def main(): parser = argparse.ArgumentParser() parser.add_argument('--build-sample', action='store_true', help='Build the sample.') parser.add_argument('--jpg-cutouts', action='store_true', help='Get jpg cutouts from the viewer.') parser.add_argument('--ccd-cutouts', action='store_true', help='Get CCD cutouts of each galaxy.') parser.add_argument('--runbrick', action='store_true', help='Run the pipeline.') parser.add_argument('--build-webpage', action='store_true', help='(Re)build the web content.') args = parser.parse_args() # Top-level directory key = 'LEGACY_SURVEY_LARGE_GALAXIES' if key not in os.environ: print('Required ${} environment variable not set'.format(key)) return 0 largedir = os.getenv(key) samplefile = os.path.join(largedir, 'large-galaxies-sample.fits') # -------------------------------------------------- # Build the sample of large galaxies based on the available imaging. if args.build_sample: # Read the parent catalog. cat = read_rc3() # Create a simple WCS object for each object and find all the CCDs # touching that WCS footprint. survey = LegacySurveyData(version='dr2') # hack! allccds = survey.get_ccds() keep = np.concatenate((survey.apply_blacklist(allccds), survey.photometric_ccds(allccds))) allccds.cut(keep) ccdlist = [] outcat = [] for gal in cat: galwcs = _simplewcs(gal) ccds1 = allccds[ccds_touching_wcs(galwcs, allccds)] ccds1 = ccds1[_uniqccds(ccds1)] if len( ccds1 ) > 0 and 'g' in ccds1.filter and 'r' in ccds1.filter and 'z' in ccds1.filter: print('Found {} CCDs for {}, D(25)={:.4f}'.format( len(ccds1), gal['GALAXY'], gal['RADIUS'])) ccdsfile = os.path.join( largedir, 'ccds', '{}-ccds.fits'.format(gal['GALAXY'].strip().lower())) print(' Writing {}'.format(ccdsfile)) if os.path.isfile(ccdsfile): os.remove(ccdsfile) ccds1.writeto(ccdsfile) ccdlist.append(ccds1) if len(outcat) == 0: outcat = gal else: outcat = vstack((outcat, gal)) #if gal['GALAXY'] == 'MCG5-19-36': # pdb.set_trace() # Write out the final catalog. samplefile = os.path.join(largedir, 'large-galaxies-sample.fits') if os.path.isfile(samplefile): os.remove(samplefile) print('Writing {}'.format(samplefile)) outcat.write(samplefile) print(outcat) # Do we need to transfer any of the data to nyx? _getfiles(merge_tables(ccdlist)) # -------------------------------------------------- # Get data, model, and residual cutouts from the legacysurvey viewer. Also # get thumbnails that are lower resolution. if args.jpg_cutouts: thumbsize = 100 sample = fits.getdata(samplefile, 1) for gal in sample: size = np.ceil(10 * gal['RADIUS'] / PIXSCALE) thumbpixscale = PIXSCALE * size / thumbsize #imageurl = 'http://legacysurvey.org/viewer/jpeg-cutout-decals-dr2?ra={:.6f}&dec={:.6f}'.format(gal['RA'], gal['DEC'])+\ # '&pixscale={:.3f}&size={:g}'.format(PIXSCALE, size) #imagejpg = os.path.join(largedir, 'cutouts', gal['GALAXY'].strip().lower()+'-image.jpg') #if os.path.isfile(imagejpg): # os.remove(imagejpg) #os.system('wget --continue -O {:s} "{:s}"' .format(imagejpg, imageurl)) thumburl = 'http://legacysurvey.org/viewer/jpeg-cutout-decals-dr2?ra={:.6f}&dec={:.6f}'.format(gal['RA'], gal['DEC'])+\ '&pixscale={:.3f}&size={:g}'.format(thumbpixscale, thumbsize) thumbjpg = os.path.join( largedir, 'cutouts', gal['GALAXY'].strip().lower() + '-image-thumb.jpg') if os.path.isfile(thumbjpg): os.remove(thumbjpg) os.system('wget --continue -O {:s} "{:s}"'.format( thumbjpg, thumburl)) # -------------------------------------------------- # (Re)build the webpage. if args.build_webpage: # index.html html = open(os.path.join(largedir, 'index.html'), 'w') html.write('<html><body>\n') html.write('<h1>Sample of Large Galaxies</h1>\n') html.write('<table border="2" width="30%">\n') html.write('<tbody>\n') sample = fits.getdata(samplefile, 1) for gal in sample: # Add coordinates and sizes here. galaxy = gal['GALAXY'].strip().lower() html.write('<tr>\n') html.write('<td><a href="html/{}.html">{}</a></td>\n'.format( galaxy, galaxy.upper())) html.write( '<td><a href="http://legacysurvey.org/viewer/?ra={:.6f}&dec={:.6f}" target="_blank"><img src=cutouts/{}-image-thumb.jpg alt={} /></a></td>\n' .format(gal['RA'], gal['DEC'], galaxy, galaxy.upper())) # html.write('<td><a href="html/{}.html"><img src=cutouts/{}-image-thumb.jpg alt={} /></a></td>\n'.format(galaxy, galaxy, galaxy.upper())) html.write('</tr>\n') html.write('</tbody>\n') html.write('</table>\n') html.write('</body></html>\n') html.close() sys.exit(1) # individual galaxy pages for gal in sample[:3]: galaxy = gal['GALAXY'].strip().lower() html = open(os.path.join(largedir, 'html/{}.html'.format(galaxy)), 'w') html.write('<html><body>\n') html.write( '<a href=../cutouts/{}.jpg><img src=../cutouts/{}-image.jpg alt={} /></a>\n' .format(galaxy, galaxy, galaxy, galaxy.upper())) html.write('</body></html>\n') html.close() # -------------------------------------------------- # Get cutouts of all the CCDs for each galaxy. if args.ccd_cutouts: sample = fits.getdata(samplefile, 1) for gal in sample[1:2]: galaxy = gal['GALAXY'].strip().lower() ccdsfile = os.path.join(largedir, 'ccds', '{}-ccds.fits'.format(galaxy)) ccds = fits.getdata(ccdsfile) pdb.set_trace() # -------------------------------------------------- # Run the pipeline. if args.runbrick: sample = fits.getdata(samplefile, 1) for gal in sample[1:2]: galaxy = gal['GALAXY'].strip().lower() diam = 10 * np.ceil(gal['RADIUS'] / PIXSCALE).astype( 'int16') # [pixels] # Note: zoom is relative to the center of an imaginary brick with # dimensions (0, 3600, 0, 3600). survey = LegacySurveyData(version='dr2', output_dir=largedir) run_brick(None, survey, radec=(gal['RA'], gal['DEC']), blobxy=zip([diam / 2], [diam / 2]), threads=1, zoom=(1800 - diam / 2, 1800 + diam / 2, 1800 - diam / 2, 1800 + diam / 2), wise=False, forceAll=True, writePickles=False, do_calibs=False, write_metrics=False, pixPsf=True, splinesky=True, early_coadds=True, stages=['writecat'], ceres=False) pdb.set_trace()
