value_count.script = s.value.partial_eval().to_es_script(schema).script(schema) s.pull = jx_expression_to_function(literal_field(canonical_name) + ".value") elif s.aggregate == "median": # ES USES DIFFERENT METHOD FOR PERCENTILES THAN FOR STATS AND COUNT key = literal_field(canonical_name + " percentile") es_query.aggs[key].percentiles.script = s.value.to_es_script(schema).script(schema) es_query.aggs[key].percentiles.percents += [50] s.pull = jx_expression_to_function(key + ".values.50\\.0") elif s.aggregate == "percentile": # ES USES DIFFERENT METHOD FOR PERCENTILES THAN FOR STATS AND COUNT key = literal_field(canonical_name + " percentile") percent = Math.round(s.percentile * 100, decimal=6) es_query.aggs[key].percentiles.script = s.value.to_es_script(schema).script(schema) es_query.aggs[key].percentiles.percents += [percent] s.pull = jx_expression_to_function(key + ".values." + literal_field(text_type(percent))) elif s.aggregate == "cardinality": # ES USES DIFFERENT METHOD FOR CARDINALITY key = canonical_name + " cardinality" es_query.aggs[key].cardinality.script = s.value.to_es_script(schema).script(schema) s.pull = jx_expression_to_function(key + ".value") elif s.aggregate == "stats": # REGULAR STATS stats_name = literal_field(canonical_name) es_query.aggs[stats_name].extended_stats.script = s.value.to_es_script(schema).script(schema) # GET MEDIAN TOO! median_name = literal_field(canonical_name + " percentile") es_query.aggs[median_name].percentiles.script = s.value.to_es_script(schema).script(schema) es_query.aggs[median_name].percentiles.percents += [50] s.pull = get_pull_stats(stats_name, median_name) elif s.aggregate == "union": # USE TERMS AGGREGATE TO SIMULATE union stats_name = literal_field(canonical_name) es_query.aggs[stats_name].terms.script_field = s.value.to_es_script(schema).script(schema) s.pull = jx_expression_to_function(stats_name + ".buckets.key") else: # PULL VALUE OUT OF THE stats AGGREGATE s.pull = jx_expression_to_function(canonical_name + "." + aggregates[s.aggregate]) es_query.aggs[canonical_name].extended_stats.script = s.value.to_es_script(schema).script(schema) decoders = get_decoders_by_depth(query) start = 0 #<TERRIBLE SECTION> THIS IS WHERE WE WEAVE THE where CLAUSE WITH nested split_where = split_expression_by_depth(query.where, schema=frum.schema) if len(split_field(frum.name)) > 1: if any(split_where[2::]): Log.error("Where clause is too deep") for d in decoders[1]: es_query = d.append_query(es_query, start) start += d.num_columns if split_where[1]: #TODO: INCLUDE FILTERS ON EDGES filter_ = AndOp("and", split_where[1]).to_esfilter(schema) es_query = Data( aggs={"_filter": set_default({"filter": filter_}, es_query)} ) es_query = wrap({ "aggs": {"_nested": set_default( {"nested": {"path": schema.query_path[0]}}, es_query )} }) else: if any(split_where[1::]): Log.error("Where clause is too deep") if decoders: for d in jx.reverse(decoders[0]): es_query = d.append_query(es_query, start) start += d.num_columns if split_where[0]: #TODO: INCLUDE FILTERS ON EDGES filter = AndOp("and", split_where[0]).to_esfilter(schema) es_query = Data( aggs={"_filter": set_default({"filter": filter}, es_query)} ) # </TERRIBLE SECTION> if not es_query: es_query = wrap({"query": {"match_all": {}}}) es_query.size = 0 with Timer("ES query time") as es_duration: result = es_post(es, es_query, query.limit) try: format_time = Timer("formatting") with format_time: decoders = [d for ds in decoders for d in ds] result.aggregations.doc_count = coalesce(result.aggregations.doc_count, result.hits.total) # IT APPEARS THE OLD doc_count IS GONE formatter, groupby_formatter, aggop_formatter, mime_type = format_dispatch[query.format] if query.edges: output = formatter(decoders, result.aggregations, start, query, select) elif query.groupby: output = groupby_formatter(decoders, result.aggregations, start, query, select) else: output = aggop_formatter(decoders, result.aggregations, start, query, select) output.meta.timing.formatting = format_time.duration output.meta.timing.es_search = es_duration.duration output.meta.content_type = mime_type output.meta.es_query = es_query return output except Exception as e: if query.format not in format_dispatch: Log.error("Format {{format|quote}} not supported yet", format=query.format, cause=e) Log.error("Some problem", cause=e)
