コード例 #1
0
def get_model(args):
    # ResNet
    if args.model.lower() == "resnet20":
        model = resnet.resnet20()
    elif args.model.lower() == "resnet32":
        model = resnet.resnet32()
    elif args.model.lower() == "resnet44":
        model = resnet.resnet44()
    elif args.model.lower() == "resnet56":
        model = resnet.resnet56()
    elif args.model.lower() == "resnet110":
        model = resnet.resnet110()

    if args.cuda:
        model.cuda()

    # Optimizer
    criterion = nn.CrossEntropyLoss()

    args.base_lr = args.base_lr * hvd.size()
    optimizer = optim.SGD(model.parameters(),
                          lr=args.base_lr,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)

    if args.use_kfac:
        KFAC = kfac.get_kfac_module(args.kfac_name)
        preconditioner = KFAC(model,
                              lr=args.base_lr,
                              factor_decay=args.stat_decay,
                              damping=args.damping,
                              kl_clip=args.kl_clip,
                              fac_update_freq=args.kfac_cov_update_freq,
                              kfac_update_freq=args.kfac_update_freq,
                              exclude_parts=args.exclude_parts)
        kfac_param_scheduler = kfac.KFACParamScheduler(
            preconditioner,
            damping_alpha=1,
            damping_schedule=None,
            update_freq_alpha=1,
            update_freq_schedule=None)
    else:
        preconditioner = None

    # Distributed Optimizer
    compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none
    optimizer = hvd.DistributedOptimizer(
        optimizer,
        named_parameters=model.named_parameters(),
        compression=compression,
        op=hvd.Average,
        backward_passes_per_step=1)

    if hvd.size() > 1:
        hvd.broadcast_optimizer_state(optimizer, root_rank=0)
        hvd.broadcast_parameters(model.state_dict(), root_rank=0)

    # Learning Rate Schedule
    lrs = create_lr_schedule(hvd.size(), args.warmup_epochs, args.lr_decay)
    lr_scheduler = [LambdaLR(optimizer, lrs)]
    if preconditioner is not None:
        lr_scheduler.append(LambdaLR(preconditioner, lrs))
        lr_scheduler.append(kfac_param_scheduler)

    return model, optimizer, preconditioner, lr_scheduler, criterion
コード例 #2
0
def main(args):
    logfilename = 'convergence_cifar10_{}_kfac{}_gpu{}_bs{}_{}_lr{}_sr{}_wp{}.log'.format(
        args.model, args.kfac_update_freq, hvd.size(), args.batch_size,
        args.kfac_name, args.base_lr, args.sparse_ratio, args.warmup_epochs)
    if hvd.rank() == 0:
        wandb.init(project='kfac',
                   entity='hkust-distributedml',
                   name=logfilename,
                   config=args)

    logfile = './logs/' + logfilename
    #logfile = './logs/sparse_cifar10_{}_kfac{}_gpu{}_bs{}.log'.format(args.model, args.kfac_update_freq, hvd.size(), args.batch_size)
    #logfile = './logs/cifar10_{}_kfac{}_gpu{}_bs{}.log'.format(args.model, args.kfac_update_freq, hvd.size(), args.batch_size)
    hdlr = logging.FileHandler(logfile)
    hdlr.setFormatter(formatter)
    logger.addHandler(hdlr)
    logger.info(args)

    torch.manual_seed(args.seed)
    verbose = True if hvd.rank() == 0 else False
    args.verbose = 1 if hvd.rank() == 0 else 0

    if args.cuda:
        torch.cuda.set_device(hvd.local_rank())
        torch.cuda.manual_seed(args.seed)

    torch.backends.cudnn.benchmark = True

    args.log_dir = os.path.join(
        args.log_dir, "cifar10_{}_kfac{}_gpu_{}_{}".format(
            args.model, args.kfac_update_freq, hvd.size(),
            datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')))
    #os.makedirs(args.log_dir, exist_ok=True)
    #log_writer = SummaryWriter(args.log_dir) if verbose else None
    log_writer = None