def main(): parser = argparse.ArgumentParser() parser.add_argument('--build-sample', action='store_true', help='Build the sample.') parser.add_argument('--jpg-cutouts', action='store_true', help='Get jpg cutouts from the viewer.') parser.add_argument('--ccd-cutouts', action='store_true', help='Get CCD cutouts of each galaxy.') parser.add_argument('--runbrick', action='store_true', help='Run the pipeline.') parser.add_argument('--build-webpage', action='store_true', help='(Re)build the web content.') args = parser.parse_args() # Top-level directory key = 'LEGACY_SURVEY_LARGE_GALAXIES' if key not in os.environ: print('Required ${} environment variable not set'.format(key)) return 0 largedir = os.getenv(key) samplefile = os.path.join(largedir, 'large-galaxies-sample.fits') # -------------------------------------------------- # Build the sample of large galaxies based on the available imaging. if args.build_sample: # Read the parent catalog. cat = read_rc3() # Create a simple WCS object for each object and find all the CCDs # touching that WCS footprint. survey = LegacySurveyData(version='dr2') # hack! allccds = survey.get_ccds() keep = np.concatenate((survey.apply_blacklist(allccds), survey.photometric_ccds(allccds))) allccds.cut(keep) ccdlist = [] outcat = [] for gal in cat: galwcs = _simplewcs(gal) ccds1 = allccds[ccds_touching_wcs(galwcs, allccds)] ccds1 = ccds1[_uniqccds(ccds1)] if len(ccds1) > 0 and 'g' in ccds1.filter and 'r' in ccds1.filter and 'z' in ccds1.filter: print('Found {} CCDs for {}, D(25)={:.4f}'.format( len(ccds1), gal['GALAXY'], gal['RADIUS'])) ccdsfile = os.path.join(largedir, 'ccds', '{}-ccds.fits'.format(gal['GALAXY'].strip().lower())) print(' Writing {}'.format(ccdsfile)) if os.path.isfile(ccdsfile): os.remove(ccdsfile) ccds1.writeto(ccdsfile) ccdlist.append(ccds1) if len(outcat) == 0: outcat = gal else: outcat = vstack((outcat, gal)) #if gal['GALAXY'] == 'MCG5-19-36': # pdb.set_trace() # Write out the final catalog. samplefile = os.path.join(largedir, 'large-galaxies-sample.fits') if os.path.isfile(samplefile): os.remove(samplefile) print('Writing {}'.format(samplefile)) outcat.write(samplefile) print(outcat) # Do we need to transfer any of the data to nyx? _getfiles(merge_tables(ccdlist)) # -------------------------------------------------- # Get data, model, and residual cutouts from the legacysurvey viewer. Also # get thumbnails that are lower resolution. if args.jpg_cutouts: thumbsize = 100 sample = fits.getdata(samplefile, 1) for gal in sample: size = np.ceil(10*gal['RADIUS']/PIXSCALE) thumbpixscale = PIXSCALE*size/thumbsize #imageurl = 'http://legacysurvey.org/viewer/jpeg-cutout-decals-dr2?ra={:.6f}&dec={:.6f}'.format(gal['RA'], gal['DEC'])+\ # '&pixscale={:.3f}&size={:g}'.format(PIXSCALE, size) #imagejpg = os.path.join(largedir, 'cutouts', gal['GALAXY'].strip().lower()+'-image.jpg') #if os.path.isfile(imagejpg): # os.remove(imagejpg) #os.system('wget --continue -O {:s} "{:s}"' .format(imagejpg, imageurl)) thumburl = 'http://legacysurvey.org/viewer/jpeg-cutout-decals-dr2?ra={:.6f}&dec={:.6f}'.format(gal['RA'], gal['DEC'])+\ '&pixscale={:.3f}&size={:g}'.format(thumbpixscale, thumbsize) thumbjpg = os.path.join(largedir, 'cutouts', gal['GALAXY'].strip().lower()+'-image-thumb.jpg') if os.path.isfile(thumbjpg): os.remove(thumbjpg) os.system('wget --continue -O {:s} "{:s}"' .format(thumbjpg, thumburl)) # -------------------------------------------------- # (Re)build the webpage. if args.build_webpage: # index.html html = open(os.path.join(largedir, 'index.html'), 'w') html.write('<html><body>\n') html.write('<h1>Sample of Large Galaxies</h1>\n') html.write('<table border="2" width="30%">\n') html.write('<tbody>\n') sample = fits.getdata(samplefile, 1) for gal in sample: # Add coordinates and sizes here. galaxy = gal['GALAXY'].strip().lower() html.write('<tr>\n') html.write('<td><a href="html/{}.html">{}</a></td>\n'.format(galaxy, galaxy.upper())) html.write('<td><a href="http://legacysurvey.org/viewer/?ra={:.6f}&dec={:.6f}" target="_blank"><img src=cutouts/{}-image-thumb.jpg alt={} /></a></td>\n'.format(gal['RA'], gal['DEC'], galaxy, galaxy.upper())) # html.write('<td><a href="html/{}.html"><img src=cutouts/{}-image-thumb.jpg alt={} /></a></td>\n'.format(galaxy, galaxy, galaxy.upper())) html.write('</tr>\n') html.write('</tbody>\n') html.write('</table>\n') html.write('</body></html>\n') html.close() sys.exit(1) # individual galaxy pages for gal in sample[:3]: galaxy = gal['GALAXY'].strip().lower() html = open(os.path.join(largedir, 'html/{}.html'.format(galaxy)), 'w') html.write('<html><body>\n') html.write('<a href=../cutouts/{}.jpg><img src=../cutouts/{}-image.jpg alt={} /></a>\n'.format(galaxy, galaxy, galaxy, galaxy.upper())) html.write('</body></html>\n') html.close() # -------------------------------------------------- # Get cutouts of all the CCDs for each galaxy. if args.ccd_cutouts: sample = fits.getdata(samplefile, 1) for gal in sample[1:2]: galaxy = gal['GALAXY'].strip().lower() ccdsfile = os.path.join(largedir, 'ccds', '{}-ccds.fits'.format(galaxy)) ccds = fits.getdata(ccdsfile) pdb.set_trace() # -------------------------------------------------- # Run the pipeline. if args.runbrick: sample = fits.getdata(samplefile, 1) for gal in sample[1:2]: galaxy = gal['GALAXY'].strip().lower() diam = 10*np.ceil(gal['RADIUS']/PIXSCALE).astype('int16') # [pixels] # Note: zoom is relative to the center of an imaginary brick with # dimensions (0, 3600, 0, 3600). survey = LegacySurveyData(version='dr2', output_dir=largedir) run_brick(None, survey, radec=(gal['RA'], gal['DEC']), blobxy=zip([diam/2], [diam/2]), threads=1, zoom=(1800-diam/2, 1800+diam/2, 1800-diam/2, 1800+diam/2), wise=False, forceAll=True, writePickles=False, do_calibs=False, write_metrics=False, pixPsf=True, splinesky=True, early_coadds=True, stages=['writecat'], ceres=False) pdb.set_trace()