def es_deepop(es, query): schema = query.frum.schema query_path = schema.query_path[0] # TODO: FIX THE GREAT SADNESS CAUSED BY EXECUTING post_expressions # THE EXPRESSIONS SHOULD BE PUSHED TO THE CONTAINER: ES ALLOWS # {"inner_hit":{"script_fields":[{"script":""}...]}}, BUT THEN YOU # LOOSE "_source" BUT GAIN "fields", FORCING ALL FIELDS TO BE EXPLICIT post_expressions = {} es_query, es_filters = es_query_template(query_path) # SPLIT WHERE CLAUSE BY DEPTH wheres = split_expression_by_depth(query.where, schema) for f, w in zip_longest(es_filters, wheres): script = ES52[AndOp(w)].partial_eval().to_esfilter(schema) set_default(f, script) if not wheres[1]: # INCLUDE DOCS WITH NO NESTED DOCS more_filter = { "bool": { "filter": [AndOp(wheres[0]).partial_eval().to_esfilter(schema)], "must_not": { "nested": { "path": query_path, "query": MATCH_ALL } } } } else: more_filter = None es_query.size = coalesce(query.limit, DEFAULT_LIMIT) map_to_es_columns = schema.map_to_es() query_for_es = query.map(map_to_es_columns) es_query.sort = jx_sort_to_es_sort(query_for_es.sort, schema) es_query.stored_fields = [] is_list = is_list_(query.select) selects = wrap([unwrap(s.copy()) for s in listwrap(query.select)]) new_select = FlatList() put_index = 0 for select in selects: if is_op(select.value, LeavesOp) and is_op(select.value.term, Variable): # IF THERE IS A *, THEN INSERT THE EXTRA COLUMNS leaves = schema.leaves(select.value.term.var) col_names = set() for c in leaves: if c.nested_path[0] == ".": if c.jx_type == NESTED: continue es_query.stored_fields += [c.es_column] c_name = untype_path(relative_field(c.name, query_path)) col_names.add(c_name) new_select.append({ "name": concat_field(select.name, c_name), "nested_path": c.nested_path[0], "put": {"name": concat_field(select.name, literal_field(c_name)), "index": put_index, "child": "."}, "pull": get_pull_function(c) }) put_index += 1 # REMOVE DOTS IN PREFIX IF NAME NOT AMBIGUOUS for n in new_select: if n.name.startswith("..") and n.name.lstrip(".") not in col_names: n.put.name = n.name = n.name.lstrip(".") col_names.add(n.name) elif is_op(select.value, Variable): net_columns = schema.leaves(select.value.var) if not net_columns: new_select.append({ "name": select.name, "nested_path": ".", "put": {"name": select.name, "index": put_index, "child": "."}, "pull": NULL }) else: for n in net_columns: pull = get_pull_function(n) if n.nested_path[0] == ".": if n.jx_type == NESTED: continue es_query.stored_fields += [n.es_column] # WE MUST FIGURE OUT WHICH NAMESSPACE s.value.var IS USING SO WE CAN EXTRACT THE child for np in n.nested_path: c_name = untype_path(relative_field(n.name, np)) if startswith_field(c_name, select.value.var): # PREFER THE MOST-RELATIVE NAME child = relative_field(c_name, select.value.var) break else: continue new_select.append({ "name": select.name, "pull": pull, "nested_path": n.nested_path[0], "put": { "name": select.name, "index": put_index, "child": child } }) put_index += 1 else: expr = select.value for v in expr.vars(): for c in schema[v.var]: if c.nested_path[0] == ".": es_query.stored_fields += [c.es_column] # else: # Log.error("deep field not expected") pull_name = EXPRESSION_PREFIX + select.name map_to_local = MapToLocal(schema) pull = jx_expression_to_function(pull_name) post_expressions[pull_name] = jx_expression_to_function(expr.map(map_to_local)) new_select.append({ "name": select.name if is_list else ".", "pull": pull, "value": expr.__data__(), "put": {"name": select.name, "index": put_index, "child": "."} }) put_index += 1 es_query.stored_fields = sorted(es_query.stored_fields) # <COMPLICATED> ES needs two calls to get all documents more = [] def get_more(please_stop): more.append(es_post( es, Data( query=more_filter, stored_fields=es_query.stored_fields ), query.limit )) if more_filter: need_more = Thread.run("get more", target=get_more) with Timer("call to ES") as call_timer: data = es_post(es, es_query, query.limit) # EACH A HIT IS RETURNED MULTIPLE TIMES FOR EACH INNER HIT, WITH INNER HIT INCLUDED def inners(): for t in data.hits.hits: for i in t.inner_hits[literal_field(query_path)].hits.hits: t._inner = i._source for k, e in post_expressions.items(): t[k] = e(t) yield t if more_filter: Thread.join(need_more) for t in more[0].hits.hits: yield t # </COMPLICATED> try: formatter, groupby_formatter, mime_type = format_dispatch[query.format] output = formatter(inners(), new_select, query) output.meta.timing.es = call_timer.duration output.meta.content_type = mime_type output.meta.es_query = es_query return output except Exception as e: Log.error("problem formatting", e)
