def main(): distribution = Banana(dimension=8) sigma = 5 print "using sigma", sigma kernel = GaussianKernel(sigma=sigma) mcmc_sampler = Kameleon(distribution, kernel, distribution.sample(100).samples) start = zeros(distribution.dimension) mcmc_params = MCMCParams(start=start, num_iterations=20000) chain = MCMCChain(mcmc_sampler, mcmc_params) chain.append_mcmc_output(StatisticsOutput(plot_times=True)) chain.run()
def plot_proposal(self, ys): # evaluate density itself Visualise.visualise_distribution(self.distribution, Z=self.Z, Xs=self.Xs, Ys=self.Ys) # precompute constants of proposal mcmc_hammer = Kameleon(self.distribution, self.kernel, self.Z, \ self.nu2, self.gamma) # plot proposal around each y for y in ys: mu, L_R = mcmc_hammer.compute_constants(y) gaussian = Gaussian(mu, L_R, is_cholesky=True) hold(True) Visualise.contour_plot_density(gaussian) hold(False) draw()