def main(outfn='ccds-annotated.fits', ccds=None): survey = LegacySurveyData(ccds=ccds) if ccds is None: ccds = survey.get_ccds() # File from the "observing" svn repo: # https://desi.lbl.gov/svn/decam/code/observing/trunk tiles = fits_table('decam-tiles_obstatus.fits') I = survey.photometric_ccds(ccds) ccds.photometric = np.zeros(len(ccds), bool) ccds.photometric[I] = True I = survey.apply_blacklist(ccds) ccds.blacklist_ok = np.zeros(len(ccds), bool) ccds.blacklist_ok[I] = True ccds.good_region = np.empty((len(ccds), 4), np.int16) ccds.good_region[:,:] = -1 ccds.ra0 = np.zeros(len(ccds), np.float64) ccds.dec0 = np.zeros(len(ccds), np.float64) ccds.ra1 = np.zeros(len(ccds), np.float64) ccds.dec1 = np.zeros(len(ccds), np.float64) ccds.ra2 = np.zeros(len(ccds), np.float64) ccds.dec2 = np.zeros(len(ccds), np.float64) ccds.ra3 = np.zeros(len(ccds), np.float64) ccds.dec3 = np.zeros(len(ccds), np.float64) ccds.dra = np.zeros(len(ccds), np.float32) ccds.ddec = np.zeros(len(ccds), np.float32) ccds.ra_center = np.zeros(len(ccds), np.float64) ccds.dec_center = np.zeros(len(ccds), np.float64) ccds.sig1 = np.zeros(len(ccds), np.float32) ccds.meansky = np.zeros(len(ccds), np.float32) ccds.stdsky = np.zeros(len(ccds), np.float32) ccds.maxsky = np.zeros(len(ccds), np.float32) ccds.minsky = np.zeros(len(ccds), np.float32) ccds.pixscale_mean = np.zeros(len(ccds), np.float32) ccds.pixscale_std = np.zeros(len(ccds), np.float32) ccds.pixscale_max = np.zeros(len(ccds), np.float32) ccds.pixscale_min = np.zeros(len(ccds), np.float32) ccds.psfnorm_mean = np.zeros(len(ccds), np.float32) ccds.psfnorm_std = np.zeros(len(ccds), np.float32) ccds.galnorm_mean = np.zeros(len(ccds), np.float32) ccds.galnorm_std = np.zeros(len(ccds), np.float32) gaussgalnorm = np.zeros(len(ccds), np.float32) # 2nd moments ccds.psf_mx2 = np.zeros(len(ccds), np.float32) ccds.psf_my2 = np.zeros(len(ccds), np.float32) ccds.psf_mxy = np.zeros(len(ccds), np.float32) # ccds.psf_a = np.zeros(len(ccds), np.float32) ccds.psf_b = np.zeros(len(ccds), np.float32) ccds.psf_theta = np.zeros(len(ccds), np.float32) ccds.psf_ell = np.zeros(len(ccds), np.float32) ccds.humidity = np.zeros(len(ccds), np.float32) ccds.outtemp = np.zeros(len(ccds), np.float32) ccds.tileid = np.zeros(len(ccds), np.int32) ccds.tilepass = np.zeros(len(ccds), np.uint8) ccds.tileebv = np.zeros(len(ccds), np.float32) plvers = [] for iccd,ccd in enumerate(ccds): im = survey.get_image_object(ccd) print('Reading CCD %i of %i:' % (iccd+1, len(ccds)), im) X = im.get_good_image_subregion() for i,x in enumerate(X): if x is not None: ccds.good_region[iccd,i] = x W,H = ccd.width, ccd.height psf = None wcs = None sky = None try: tim = im.get_tractor_image(pixPsf=True, splinesky=True, subsky=False, pixels=False, dq=False, invvar=False) except: import traceback traceback.print_exc() plvers.append('') continue if tim is None: plvers.append('') continue psf = tim.psf wcs = tim.wcs.wcs sky = tim.sky hdr = tim.primhdr # print('Got PSF', psf) # print('Got sky', type(sky)) # print('Got WCS', wcs) ccds.humidity[iccd] = hdr.get('HUMIDITY') ccds.outtemp[iccd] = hdr.get('OUTTEMP') ccds.sig1[iccd] = tim.sig1 plvers.append(tim.plver) # parse 'DECaLS_15150_r' to get tile number obj = ccd.object.strip() words = obj.split('_') tile = None if len(words) == 3 and words[0] == 'DECaLS': try: tileid = int(words[1]) tile = tiles[tileid - 1] if tile.tileid != tileid: I = np.flatnonzero(tile.tileid == tileid) tile = tiles[I[0]] except: pass if tile is not None: ccds.tileid [iccd] = tile.tileid ccds.tilepass[iccd] = tile.get('pass') ccds.tileebv [iccd] = tile.ebv_med # Instantiate PSF on a grid S = 32 xx = np.linspace(1+S, W-S, 5) yy = np.linspace(1+S, H-S, 5) xx,yy = np.meshgrid(xx, yy) psfnorms = [] galnorms = [] for x,y in zip(xx.ravel(), yy.ravel()): p = im.psf_norm(tim, x=x, y=y) g = im.galaxy_norm(tim, x=x, y=y) psfnorms.append(p) galnorms.append(g) ccds.psfnorm_mean[iccd] = np.mean(psfnorms) ccds.psfnorm_std [iccd] = np.std (psfnorms) ccds.galnorm_mean[iccd] = np.mean(galnorms) ccds.galnorm_std [iccd] = np.std (galnorms) # PSF in center of field cx,cy = (W+1)/2., (H+1)/2. p = psf.getPointSourcePatch(cx, cy).patch ph,pw = p.shape px,py = np.meshgrid(np.arange(pw), np.arange(ph)) psum = np.sum(p) # print('psum', psum) p /= psum # centroids cenx = np.sum(p * px) ceny = np.sum(p * py) # print('cenx,ceny', cenx,ceny) # second moments x2 = np.sum(p * (px - cenx)**2) y2 = np.sum(p * (py - ceny)**2) xy = np.sum(p * (px - cenx)*(py - ceny)) # semi-major/minor axes and position angle theta = np.rad2deg(np.arctan2(2 * xy, x2 - y2) / 2.) theta = np.abs(theta) * np.sign(xy) s = np.sqrt(((x2 - y2)/2.)