def get_model(args): # ResNet if args.model.lower() == "resnet20": model = resnet.resnet20() elif args.model.lower() == "resnet32": model = resnet.resnet32() elif args.model.lower() == "resnet44": model = resnet.resnet44() elif args.model.lower() == "resnet56": model = resnet.resnet56() elif args.model.lower() == "resnet110": model = resnet.resnet110() if args.cuda: model.cuda() # Optimizer criterion = nn.CrossEntropyLoss() args.base_lr = args.base_lr * hvd.size() optimizer = optim.SGD(model.parameters(), lr=args.base_lr, momentum=args.momentum, weight_decay=args.weight_decay) if args.use_kfac: KFAC = kfac.get_kfac_module(args.kfac_name) preconditioner = KFAC(model, lr=args.base_lr, factor_decay=args.stat_decay, damping=args.damping, kl_clip=args.kl_clip, fac_update_freq=args.kfac_cov_update_freq, kfac_update_freq=args.kfac_update_freq, exclude_parts=args.exclude_parts) kfac_param_scheduler = kfac.KFACParamScheduler( preconditioner, damping_alpha=1, damping_schedule=None, update_freq_alpha=1, update_freq_schedule=None) else: preconditioner = None # Distributed Optimizer compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none optimizer = hvd.DistributedOptimizer( optimizer, named_parameters=model.named_parameters(), compression=compression, op=hvd.Average, backward_passes_per_step=1) if hvd.size() > 1: hvd.broadcast_optimizer_state(optimizer, root_rank=0) hvd.broadcast_parameters(model.state_dict(), root_rank=0) # Learning Rate Schedule lrs = create_lr_schedule(hvd.size(), args.warmup_epochs, args.lr_decay) lr_scheduler = [LambdaLR(optimizer, lrs)] if preconditioner is not None: lr_scheduler.append(LambdaLR(preconditioner, lrs)) lr_scheduler.append(kfac_param_scheduler) return model, optimizer, preconditioner, lr_scheduler, criterion
def main(args): logfilename = 'convergence_cifar10_{}_kfac{}_gpu{}_bs{}_{}_lr{}_sr{}_wp{}.log'.format( args.model, args.kfac_update_freq, hvd.size(), args.batch_size, args.kfac_name, args.base_lr, args.sparse_ratio, args.warmup_epochs) if hvd.rank() == 0: wandb.init(project='kfac', entity='hkust-distributedml', name=logfilename, config=args) logfile = './logs/' + logfilename #logfile = './logs/sparse_cifar10_{}_kfac{}_gpu{}_bs{}.log'.format(args.model, args.kfac_update_freq, hvd.size(), args.batch_size) #logfile = './logs/cifar10_{}_kfac{}_gpu{}_bs{}.log'.format(args.model, args.kfac_update_freq, hvd.size(), args.batch_size) hdlr = logging.FileHandler(logfile) hdlr.setFormatter(formatter) logger.addHandler(hdlr) logger.info(args) torch.manual_seed(args.seed) verbose = True if hvd.rank() == 0 else False args.verbose = 1 if hvd.rank() == 0 else 0 if args.cuda: torch.cuda.set_device(hvd.local_rank()) torch.cuda.manual_seed(args.seed) torch.backends.cudnn.benchmark = True args.log_dir = os.path.join( args.log_dir, "cifar10_{}_kfac{}_gpu_{}_{}".format( args.model, args.kfac_update_freq, hvd.size(), datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))) #os.makedirs(args.log_dir, exist_ok=True) #log_writer = SummaryWriter(args.log_dir) if verbose else None log_writer = None # Horovod: limit # of CPU threads to be used per worker. torch.set_num_threads(1) kwargs = {'num_workers': 8, 'pin_memory': True} if args.cuda else {} transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) ]) download = True if hvd.local_rank() == 0 else False if not download: hvd.allreduce(torch.tensor(1), name="barrier") train_dataset = datasets.CIFAR10(root=args.dir, train=True, download=download, transform=transform_train) test_dataset = datasets.CIFAR10(root=args.dir, train=False, download=download, transform=transform_test) if download: hvd.allreduce(torch.tensor(1), name="barrier") # Horovod: use DistributedSampler to partition the training data. train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset, num_replicas=hvd.size(), rank=hvd.rank()) #train_loader = torch.utils.data.DataLoader(train_dataset, train_loader = MultiEpochsDataLoader(train_dataset, batch_size=args.batch_size * args.batches_per_allreduce, sampler=train_sampler, **kwargs) # Horovod: use DistributedSampler to partition the test data. test_sampler = torch.utils.data.distributed.DistributedSampler( test_dataset, num_replicas=hvd.size(), rank=hvd.rank()) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.test_batch_size, sampler=test_sampler, **kwargs) if args.model.lower() == "resnet20": model = resnet.resnet20() elif args.model.lower() == "resnet32": model = resnet.resnet32() elif args.model.lower() == "resnet44": model = resnet.resnet44() elif args.model.lower() == "resnet56": model = resnet.resnet56() elif args.model.lower() == "resnet110": model = resnet.resnet110() if args.cuda: model.cuda() #if verbose: # summary(model, (3, 32, 32)) criterion = nn.CrossEntropyLoss() args.base_lr = args.base_lr * hvd.size() use_kfac = True if args.kfac_update_freq > 0 else False optimizer = optim.SGD(model.parameters(), lr=args.base_lr, momentum=args.momentum, weight_decay=args.weight_decay) if use_kfac: KFAC = kfac.get_kfac_module(args.kfac_name) preconditioner = KFAC( model, lr=args.base_lr, factor_decay=args.stat_decay, damping=args.damping, kl_clip=args.kl_clip, fac_update_freq=args.kfac_cov_update_freq, kfac_update_freq=args.kfac_update_freq, diag_blocks=args.diag_blocks, diag_warmup=args.diag_warmup, distribute_layer_factors=args.distribute_layer_factors, sparse_ratio=args.sparse_ratio) kfac_param_scheduler = kfac.KFACParamScheduler( preconditioner, damping_alpha=args.damping_alpha, damping_schedule=args.damping_schedule, update_freq_alpha=args.kfac_update_freq_alpha, update_freq_schedule=args.kfac_update_freq_schedule) # KFAC guarentees grads are equal across ranks before opt.step() is called # so if we do not use kfac we need to wrap the optimizer with horovod compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none optimizer = hvd.DistributedOptimizer( optimizer, named_parameters=model.named_parameters(), compression=compression, op=hvd.Average, backward_passes_per_step=args.batches_per_allreduce) hvd.broadcast_optimizer_state(optimizer, root_rank=0) hvd.broadcast_parameters(model.state_dict(), root_rank=0) lrs = create_lr_schedule(hvd.size(), args.warmup_epochs, args.lr_decay) lr_scheduler = [LambdaLR(optimizer, lrs)] if use_kfac: lr_scheduler.append(LambdaLR(preconditioner, lrs)) def train(epoch): model.train() train_sampler.set_epoch(epoch) train_loss = Metric('train_loss') train_accuracy = Metric('train_accuracy') if STEP_FIRST: for scheduler in lr_scheduler: scheduler.step() if use_kfac: kfac_param_scheduler.step(epoch) # with tqdm(total=len(train_loader), # desc='Epoch {:3d}/{:3d}'.format(epoch + 1, args.epochs), # disable=not verbose) as t: display = 20 avg_time = 0.0 io_time = 0.0 if True: for batch_idx, (data, target) in enumerate(train_loader): stime = time.time() if args.cuda: data, target = data.cuda(non_blocking=True), target.cuda( non_blocking=True) io_time += time.time() - stime optimizer.zero_grad() for i in range(0, len(data), args.batch_size): data_batch = data[i:i + args.batch_size] target_batch = target[i:i + args.batch_size] output = model(data_batch) loss = criterion(output, target_batch) with torch.no_grad(): train_loss.update(loss) train_accuracy.update(accuracy(output, target_batch)) loss.div_(math.ceil(float(len(data)) / args.batch_size)) loss.backward() optimizer.synchronize() if use_kfac: preconditioner.step(epoch=epoch) with optimizer.skip_synchronize(): optimizer.step() #t.set_postfix_str("loss: {:.4f}, acc: {:.2f}%".format( #train_loss.avg.item(), 100*train_accuracy.avg.item())) #t.update(1) avg_time += (time.time() - stime) if batch_idx > 0 and batch_idx % display == 0: if args.verbose: logger.info( "[%d][%d] train loss: %.4f, acc: %.3f, time: %.3f [io: %.3f], speed: %.3f images/s" % (epoch, batch_idx, train_loss.avg.item(), 100 * train_accuracy.avg.item(), avg_time / display, io_time / display, args.batch_size / (avg_time / display))) avg_time = 0.0 io_time = 0.0 if hvd.rank() == 0: wandb.log({"loss": loss, "epoch": epoch}) if args.verbose: logger.info("[%d] epoch train loss: %.4f, acc: %.3f" % (epoch, train_loss.avg.item(), 100 * train_accuracy.avg.item())) if not STEP_FIRST: for scheduler in lr_scheduler: scheduler.step() if use_kfac: kfac_param_scheduler.step(epoch) if