    # Horovod: limit # of CPU threads to be used per worker.
    torch.set_num_threads(1)

    kwargs = {'num_workers': 8, 'pin_memory': True} if args.cuda else {}

    transform_train = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465),
                             (0.2023, 0.1994, 0.2010))
    ])
    transform_test = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465),
                             (0.2023, 0.1994, 0.2010))
    ])

    download = True if hvd.local_rank() == 0 else False
    if not download: hvd.allreduce(torch.tensor(1), name="barrier")
    train_dataset = datasets.CIFAR10(root=args.dir,
                                     train=True,
                                     download=download,
                                     transform=transform_train)
    test_dataset = datasets.CIFAR10(root=args.dir,
                                    train=False,
                                    download=download,
                                    transform=transform_test)
    if download: hvd.allreduce(torch.tensor(1), name="barrier")

    # Horovod: use DistributedSampler to partition the training data.
    train_sampler = torch.utils.data.distributed.DistributedSampler(
        train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
    #train_loader = torch.utils.data.DataLoader(train_dataset,
    train_loader = MultiEpochsDataLoader(train_dataset,
                                         batch_size=args.batch_size *
                                         args.batches_per_allreduce,
                                         sampler=train_sampler,
                                         **kwargs)

    # Horovod: use DistributedSampler to partition the test data.
    test_sampler = torch.utils.data.distributed.DistributedSampler(
        test_dataset, num_replicas=hvd.size(), rank=hvd.rank())
    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=args.test_batch_size,
                                              sampler=test_sampler,
                                              **kwargs)

    if args.model.lower() == "resnet20":
        model = resnet.resnet20()
    elif args.model.lower() == "resnet32":
        model = resnet.resnet32()
    elif args.model.lower() == "resnet44":
        model = resnet.resnet44()
    elif args.model.lower() == "resnet56":
        model = resnet.resnet56()
    elif args.model.lower() == "resnet110":
        model = resnet.resnet110()

    if args.cuda:
        model.cuda()

    #if verbose:
    #    summary(model, (3, 32, 32))

    criterion = nn.CrossEntropyLoss()
    args.base_lr = args.base_lr * hvd.size()
    use_kfac = True if args.kfac_update_freq > 0 else False

    optimizer = optim.SGD(model.parameters(),
                          lr=args.base_lr,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)

    if use_kfac:
        KFAC = kfac.get_kfac_module(args.kfac_name)
        preconditioner = KFAC(
            model,
            lr=args.base_lr,
            factor_decay=args.stat_decay,
            damping=args.damping,
            kl_clip=args.kl_clip,
            fac_update_freq=args.kfac_cov_update_freq,
            kfac_update_freq=args.kfac_update_freq,
            diag_blocks=args.diag_blocks,
            diag_warmup=args.diag_warmup,
            distribute_layer_factors=args.distribute_layer_factors,
            sparse_ratio=args.sparse_ratio)
        kfac_param_scheduler = kfac.KFACParamScheduler(
            preconditioner,
            damping_alpha=args.damping_alpha,
            damping_schedule=args.damping_schedule,
            update_freq_alpha=args.kfac_update_freq_alpha,
            update_freq_schedule=args.kfac_update_freq_schedule)

    # KFAC guarentees grads are equal across ranks before opt.step() is called
    # so if we do not use kfac we need to wrap the optimizer with horovod
    compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none
    optimizer = hvd.DistributedOptimizer(
        optimizer,
        named_parameters=model.named_parameters(),
        compression=compression,
        op=hvd.Average,
        backward_passes_per_step=args.batches_per_allreduce)

    hvd.broadcast_optimizer_state(optimizer, root_rank=0)
    hvd.broadcast_parameters(model.state_dict(), root_rank=0)

    lrs = create_lr_schedule(hvd.size(), args.warmup_epochs, args.lr_decay)
    lr_scheduler = [LambdaLR(optimizer, lrs)]
    if use_kfac:
        lr_scheduler.append(LambdaLR(preconditioner, lrs))

    def train(epoch):
        model.train()
        train_sampler.set_epoch(epoch)
        train_loss = Metric('train_loss')
        train_accuracy = Metric('train_accuracy')

        if STEP_FIRST:
            for scheduler in lr_scheduler:
                scheduler.step()
            if use_kfac:
                kfac_param_scheduler.step(epoch)