**2 + xy**2) a = np.sqrt((x2 + y2) / 2. + s) b = np.sqrt((x2 + y2) / 2. - s) ell = 1. - b/a # print('PSF second moments', x2, y2, xy) # print('PSF position angle', theta) # print('PSF semi-axes', a, b) # print('PSF ellipticity', ell) ccds.psf_mx2[iccd] = x2 ccds.psf_my2[iccd] = y2 ccds.psf_mxy[iccd] = xy ccds.psf_a[iccd] = a ccds.psf_b[iccd] = b ccds.psf_theta[iccd] = theta ccds.psf_ell [iccd] = ell print('Computing Gaussian approximate PSF quantities...') # Galaxy norm using Gaussian approximation of PSF. realpsf = tim.psf tim.psf = im.read_psf_model(0, 0, gaussPsf=True, psf_sigma=tim.psf_sigma) gaussgalnorm[iccd] = im.galaxy_norm(tim, x=cx, y=cy) tim.psf = realpsf # Sky -- evaluate on a grid (every ~10th pixel) skygrid = sky.evaluateGrid(np.linspace(0, ccd.width-1, int(1+ccd.width/10)), np.linspace(0, ccd.height-1, int(1+ccd.height/10))) ccds.meansky[iccd] = np.mean(skygrid) ccds.stdsky[iccd] = np.std(skygrid) ccds.maxsky[iccd] = skygrid.max() ccds.minsky[iccd] = skygrid.min() # WCS ccds.ra0[iccd],ccds.dec0[iccd] = wcs.pixelxy2radec(1, 1) ccds.ra1[iccd],ccds.dec1[iccd] = wcs.pixelxy2radec(1, H) ccds.ra2[iccd],ccds.dec2[iccd] = wcs.pixelxy2radec(W, H) ccds.ra3[iccd],ccds.dec3[iccd] = wcs.pixelxy2radec(W, 1) midx, midy = (W+1)/2., (H+1)/2. rc,dc = wcs.pixelxy2radec(midx, midy) ra,dec = wcs.pixelxy2radec([1,W,midx,midx], [midy,midy,1,H]) ccds.dra [iccd] = max(degrees_between(ra, dc+np.zeros_like(ra), rc, dc)) ccds.ddec[iccd] = max(degrees_between(rc+np.zeros_like(dec), dec, rc, dc)) ccds.ra_center [iccd] = rc ccds.dec_center[iccd] = dc # Compute scale change across the chip # how many pixels to step step = 10 xx = np.linspace(1+step, W-step, 5) yy = np.linspace(1+step, H-step, 5) xx,yy = np.meshgrid(xx, yy) pixscale = [] for x,y in zip(xx.ravel(), yy.ravel()): sx = [x-step, x-step, x+step, x+step, x-step] sy = [y-step, y+step, y+step, y-step, y-step] sr,sd = wcs.pixelxy2radec(sx, sy) rc,dc = wcs.pixelxy2radec(x, y) # project around a tiny little TAN WCS at (x,y), with 1" pixels locwcs = Tan(rc, dc, 0., 0., 1./3600, 0., 0., 1./3600, 1., 1.) ok,lx,ly = locwcs.radec2pixelxy(sr, sd) #print('local x,y:', lx, ly) A = polygon_area((lx, ly)) pixscale.append(np.sqrt(A / (2*step)**2)) # print('Pixel scales:', pixscale) ccds.pixscale_mean[iccd] = np.mean(pixscale) ccds.pixscale_min[iccd] = min(pixscale) ccds.pixscale_max[iccd] = max(pixscale) ccds.pixscale_std[iccd] = np.std(pixscale) ccds.plver = np.array(plvers) sfd = tractor.sfd.SFDMap() allbands = 'ugrizY' filts = ['%s %s' % ('DES', f) for f in allbands] wisebands = ['WISE W1', 'WISE W2', 'WISE W3', 'WISE W4'] ebv,ext = sfd.extinction(filts + wisebands, ccds.ra_center, ccds.dec_center, get_ebv=True) ext = ext.astype(np.float32) ccds.ebv = ebv.astype(np.float32) ccds.decam_extinction = ext[:,:len(allbands)] ccds.wise_extinction = ext[:,len(allbands):] # Depth detsig1 = ccds.sig1 / ccds.psfnorm_mean depth = 5. * detsig1 # that's flux in nanomaggies -- convert to mag ccds.psfdepth = -2.5 * (np.log10(depth) - 9) detsig1 = ccds.sig1 / ccds.galnorm_mean depth = 5. * detsig1 # that's flux in nanomaggies -- convert to mag ccds.galdepth = -2.5 * (np.log10(depth) - 9) # Depth using Gaussian FWHM. psf_sigma = ccds.fwhm / 2.35 gnorm = 1./(2. * np.sqrt(np.pi) * psf_sigma) detsig1 = ccds.sig1 / gnorm depth = 5. * detsig1 # that's flux in nanomaggies -- convert to mag ccds.gausspsfdepth = -2.5 * (np.log10(depth) - 9) # Gaussian galaxy depth detsig1 = ccds.sig1 / gaussgalnorm depth = 5. * detsig1 # that's flux in nanomaggies -- convert to mag ccds.gaussgaldepth = -2.5 * (np.log10(depth) - 9) ccds.writeto(outfn)
def main(): """Main program. """ import argparse parser = argparse.ArgumentParser(description="This script is used to produce lists of CCDs or bricks, for production purposes (building qdo queue, eg).") parser.add_argument('--calibs', action='store_true', help='Output CCDs that need to be calibrated.') parser.add_argument('--nper', type=int, default=None, help='Batch N calibs per line') parser.add_argument('--forced', action='store_true', help='Output forced-photometry commands') parser.add_argument('--lsb', action='store_true', help='Output Low-Surface-Brightness commands') parser.add_argument('--touching', action='store_true', help='Cut to only CCDs touching selected bricks') parser.add_argument('--near', action='store_true', help='Quick cut to only CCDs near selected bricks') parser.add_argument('--check', action='store_true', help='Check which calibrations actually need to run.') parser.add_argument('--check-coadd', action='store_true', help='Check which caoadds actually need to run.') parser.add_argument('--out', help='Output filename for calibs, default %(default)s', default='jobs') parser.add_argument('--command', action='store_true', help='Write out full command-line to run calib') parser.add_argument('--opt', help='With --command, extra options to add') parser.add_argument('--maxdec', type=float, help='Maximum Dec to run') parser.add_argument('--mindec', type=float, help='Minimum Dec to run') parser.add_argument('--region', help='Region to select') parser.add_argument('--bricks', help='Set bricks.fits file to load') parser.add_argument('--ccds', help='Set ccds.fits file to load') parser.add_argument('--ignore_cuts', action='store_true',default=False,help='no photometric or blacklist cuts') parser.add_argument('--save_to_fits', action='store_true',default=False,help='save cut brick,ccd to fits table') parser.add_argument('--name', action='store',default='dr3',help='save with this suffix, e.g. refers to ccds table') parser.add_argument('--delete-sky', action='store_true', help='Delete any existing sky calibration files') parser.add_argument('--delete-pvastrom', action='store_true', help='Delete any existing PV WCS calibration files') parser.add_argument('--write-ccds', help='Write CCDs list as FITS table?') parser.add_argument('--brickq', type=int, default=None, help='Queue only bricks with the given "brickq" value [0 to 3]') parser.add_argument('--brickq-deps', action='store_true', default=False, help='Queue bricks directly using qdo API, setting brickq dependencies') parser.add_argument('--queue', default='bricks', help='With --brickq-deps, the QDO queue name to use') opt = parser.parse_args() survey = LegacySurveyData() if opt.bricks is not None: B = fits_table(opt.bricks) log('Read', len(B), 'from', opt.bricks) else: B = survey.get_bricks() if opt.ccds is not None: T = fits_table(opt.ccds) log('Read', len(T), 'from', opt.ccds) else: T = survey.get_ccds() log(len(T), 'CCDs') T.index = np.arange(len(T)) if opt.ignore_cuts == False: I = survey.photometric_ccds(T) print(len(I), 'CCDs are photometric') T.cut(I) I = survey.apply_blacklist(T) print(len(I), 'CCDs are not blacklisted') T.cut(I) print(len(T), 'CCDs remain') # I,J,d,counts = match_radec(B.ra, B.dec, T.ra, T.dec, 0.2, nearest=True, count=True) # plt.clf() # plt.hist(counts, counts.max()+1) # plt.savefig('bricks.png') # B.cut(I[counts >= 9]) # plt.clf() # plt.plot(B.ra, B.dec, 'b.') # #plt.scatter(B.ra[I], B.dec[I], c=counts) # plt.savefig('bricks2.png') # DES Stripe82 #rlo,rhi = 350.,360. # rlo,rhi = 300., 10. # dlo,dhi = -6., 4. # TINY bit #rlo,rhi = 350.,351.1 #dlo,dhi = 0., 1.1 # EDR+ # 860 bricks # ~10,000 CCDs #rlo,rhi = 239,246 #dlo,dhi = 5, 13 # DR1 #rlo,rhi = 0, 360 # part 1 #dlo,dhi = 25, 40 # part 2 #dlo,dhi = 20,25 # part 3 #dlo,dhi = 15,20 # part 4 #dlo,dhi = 10,15 # part 5 #dlo,dhi = 5,10 # the rest #dlo,dhi = -11, 5 #dlo,dhi = 15,25.5 dlo,dhi = -25, 40 rlo,rhi = 0, 360 # Arjun says 3x3 coverage area is roughly # RA=240-252 DEC=6-12 (but not completely rectangular) # COSMOS #rlo,rhi = 148.9, 151.2 #dlo,dhi = 0.9, 3.5 # A nice well-behaved region (EDR2/3) # rlo,rhi = 243.6, 244.6 # dlo,dhi = 8.1, 8.6 # 56 bricks, ~725 CCDs #B.cut((B.ra > 240) * (B.ra < 242) * (B.dec > 5) * (B.dec < 7)) # 240 bricks, ~3000 CCDs #B.cut((B.ra > 240) * (B.ra < 244) * (B.dec > 5) * (B.dec < 9)) # 535 bricks, ~7000 CCDs #B.cut((B.ra > 240) * (B.ra < 245) * (B.dec > 5) * (B.dec < 12)) if opt.region in ['test1', 'test2', 'test3', 'test4']: nm = dict(test1='2446p115', # weird stuff around bright star test2='1183p292', # faint sources around bright galaxy test3='3503p005', # DES test4='1163p277', # Pollux )[opt.region] B.cut(np.flatnonzero(np.array([s == nm for s in B.brickname]))) log('Cut to', len(B), 'bricks') log(B.ra, B.dec) dlo,dhi = -90,90 rlo,rhi = 0, 360 elif opt.region == 'edr': # EDR: # 535 bricks, ~7000 CCDs rlo,rhi = 240,245 dlo,dhi = 5, 12 elif opt.region == 'edrplus': rlo,rhi = 235,248 dlo,dhi = 5, 15 elif opt.region == 'edr-south': rlo,rhi = 240,245 dlo,dhi = 5, 10 elif opt.region == 'cosmos1': # 16 bricks in the core of the COSMOS field. rlo,rhi = 149.75, 150.75 dlo,dhi = 1.6, 2.6 elif opt.region == 'pristine': # Stream? rlo,rhi = 240,250 dlo,dhi = 10,15 elif opt.region == 'des': dlo, dhi = -6., 4. rlo, rhi = 317., 7. T.cut(np.flatnonzero(np.array(['CPDES82' in fn for fn in T.cpimage]))) log('Cut to', len(T), 'CCDs with "CPDES82" in filename') elif opt.region == 'subdes': rlo,rhi = 320., 360. dlo,dhi = -1.25, 1.25 elif opt.region == 'northwest': rlo,rhi = 240,360 dlo,dhi = 20,40 elif opt.region == 'north': rlo,rhi = 120,240 dlo,dhi = 20,40 elif opt.region == 'northeast': rlo,rhi = 0,120 dlo,dhi = 20,40 elif opt.region == 'southwest': rlo,rhi = 240,360 dlo,dhi = -20,0 elif opt.region == 'south': rlo,rhi = 120,240 dlo,dhi = -20,0 elif opt.region == 'southeast': rlo,rhi = 0,120 dlo,dhi = -20,0 elif opt.region == 'southsoutheast': rlo,rhi = 0,120 dlo,dhi = -20,-10 elif opt.region == 'midwest': rlo,rhi = 240,360 dlo,dhi = 0,20 elif opt.region == 'middle': rlo,rhi = 120,240 dlo,dhi = 0,20 elif opt.region == 'mideast': rlo,rhi = 0,120 dlo,dhi = 0,20 elif opt.region == 'grz': # Bricks with grz coverage. # Be sure to use --bricks survey-bricks-in-dr1.fits # which has_[grz] columns. B.cut((B.has_g == 1) * (B.has_r == 1) * (B.has_z == 1)) log('Cut to', len(B), 'bricks with grz coverage') elif opt.region == 'nogrz': # Bricks without grz coverage. # Be sure to use --bricks survey-bricks-in-dr1.fits # which has_[grz] columns. B.cut(np.logical_not((B.has_g == 1) * (B.has_r == 1) * (B.has_z == 1))) log('Cut to', len(B), 'bricks withOUT grz coverage') elif opt.region == 'deep2': rlo,rhi = 250,260 dlo,dhi = 30,35 elif opt.region == 'deep2f3': rlo,rhi = 351.25, 353.75 dlo,dhi = 0, 0.5 elif opt.region == 'virgo': rlo,rhi = 185,190 dlo,dhi = 10, 15 elif opt.region == 'virgo2': rlo,rhi = 182,192 dlo,dhi = 8, 18 elif opt.region == 'lsb': rlo,rhi = 147.2, 147.8 dlo,dhi = -0.4, 0.4 elif opt.region == 'eboss-elg': # RA -45 to +45 # Dec -5 to +7 rlo,rhi = 315., 45. dlo,dhi = -5., 7. elif opt.region == 'eboss-ngc': # NGC ELGs # RA 115 to 175 # Dec 15 to 30 rlo,rhi = 115., 175. dlo,dhi = 15., 30. elif opt.region == 'mzls': dlo,dhi = 30., 90. elif opt.region == 'dr4-bootes': # https://desi.lbl.gov/trac/wiki/DecamLegacy/DR4sched #dlo,dhi = 34., 35. #rlo,rhi = 209.5, 210.5 dlo,dhi = 33., 36. rlo,rhi = 216.5, 219.5 if opt.mindec is not None: dlo = opt.mindec if opt.maxdec is not None: dhi = opt.maxdec if rlo < rhi: B.cut((B.ra >= rlo) * (B.ra <= rhi) * (B.dec >= dlo) * (B.dec <= dhi)) else: # RA wrap B.cut(np.logical_or(B.ra >= rlo, B.ra <= rhi) * (B.dec >= dlo) * (B.dec <= dhi)) log(len(B), 'bricks in range') for name in B.get('brickname'): print(name) B.writeto('bricks-cut.fits') I,J,d = match_radec(B.ra, B.dec, T.ra, T.dec, survey.bricksize) keep = np.zeros(len(B), bool) for i in I: keep[i] = True B.cut(keep) log('Cut to', len(B), 'bricks near CCDs') plt.clf() plt.plot(B.ra, B.dec, 'b.') plt.title('DR3 bricks') plt.axis([360, 0, np.min(B.dec)-1, np.max(B.dec)+1]) plt.savefig('bricks.png') if opt.brickq is not None: B.cut(B.brickq == opt.brickq) log('Cut to', len(B), 'with brickq =', opt.brickq) if opt.touching: keep = np.zeros(len(T), bool) for j in J: keep[j] = True T.cut(keep) log('Cut to', len(T), 'CCDs near bricks') # Aside -- how many near DR1=1 CCDs? if False: T2 = D.get_ccds() log(len(T2), 'CCDs') T2.cut(T2.dr1 == 1) log(len(T2), 'CCDs marked DR1=1') log(len(B), 'bricks in range') I,J,d = match_radec(B.ra, B.dec, T2.ra, T2.dec, survey.bricksize) keep = np.zeros(len(B), bool) for i in I: keep[i] = True B2 = B[keep] log('Total of', len(B2), 