def __init__(self,
              incoming,
              num_filters,
              filter_size,
              stride=(1, 1, 1),
              crop=0,
              untie_biases=False,
              W=lasagne.init.GlorotUniform(),
              b=lasagne.init.Constant(0.),
              nonlinearity=lasagne.nonlinearities.rectify,
              flip_filters=False,
              output_size=None,
              **kwargs):
     # output_size must be set before calling the super constructor
     if (not isinstance(output_size, T.Variable)
             and output_size is not None):
         output_size = as_tuple(output_size, 3, int)
     self.output_size = output_size
     BaseConvLayer.__init__(self,
                            incoming,
                            num_filters,
                            filter_size,
                            stride,
                            crop,
                            untie_biases,
                            W,
                            b,
                            nonlinearity,
                            flip_filters,
                            n=3,
                            **kwargs)
     # rename self.pad to self.crop:
     #if crop is None:
     self.crop = self.pad
     del self.pad
示例#2
0
 def __init__(self,
              incoming,
              num_filters,
              filter_size,
              stride=(1, 1, 1),
              pad=0,
              untie_biases=False,
              W=init.GlorotUniform(),
              b=init.Constant(0.),
              nonlinearity=nonlinearities.rectify,
              flip_filters=True,
              convolution=T.nnet.conv3d,
              **kwargs):
     BaseConvLayer.__init__(self,
                            incoming,
                            num_filters,
                            filter_size,
                            stride,
                            pad,
                            untie_biases,
                            W,
                            b,
                            nonlinearity,
                            flip_filters,
                            n=3,
                            **kwargs)
     self.convolution = convolution
示例#3
0
 def __init__(self, incoming, num_filters, filter_size, stride=(1, 1, 1),
              pad=0, untie_biases=False,
              W=init.GlorotUniform(), b=init.Constant(0.),
              nonlinearity=nonlinearities.rectify, flip_filters=True,
              convolution=T.nnet.conv3d, **kwargs):
     BaseConvLayer.__init__(self, incoming, num_filters, filter_size,
                                       stride, pad, untie_biases, W, b,
                                       nonlinearity, flip_filters, n=3,
                                       **kwargs)
     self.convolution = convolution