    #    with tqdm(total=len(train_loader),
    #              desc='Epoch {:3d}/{:3d}'.format(epoch + 1, args.epochs),
    #              disable=not verbose) as t:
        display = 20
        avg_time = 0.0
        io_time = 0.0
        if True:
            for batch_idx, (data, target) in enumerate(train_loader):
                stime = time.time()
                if args.cuda:
                    data, target = data.cuda(non_blocking=True), target.cuda(
                        non_blocking=True)
                io_time += time.time() - stime
                optimizer.zero_grad()

                for i in range(0, len(data), args.batch_size):
                    data_batch = data[i:i + args.batch_size]
                    target_batch = target[i:i + args.batch_size]
                    output = model(data_batch)

                    loss = criterion(output, target_batch)
                    with torch.no_grad():
                        train_loss.update(loss)
                        train_accuracy.update(accuracy(output, target_batch))
                    loss.div_(math.ceil(float(len(data)) / args.batch_size))
                    loss.backward()

                optimizer.synchronize()
                if use_kfac:
                    preconditioner.step(epoch=epoch)
                with optimizer.skip_synchronize():
                    optimizer.step()

                #t.set_postfix_str("loss: {:.4f}, acc: {:.2f}%".format(
                #train_loss.avg.item(), 100*train_accuracy.avg.item()))
                #t.update(1)
                avg_time += (time.time() - stime)
                if batch_idx > 0 and batch_idx % display == 0:
                    if args.verbose:
                        logger.info(
                            "[%d][%d] train loss: %.4f, acc: %.3f, time: %.3f [io: %.3f], speed: %.3f images/s"
                            % (epoch, batch_idx, train_loss.avg.item(), 100 *
                               train_accuracy.avg.item(), avg_time / display,
                               io_time / display, args.batch_size /
                               (avg_time / display)))
                        avg_time = 0.0
                        io_time = 0.0
                if hvd.rank() == 0:
                    wandb.log({"loss": loss, "epoch": epoch})
            if args.verbose:
                logger.info("[%d] epoch train loss: %.4f, acc: %.3f" %
                            (epoch, train_loss.avg.item(),
                             100 * train_accuracy.avg.item()))

        if not STEP_FIRST:
            for scheduler in lr_scheduler:
                scheduler.step()
            if use_kfac:
                kfac_param_scheduler.step(epoch)

        if log_writer:
            log_writer.add_scalar('train/loss', train_loss.avg, epoch)
            log_writer.add_scalar('train/accuracy', train_accuracy.avg, epoch)

    def test(epoch):
        model.eval()
        test_loss = Metric('val_loss')
        test_accuracy = Metric('val_accuracy')

        #with tqdm(total=len(test_loader),
        #          bar_format='{l_bar}{bar}|{postfix}',
        #          desc='             '.format(epoch + 1, args.epochs),
        #          disable=not verbose) as t:
        if True:
            with torch.no_grad():
                for i, (data, target) in enumerate(test_loader):
                    if args.cuda:
                        data, target = data.cuda(), target.cuda()
                    output = model(data)
                    test_loss.update(criterion(output, target))
                    test_accuracy.update(accuracy(output, target))
                if args.verbose:
                    logger.info("[%d][0] evaluation loss: %.4f, acc: %.3f" %
                                (epoch, test_loss.avg.item(),
                                 100 * test_accuracy.avg.item()))
                    if hvd.rank() == 0:
                        wandb.log({
                            "val top-1 acc": test_accuracy.avg.item(),
                            "epoch": epoch
                        })