'bricks near CCDs with DR1=1') for band in 'grz': Tb = T2[T2.filter == band] log(len(Tb), 'in filter', band) I,J,d = match_radec(B2.ra, B2.dec, Tb.ra, Tb.dec, survey.bricksize) good = np.zeros(len(B2), np.uint8) for i in I: good[i] = 1 B2.set('has_' + band, good) B2.writeto('survey-bricks-in-dr1.fits') sys.exit(0) # sort by dec decreasing #B.cut(np.argsort(-B.dec)) # RA increasing B.cut(np.argsort(B.ra)) for b in B: if opt.check: fn = 'dr1n/tractor/%s/tractor-%s.fits' % (b.brickname[:3], b.brickname) if os.path.exists(fn): print('Exists:', fn, file=sys.stderr) continue if opt.check_coadd: fn = 'dr1b/coadd/%s/%s/decals-%s-image.jpg' % (b.brickname[:3], b.brickname, b.brickname) if os.path.exists(fn): print('Exists:', fn, file=sys.stderr) continue print(b.brickname) if opt.save_to_fits: assert(opt.touching) # Write cut tables to file for tab,typ in zip([B,T],['bricks','ccds']): fn='%s-%s-cut.fits' % (typ,opt.name) if os.path.exists(fn): os.remove(fn) tab.writeto(fn) print('Wrote %s' % fn) # Write text files listing ccd and filename names nm1,nm2= 'ccds-%s.txt'% opt.name,'filenames-%s.txt' % opt.name if os.path.exists(nm1): os.remove(nm1) if os.path.exists(nm2): os.remove(nm2) f1,f2=open(nm1,'w'),open(nm2,'w') fns= list(set(T.get('image_filename'))) for fn in fns: f2.write('%s\n' % fn.strip()) for ti in T: f1.write('%s\n' % ti.get('image_filename').strip()) f1.close() f2.close() print('Wrote *-names.txt') if opt.brickq_deps: import qdo from legacypipe.survey import on_bricks_dependencies #... find Queue... q = qdo.connect(opt.queue, create_ok=True) print('Connected to QDO queue', opt.queue, q) brick_to_task = dict() I = survey.photometric_ccds(T) print(len(I), 'CCDs are photometric') T.cut(I) I = survey.apply_blacklist(T) print(len(I), 'CCDs are not blacklisted') T.cut(I) print(len(T), 'CCDs remaining') T.wra = T.ra + (T.ra > 180) * -360 wra = rlo - 360 plt.clf() plt.plot(T.wra, T.dec, 'b.') ax = [wra, rhi, dlo, dhi] plt.axis(ax) plt.title('CCDs') plt.savefig('q-ccds.png') B.wra = B.ra + (B.ra > 180) * -360 # this slight overestimate (for DECam images) is fine radius = 0.3 Iccds = match_radec(B.ra, B.dec, T.ra, T.dec, radius, indexlist=True) ikeep = [] for ib,(b,Iccd) in enumerate(zip(B, Iccds)): if Iccd is None or len(Iccd) == 0: print('No matched CCDs to brick', b.brickname) continue wcs = wcs_for_brick(b) cI = ccds_touching_wcs(wcs, T[np.array(Iccd)]) print(len(cI), 'CCDs touching brick', b.brickname) if len(cI) == 0: continue ikeep.append(ib) B.cut(np.array(ikeep)) print('Cut to', len(B), 'bricks touched by CCDs') for brickq in range(4): I = np.flatnonzero(B.brickq == brickq) print(len(I), 'bricks with brickq =', brickq) J = np.flatnonzero(B.brickq < brickq) preB = B[J] reqs = [] if brickq > 0: for b in B[I]: # find brick dependencies brickdeps = on_bricks_dependencies(b, survey, bricks=preB) # convert to task ids taskdeps = [brick_to_task.get(b.brickname,None) for b in brickdeps] # If we dropped a dependency brick from a previous brickq because # of no overlapping CCDs, it won't appear in the brick_to_task map. taskdeps = [t for t in taskdeps if t is not None] reqs.append(taskdeps) plt.clf() plt.plot(B.wra, B.dec, '.', color='0.5') plt.plot(B.wra[I], B.dec[I], 'b.') plt.axis(ax) plt.title('Bricks: brickq=%i' % brickq) plt.savefig('q-bricks-%i.png' % brickq) # submit to qdo queue print('Queuing', len(B[I]), 'bricks') if brickq == 0: reqs = None else: assert(len(I) == len(reqs)) taskids = q.add_multiple(B.brickname[I], requires=reqs) assert(len(taskids) == len(I)) print('Queued', len(taskids), 'bricks') brick_to_task.update(dict(zip(B.brickname[I], taskids))) if not (opt.calibs or opt.forced or opt.lsb): sys.exit(0) bands = 'grz' log('Filters:', np.unique(T.filter)) T.cut(np.flatnonzero(np.array([f in bands for f in T.filter]))) log('Cut to', len(T), 'CCDs in filters', bands) if opt.touching: allI = set() for b in B: wcs = wcs_for_brick(b) I = ccds_touching_wcs(wcs, T) log(len(I), 'CCDs for brick', b.brickid, 'RA,Dec (%.2f, %.2f)' % (b.ra, b.dec)) if len(I) == 0: continue allI.update(I) allI = list(allI) allI.sort() elif opt.near: # Roughly brick radius + DECam image radius radius = 0.35 allI,nil,nil = match_radec(T.ra, T.dec, B.ra, B.dec, radius, nearest=True) else: allI = np.arange(len(T)) if opt.write_ccds: T[allI].writeto(opt.write_ccds) log('Wrote', opt.write_ccds) ## Be careful here -- T has been cut; we want to write out T.index. ## 'allI' contains indices into T. if opt.forced: log('Writing forced-photometry commands to', opt.out) f = open(opt.out,'w') log('Total of', len(allI), 'CCDs') for j,i in enumerate(allI): expstr = '%08i' % T.expnum[i] outfn = os.path.join('forced', expstr[:5], expstr, 'decam-%s-%s-forced.fits' % (expstr, T.ccdname[i])) imgfn = os.path.join(survey.survey_dir, 'images', T.image_filename[i].strip()) if (not os.path.exists(imgfn) and imgfn.endswith('.fz') and os.path.exists(imgfn[:-3])): imgfn = imgfn[:-3] #f.write('python legacypipe/forced_photom_decam.py %s %i DR3 %s\n' % # (imgfn, T.image_hdu[i], outfn)) f.write('python legacypipe/forced_photom_decam.py --apphot --constant-invvar %i %s DR3 %s\n' % (T.expnum[i], T.ccdname[i], outfn)) f.close() log('Wrote', opt.out) sys.exit(0) if opt.lsb: log('Writing LSB commands to', opt.out) f = open(opt.out,'w') log('Total of', len(allI), 'CCDs') for j,i in enumerate(allI): exp = T.expnum[i] ext = T.ccdname[i].strip() outfn = 'lsb/lsb-%s-%s.fits' % (exp, ext) f.write('python projects/desi/lsb.py --expnum %i --extname %s --out %s -F -n > lsb/lsb-%s-%s.log 2>&1\n' % (exp, ext, outfn, exp, ext)) f.close() log('Wrote', opt.out) sys.exit(0) log('Writing calibs to', opt.out) f = open(opt.out,'w') log('Total of', len(allI), 'CCDs') batch = [] def write_batch(f, batch, cmd): if