def __init__( self, distribution, kernel, nu2=0.1, gamma=None, sample_discard=500, num_samples_Z=1000, stop_adapt=20000 ): Kameleon.__init__(self, distribution, kernel, Z=None, nu2=nu2, gamma=gamma) assert stop_adapt > sample_discard assert num_samples_Z > 0 self.sample_discard = sample_discard self.num_samples_Z = num_samples_Z self.stop_adapt = stop_adapt
def __init__(self, distribution, kernel, Z, nu2=0.1, gamma=0.1, num_eigen=10): Kameleon.__init__(self, distribution, kernel, Z, nu2, gamma) self.num_eigen = num_eigen if Z is None: self.Kc = None self.eigvalues = None self.eigvectors = None else: K = self.kernel.kernel(Z) H = Kernel.centring_matrix(len(self.Z)) self.Kc = H.dot(K.dot(H)) u, s, _ = svd(self.Kc) self.eigvalues = s[0 : self.num_eigen] self.eigvectors = u[:, 0 : self.num_eigen]
def __init__(self, distribution, kernel, nu2=0.1, gamma=None, \ sample_discard=500, num_samples_Z=1000, stop_adapt=20000): Kameleon.__init__(self, distribution, kernel, Z=None, nu2=nu2, gamma=gamma) assert (stop_adapt > sample_discard) assert (num_samples_Z > 0) self.sample_discard = sample_discard self.num_samples_Z = num_samples_Z self.stop_adapt = stop_adapt
def __init__(self, distribution, kernel, Z, nu2=0.1, gamma=0.1, num_eigen=10): Kameleon.__init__(self, distribution, kernel, Z, nu2, gamma) self.num_eigen = num_eigen if Z is None: self.Kc = None self.eigvalues = None self.eigvectors = None else: K = self.kernel.kernel(Z) H = Kernel.centring_matrix(len(self.Z)) self.Kc = H.dot(K.dot(H)) u, s, _ = svd(self.Kc) self.eigvalues = s[0:self.num_eigen] self.eigvectors = u[:, 0:self.num_eigen]