                    #t.update(1)
                    #if i + 1 == len(test_loader):
                    #    t.set_postfix_str("\b\b test_loss: {:.4f}, test_acc: {:.2f}%".format(
                    #            test_loss.avg.item(), 100*test_accuracy.avg.item()),
                    #            refresh=False)

        if log_writer:
            log_writer.add_scalar('test/loss', test_loss.avg, epoch)
            log_writer.add_scalar('test/accuracy', test_accuracy.avg, epoch)

    start = time.time()

    for epoch in range(args.epochs):
        if args.verbose:
            logger.info("[%d] epoch train starts" % (epoch))
        train(epoch)
        test(epoch)

    if verbose:
        logger.info("Training time: %s",
                    str(datetime.timedelta(seconds=time.time() - start)))

    pass
コード例 #3
0
def get_model(args):
    if args.model.lower() == 'resnet34':
        model = models.resnet34()
    elif args.model.lower() == 'resnet50':
        model = models.resnet50()
    elif args.model.lower() == 'resnet101':
        model = models.resnet101()
    elif args.model.lower() == 'resnet152':
        model = models.resnet152()
    elif args.model.lower() == 'resnext50':
        model = models.resnext50_32x4d()
    elif args.model.lower() == 'resnext101':
        model = models.resnext101_32x8d()
    else:
        raise ValueError('Unknown model \'{}\''.format(args.model))

    if args.cuda:
        model.cuda()

    # Horovod: scale learning rate by the number of GPUs.
    args.base_lr = args.base_lr * hvd.size() * args.batches_per_allreduce
    optimizer = optim.SGD(model.parameters(),
                          lr=args.base_lr,
                          momentum=args.momentum,
                          weight_decay=args.wd)

    if args.kfac_update_freq > 0:
        KFAC = kfac.get_kfac_module(args.kfac_name)
        preconditioner = KFAC(
            model,
            lr=args.base_lr,
            factor_decay=args.stat_decay,
            damping=args.damping,
            kl_clip=args.kl_clip,
            fac_update_freq=args.kfac_cov_update_freq,
            kfac_update_freq=args.kfac_update_freq,
            diag_blocks=args.diag_blocks,
            diag_warmup=args.diag_warmup,
            distribute_layer_factors=args.distribute_layer_factors,
            exclude_parts=args.exclude_parts)
        kfac_param_scheduler = kfac.KFACParamScheduler(
            preconditioner,
            damping_alpha=args.damping_alpha,
            damping_schedule=args.damping_decay,
            update_freq_alpha=args.kfac_update_freq_alpha,
            update_freq_schedule=args.kfac_update_freq_decay,
            start_epoch=args.resume_from_epoch)
    else:
        preconditioner = None

    compression = hvd.Compression.fp16 if args.fp16_allreduce \
                                       else hvd.Compression.none
    optimizer = hvd.DistributedOptimizer(
        optimizer,
        named_parameters=model.named_parameters(),
        compression=compression,
        op=hvd.Average,
        backward_passes_per_step=args.batches_per_allreduce)

    # Restore from a previous checkpoint, if initial_epoch is specified.
    # Horovod: restore on the first worker which will broadcast weights
    # to other workers.
    if args.resume_from_epoch > 0 and hvd.rank() == 0:
        filepath = args.checkpoint_format.format(epoch=args.resume_from_epoch)
        checkpoint = torch.load(filepath)
        model.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])

    # Horovod: broadcast parameters & optimizer state.
    if hvd.size() > 1:
        hvd.broadcast_parameters(model.state_dict(), root_rank=0)
        hvd.broadcast_optimizer_state(optimizer, root_rank=0)

    lrs = create_lr_schedule(hvd.size(), args.warmup_epochs, args.lr_decay)
    lr_scheduler = [LambdaLR(optimizer, lrs)]
    if preconditioner is not None:
        lr_scheduler.append(LambdaLR(preconditioner, lrs))
        lr_scheduler.append(kfac_param_scheduler)

    loss_func = LabelSmoothLoss(args.label_smoothing)

    return model, optimizer, preconditioner, lr_scheduler, lrs, loss_func