cmd is None: cmd = '' f.write(cmd + ' '.join(batch) + '\n') cmd = None if opt.command: cmd = 'python legacypipe/run-calib.py ' if opt.opt is not None: cmd += opt.opt + ' ' for j,i in enumerate(allI): if opt.delete_sky or opt.delete_pvastrom: log(j+1, 'of', len(allI)) im = survey.get_image_object(T[i]) if opt.delete_sky and os.path.exists(im.skyfn): log(' deleting:', im.skyfn) os.unlink(im.skyfn) if opt.delete_pvastrom and os.path.exists(im.pvwcsfn): log(' deleting:', im.pvwcsfn) os.unlink(im.pvwcsfn) if opt.check: log(j+1, 'of', len(allI)) im = survey.get_image_object(T[i]) if not im.run_calibs(im, just_check=True): log('Calibs for', im.expnum, im.ccdname, im.calname, 'already done') continue if opt.command: s = '%i-%s' % (T.expnum[i], T.ccdname[i]) prefix = 'python legacypipe/run-calib.py ' + opt.opt #('python legacypipe/run-calib.py --expnum %i --ccdname %s' % # (T.expnum[i], T.ccdname[i])) else: s = '%i' % T.index[i] prefix = '' if j < 10: print('Index', T.index[i], 'expnum', T.expnum[i], 'ccdname', T.ccdname[i], 'filename', T.image_filename[i]) if not opt.nper: f.write(prefix + s + '\n') else: batch.append(s) if len(batch) >= opt.nper: write_batch(f, batch, cmd) batch = [] if opt.check: f.flush() if len(batch): write_batch(f, batch, cmd) f.close() log('Wrote', opt.out) return 0
def main(): """Main program. """ import argparse parser = argparse.ArgumentParser( description= "This script is used to produce lists of CCDs or bricks, for production purposes (building qdo queue, eg)." ) parser.add_argument('--calibs', action='store_true', help='Output CCDs that need to be calibrated.') parser.add_argument('--nper', type=int, default=None, help='Batch N calibs per line') parser.add_argument('--forced', action='store_true', help='Output forced-photometry commands') parser.add_argument('--lsb', action='store_true', help='Output Low-Surface-Brightness commands') parser.add_argument('--touching', action='store_true', help='Cut to only CCDs touching selected bricks') parser.add_argument('--near', action='store_true', help='Quick cut to only CCDs near selected bricks') parser.add_argument('--check', action='store_true', help='Check which calibrations actually need to run.') parser.add_argument('--check-coadd', action='store_true', help='Check which caoadds actually need to run.') parser.add_argument('--out', help='Output filename for calibs, default %(default)s', default='jobs') parser.add_argument('--command', action='store_true', help='Write out full command-line to run calib') parser.add_argument('--opt', help='With --command, extra options to add') parser.add_argument('--maxdec', type=float, help='Maximum Dec to run') parser.add_argument('--mindec', type=float, help='Minimum Dec to run') parser.add_argument('--region', help='Region to select') parser.add_argument('--bricks', help='Set bricks.fits file to load') parser.add_argument('--ccds', help='Set ccds.fits file to load') parser.add_argument('--ignore_cuts', action='store_true', default=False, help='no photometric or blacklist cuts') parser.add_argument('--save_to_fits', action='store_true', default=False, help='save cut brick,ccd to fits table') parser.add_argument( '--name', action='store', default='dr3', help='save with this suffix, e.g. refers to ccds table') parser.add_argument('--delete-sky', action='store_true', help='Delete any existing sky calibration files') parser.add_argument('--delete-pvastrom', action='store_true', help='Delete any existing PV WCS calibration files') parser.add_argument('--write-ccds', help='Write CCDs list as FITS table?') parser.add_argument( '--brickq', type=int, default=None, help='Queue only bricks with the given "brickq" value [0 to 3]') parser.add_argument( '--brickq-deps', action='store_true', default=False, help='Queue bricks directly using qdo API, setting brickq dependencies' ) parser.add_argument('--queue', default='bricks', help='With --brickq-deps, the QDO queue name to use') opt = parser.parse_args() survey = LegacySurveyData() if opt.bricks is not None: B = fits_table(opt.bricks) log('Read', len(B), 'from', opt.bricks) else: B = survey.get_bricks() if opt.ccds is not None: T = fits_table(opt.ccds) log('Read', len(T), 'from', opt.ccds) else: T = survey.get_ccds() log(len(T), 'CCDs') T.index = np.arange(len(T)) if opt.ignore_cuts == False: I = survey.photometric_ccds(T) print(len(I), 'CCDs are photometric') T.cut(I) I = survey.apply_blacklist(T) print(len(I), 'CCDs are not blacklisted') T.cut(I) print(len(T), 'CCDs remain') # I,J,d,counts = match_radec(B.ra, B.dec, T.ra, T.dec, 0.2, nearest=True, count=True) # plt.clf() # plt.hist(counts, counts.max()+1) # plt.savefig('bricks.png') # B.cut(I[counts >= 9]) # plt.clf() # plt.plot(B.ra, B.dec, 'b.') # #plt.scatter(B.ra[I], B.dec[I], c=counts) # plt.savefig('bricks2.png') # DES Stripe82 #rlo,rhi = 350.,360. # rlo,rhi = 300., 10. # dlo,dhi = -6., 4. # TINY bit #rlo,rhi = 350.,351.1 #dlo,dhi = 0., 1.1 # EDR+ # 860 bricks # ~10,000 CCDs #rlo,rhi = 239,246 #dlo,dhi = 5, 13 # DR1 #rlo,rhi = 0, 360 # part 1 #dlo,dhi = 25, 40 # part 2 #dlo,dhi = 20,25 # part 3 #dlo,dhi = 15,20 # part 4 #dlo,dhi = 10,15 # part 5 #dlo,dhi = 5,10 # the rest #dlo,dhi = -11, 5 #dlo,dhi = 15,25.5 dlo, dhi = -25, 40 rlo, rhi = 0, 360 # Arjun says 3x3 coverage area is roughly # RA=240-252 DEC=6-12 (but not completely rectangular) # COSMOS #rlo,rhi = 148.9, 151.2 #dlo,dhi = 0.9, 3.5 # A nice well-behaved region (EDR2/3) # rlo,rhi = 243.6, 244.6 # dlo,dhi = 8.1, 8.6 # 56 bricks, ~725 CCDs #B.cut((B.ra > 240) * (B.ra < 242) * (B.dec > 5) * (B.dec < 7)) # 240 bricks, ~3000 CCDs #B.cut((B.ra > 240) * (B.ra < 244) * (B.dec > 5) * (B.dec < 9)) # 535 bricks, ~7000 CCDs #B.cut((B.ra > 240) * (B.ra < 245) * (B.dec > 5) * (B.dec < 12)) if