log_writer: log_writer.add_scalar('train/loss', train_loss.avg, epoch) log_writer.add_scalar('train/accuracy', train_accuracy.avg, epoch) def test(epoch): model.eval() test_loss = Metric('val_loss') test_accuracy = Metric('val_accuracy') #with tqdm(total=len(test_loader), # bar_format='{l_bar}{bar}|{postfix}', # desc=' '.format(epoch + 1, args.epochs), # disable=not verbose) as t: if True: with torch.no_grad(): for i, (data, target) in enumerate(test_loader): if args.cuda: data, target = data.cuda(), target.cuda() output = model(data) test_loss.update(criterion(output, target)) test_accuracy.update(accuracy(output, target)) if args.verbose: logger.info("[%d][0] evaluation loss: %.4f, acc: %.3f" % (epoch, test_loss.avg.item(), 100 * test_accuracy.avg.item())) if hvd.rank() == 0: wandb.log({ "val top-1 acc": test_accuracy.avg.item(), "epoch": epoch }) #t.update(1) #if i + 1 == len(test_loader): # t.set_postfix_str("\b\b test_loss: {:.4f}, test_acc: {:.2f}%".format( # test_loss.avg.item(), 100*test_accuracy.avg.item()), # refresh=False) if log_writer: log_writer.add_scalar('test/loss', test_loss.avg, epoch) log_writer.add_scalar('test/accuracy', test_accuracy.avg, epoch) start = time.time() for epoch in range(args.epochs): if args.verbose: logger.info("[%d] epoch train starts" % (epoch)) train(epoch) test(epoch) if verbose: logger.info("Training time: %s", str(datetime.timedelta(seconds=time.time() - start))) pass
def get_model(args): if args.model.lower() == 'resnet34': model = models.resnet34() elif args.model.lower() == 'resnet50': model = models.resnet50() elif args.model.lower() == 'resnet101': model = models.resnet101() elif args.model.lower() == 'resnet152': model = models.resnet152() elif args.model.lower() == 'resnext50': model = models.resnext50_32x4d() elif args.model.lower() == 'resnext101': model = models.resnext101_32x8d() else: raise ValueError('Unknown model \'{}\''.format(args.model)) if args.cuda: model.cuda() # Horovod: scale learning rate by the number of GPUs. args.base_lr = args.base_lr * hvd.size() * args.batches_per_allreduce optimizer = optim.SGD(model.parameters(), lr=args.base_lr, momentum=args.momentum, weight_decay=args.wd) if args.kfac_update_freq > 0: KFAC = kfac.get_kfac_module(args.kfac_name) preconditioner = KFAC( model, lr=args.base_lr, factor_decay=args.stat_decay, damping=args.damping, kl_clip=args.kl_clip, fac_update_freq=args.kfac_cov_update_freq, kfac_update_freq=args.kfac_update_freq, diag_blocks=args.diag_blocks, diag_warmup=args.diag_warmup, distribute_layer_factors=args.distribute_layer_factors, exclude_parts=args.exclude_parts) kfac_param_scheduler = kfac.KFACParamScheduler( preconditioner, damping_alpha=args.damping_alpha, damping_schedule=args.damping_decay, update_freq_alpha=args.kfac_update_freq_alpha, update_freq_schedule=args.kfac_update_freq_decay, start_epoch=args.resume_from_epoch) else: preconditioner = None compression = hvd.Compression.fp16 if args.fp16_allreduce \ else hvd.Compression.none optimizer = hvd.DistributedOptimizer( optimizer, named_parameters=model.named_parameters(), compression=compression, op=hvd.Average, backward_passes_per_step=args.batches_per_allreduce) # Restore from a previous checkpoint, if initial_epoch is specified. # Horovod: restore on the first worker which will broadcast weights # to other workers. if args.resume_from_epoch > 0 and hvd.rank() == 0: filepath = args.checkpoint_format.format(epoch=args.resume_from_epoch) checkpoint = torch.load(filepath) model.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optimizer']) # Horovod: broadcast parameters & optimizer state. if hvd.size() > 1: hvd.broadcast_parameters(model.state_dict(), root_rank=0) hvd.broadcast_optimizer_state(optimizer, root_rank=0) lrs = create_lr_schedule(hvd.size(), args.warmup_epochs, args.lr_decay) lr_scheduler = [LambdaLR(optimizer, lrs)] if preconditioner is not None: lr_scheduler.append(LambdaLR(preconditioner, lrs)) lr_scheduler.append(kfac_param_scheduler) loss_func = LabelSmoothLoss(args.label_smoothing) return model, optimizer, preconditioner, lr_scheduler, lrs, loss_func