def es_deepop(es, query): schema = query.frum.schema query_path = schema.query_path[0] # TODO: FIX THE GREAT SADNESS CAUSED BY EXECUTING post_expressions # THE EXPRESSIONS SHOULD BE PUSHED TO THE CONTAINER: ES ALLOWS # {"inner_hit":{"script_fields":[{"script":""}...]}}, BUT THEN YOU # LOOSE "_source" BUT GAIN "fields", FORCING ALL FIELDS TO BE EXPLICIT post_expressions = {} es_query, es_filters = es_query_template(query_path) # SPLIT WHERE CLAUSE BY DEPTH wheres = split_expression_by_depth(query.where, schema) for i, f in enumerate(es_filters): script = AndOp("and", wheres[i]).partial_eval().to_esfilter(schema) set_default(f, script) if not wheres[1]: more_filter = { "bool": { "filter": [AndOp("and", wheres[0]).partial_eval().to_esfilter(schema)], "must_not": { "nested": { "path": query_path, "query": { "match_all": {} } } } } } else: more_filter = None es_query.size = coalesce(query.limit, DEFAULT_LIMIT) # es_query.sort = jx_sort_to_es_sort(query.sort) map_to_es_columns = schema.map_to_es() # {c.names["."]: c.es_column for c in schema.leaves(".")} query_for_es = query.map(map_to_es_columns) es_query.sort = jx_sort_to_es_sort(query_for_es.sort, schema) es_query.stored_fields = [] is_list = isinstance(query.select, list) new_select = FlatList() i = 0 for s in listwrap(query.select): if isinstance(s.value, LeavesOp) and isinstance(s.value.term, Variable): # IF THERE IS A *, THEN INSERT THE EXTRA COLUMNS leaves = schema.leaves(s.value.term.var) col_names = set() for c in leaves: if c.nested_path[0] == ".": if c.jx_type == NESTED: continue es_query.stored_fields += [c.es_column] c_name = untype_path(c.names[query_path]) col_names.add(c_name) new_select.append({ "name": concat_field(s.name, c_name), "nested_path": c.nested_path[0], "put": {"name": concat_field(s.name, literal_field(c_name)), "index": i, "child": "."}, "pull": get_pull_function(c) }) i += 1 # REMOVE DOTS IN PREFIX IF NAME NOT AMBIGUOUS for n in new_select: if n.name.startswith("..") and n.name.lstrip(".") not in col_names: n.put.name = n.name = n.name.lstrip(".") col_names.add(n.name) elif isinstance(s.value, Variable): net_columns = schema.leaves(s.value.var) if not net_columns: new_select.append({ "name": s.name, "nested_path": ".", "put": {"name": s.name, "index": i, "child": "."}, "pull": NULL }) else: for n in net_columns: pull = get_pull_function(n) if n.nested_path[0] == ".": if n.jx_type == NESTED: continue es_query.stored_fields += [n.es_column] # WE MUST FIGURE OUT WHICH NAMESSPACE s.value.var IS USING SO WE CAN EXTRACT THE child for np in n.nested_path: c_name = untype_path(n.names[np]) if startswith_field(c_name, s.value.var): child = relative_field(c_name, s.value.var) break else: child = relative_field(untype_path(n.names[n.nested_path[0]]), s.value.var) new_select.append({ "name": s.name, "pull": pull, "nested_path": n.nested_path[0], "put": { "name": s.name, "index": i, "child": child } }) i += 1 else: expr = s.value for v in expr.vars(): for c in schema[v.var]: if c.nested_path[0] == ".": es_query.stored_fields += [c.es_column] # else: # Log.error("deep field not expected") pull_name = EXPRESSION_PREFIX + s.name map_to_local = MapToLocal(schema) pull = jx_expression_to_function(pull_name) post_expressions[pull_name] = compile_expression(expr.map(map_to_local).to_python()) new_select.append({ "name": s.name if is_list else ".", "pull": pull, "value": expr.__data__(), "put": {"name": s.name, "index": i, "child": "."} }) i += 1 # <COMPLICATED> ES needs two calls to get all documents more = [] def get_more(please_stop): more.append(es_post( es, Data( query=more_filter, stored_fields=es_query.stored_fields ), query.limit )) if more_filter: need_more = Thread.run("get more", target=get_more) with Timer("call to ES") as call_timer: data = es_post(es, es_query, query.limit) # EACH A HIT IS RETURNED MULTIPLE TIMES FOR EACH INNER HIT, WITH INNER HIT INCLUDED def inners(): for t in data.hits.hits: for i in t.inner_hits[literal_field(query_path)].hits.hits: t._inner = i._source for k, e in post_expressions.items(): t[k] = e(t) yield t if more_filter: Thread.join(need_more) for t in more[0].hits.hits: yield t #</COMPLICATED> try: formatter, groupby_formatter, mime_type = format_dispatch[query.format] output = formatter(inners(), new_select, query) output.meta.timing.es = call_timer.duration output.meta.content_type = mime_type output.meta.es_query = es_query return output except Exception as e: Log.error("problem formatting", e)