def __init__(self, incoming, num_filters, filter_size, stride=(1, 1, 1), crop=0, untie_biases=False, W=lasagne.init.GlorotUniform(), b=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, flip_filters=False, output_size=None, **kwargs): # output_size must be set before calling the super constructor if (not isinstance(output_size, T.Variable) and output_size is not None): output_size = as_tuple(output_size, 3, int) self.output_size = output_size BaseConvLayer.__init__(self, incoming, num_filters, filter_size, stride, crop, untie_biases, W, b, nonlinearity, flip_filters, n=3, **kwargs) # rename self.pad to self.crop: #if crop is None: self.crop = self.pad del self.pad
def __init__(self, incoming, num_filters, filter_size, stride=(1, 1, 1), pad=0, untie_biases=False, W=init.GlorotUniform(), b=init.Constant(0.), nonlinearity=nonlinearities.rectify, flip_filters=True, convolution=T.nnet.conv3d, **kwargs): BaseConvLayer.__init__(self, incoming, num_filters, filter_size, stride, pad, untie_biases, W, b, nonlinearity, flip_filters, n=3, **kwargs) self.convolution = convolution