opt.region in ['test1', 'test2', 'test3', 'test4']: nm = dict( test1='2446p115', # weird stuff around bright star test2='1183p292', # faint sources around bright galaxy test3='3503p005', # DES test4='1163p277', # Pollux )[opt.region] B.cut(np.flatnonzero(np.array([s == nm for s in B.brickname]))) log('Cut to', len(B), 'bricks') log(B.ra, B.dec) dlo, dhi = -90, 90 rlo, rhi = 0, 360 elif opt.region == 'edr': # EDR: # 535 bricks, ~7000 CCDs rlo, rhi = 240, 245 dlo, dhi = 5, 12 elif opt.region == 'edrplus': rlo, rhi = 235, 248 dlo, dhi = 5, 15 elif opt.region == 'edr-south': rlo, rhi = 240, 245 dlo, dhi = 5, 10 elif opt.region == 'cosmos1': # 16 bricks in the core of the COSMOS field. rlo, rhi = 149.75, 150.75 dlo, dhi = 1.6, 2.6 elif opt.region == 'pristine': # Stream? rlo, rhi = 240, 250 dlo, dhi = 10, 15 elif opt.region == 'des': dlo, dhi = -6., 4. rlo, rhi = 317., 7. T.cut(np.flatnonzero(np.array(['CPDES82' in fn for fn in T.cpimage]))) log('Cut to', len(T), 'CCDs with "CPDES82" in filename') elif opt.region == 'subdes': rlo, rhi = 320., 360. dlo, dhi = -1.25, 1.25 elif opt.region == 'northwest': rlo, rhi = 240, 360 dlo, dhi = 20, 40 elif opt.region == 'north': rlo, rhi = 120, 240 dlo, dhi = 20, 40 elif opt.region == 'northeast': rlo, rhi = 0, 120 dlo, dhi = 20, 40 elif opt.region == 'southwest': rlo, rhi = 240, 360 dlo, dhi = -20, 0 elif opt.region == 'south': rlo, rhi = 120, 240 dlo, dhi = -20, 0 elif opt.region == 'southeast': rlo, rhi = 0, 120 dlo, dhi = -20, 0 elif opt.region == 'southsoutheast': rlo, rhi = 0, 120 dlo, dhi = -20, -10 elif opt.region == 'midwest': rlo, rhi = 240, 360 dlo, dhi = 0, 20 elif opt.region == 'middle': rlo, rhi = 120, 240 dlo, dhi = 0, 20 elif opt.region == 'mideast': rlo, rhi = 0, 120 dlo, dhi = 0, 20 elif opt.region == 'grz': # Bricks with grz coverage. # Be sure to use --bricks survey-bricks-in-dr1.fits # which has_[grz] columns. B.cut((B.has_g == 1) * (B.has_r == 1) * (B.has_z == 1)) log('Cut to', len(B), 'bricks with grz coverage') elif opt.region == 'nogrz': # Bricks without grz coverage. # Be sure to use --bricks survey-bricks-in-dr1.fits # which has_[grz] columns. B.cut(np.logical_not((B.has_g == 1) * (B.has_r == 1) * (B.has_z == 1))) log('Cut to', len(B), 'bricks withOUT grz coverage') elif opt.region == 'deep2': rlo, rhi = 250, 260 dlo, dhi = 30, 35 elif opt.region == 'deep2f3': rlo, rhi = 351.25, 353.75 dlo, dhi = 0, 0.5 elif opt.region == 'virgo': rlo, rhi = 185, 190 dlo, dhi = 10, 15 elif opt.region == 'virgo2': rlo, rhi = 182, 192 dlo, dhi = 8, 18 elif opt.region == 'lsb': rlo, rhi = 147.2, 147.8 dlo, dhi = -0.4, 0.4 elif opt.region == 'eboss-sgc': # generous boundaries to make sure get all relevant images # RA -45 to +45 # Dec -5 to +7 rlo, rhi = 310., 50. dlo, dhi = -6., 6. elif opt.region == 'eboss-ngc': # generous boundaries to make sure get all relevant images # NGC ELGs # RA 115 to 175 # Dec 15 to 30 rlo, rhi = 122., 177. dlo, dhi = 12., 32. elif opt.region == 'mzls': dlo, dhi = 30., 90. elif opt.region == 'dr4-bootes': # https://desi.lbl.gov/trac/wiki/DecamLegacy/DR4sched #dlo,dhi = 34., 35. #rlo,rhi = 209.5, 210.5 dlo, dhi = 33., 36. rlo, rhi = 216.5, 219.5 if opt.mindec is not None: dlo = opt.mindec if opt.maxdec is not None: dhi = opt.maxdec if rlo < rhi: B.cut((B.ra >= rlo) * (B.ra <= rhi) * (B.dec >= dlo) * (B.dec <= dhi)) else: # RA wrap B.cut( np.logical_or(B.ra >= rlo, B.ra <= rhi) * (B.dec >= dlo) * (B.dec <= dhi)) log(len(B), 'bricks in range') #for name in B.get('brickname'): #print(name) B.writeto('bricks-cut.fits') I, J, d = match_radec(B.ra, B.dec, T.ra, T.dec, survey.bricksize) keep = np.zeros(len(B), bool) for i in I: keep[i] = True B.cut(keep) log('Cut to', len(B), 'bricks near CCDs') plt.clf() plt.plot(B.ra, B.dec, 'b.') plt.title('DR3 bricks') plt.axis([360, 0, np.min(B.dec) - 1, np.max(B.dec) + 1]) plt.savefig('bricks.png') if opt.brickq is not None: B.cut(B.brickq == opt.brickq) log('Cut to', len(B), 'with brickq =', opt.brickq) if opt.touching: keep = np.zeros(len(T), bool) for j in J: keep[j] = True T.cut(keep) log('Cut to', len(T), 'CCDs near bricks') # Aside -- how many near DR1=1 CCDs? if False: T2 = D.get_ccds() log(len(T2), 'CCDs') T2.cut(T2.dr1 == 1) log(len(T2), 'CCDs marked DR1=1') log(len(B), 'bricks in range') I, J, d = match_radec(B.ra, B.dec, T2.ra, T2.dec, survey.bricksize) keep = np.zeros(len(B), bool) for i in I: keep[i] = True B2 = B[keep] log('Total of', len(B2), 'bricks near CCDs with DR1=1') for band in 'grz': Tb = T2[T2.filter == band] log(len(Tb), 'in filter', band) I, J, d = match_radec(B2.ra, B2.dec, Tb.ra, Tb.dec, survey.bricksize) good = np.zeros(len(B2), np.uint8) for i in I: good[i] = 1 B2.set('has_' + band, good) B2.writeto('survey-bricks-in-dr1.fits') sys.exit(0) # sort by dec decreasing #B.cut(np.argsort(-B.dec)) # RA increasing B.cut(np.argsort(B.ra)) for b in B: if opt.check: fn = 'dr1n/tractor/%s/tractor-%s.fits' % (b.brickname[:3], b.brickname) if os.path.exists(fn): print('Exists:', fn, file=sys.stderr) continue if opt.check_coadd: fn = 'dr1b/coadd/%s/%s/decals-%s-image.jpg' % ( b.brickname[:3], b.brickname, b.brickname) if os.path.exists(fn): print('Exists:', fn, file=sys.stderr) continue #print(b.brickname) if opt.save_to_fits: assert (opt.touching) # Write cut tables to file for tab, typ in zip([B, T], ['bricks', 'ccds']): fn = '%s-%s-cut.fits' % (typ, opt.region) if os.path.exists(fn): os.remove(fn) tab.writeto(fn) print('Wrote %s' % fn) # Write text files listing ccd and filename names nm1, nm2 = 'ccds-%s.txt' % opt.region, 'filenames-%s.txt' % opt.region if os.path.exists(nm1): os.remove(nm1) if os.path.exists(nm2): os.remove(nm2) f1, f2 = open(nm1, 'w'), open(nm2, 'w') fns = list(set(T.get('image_filename'))) for fn in fns: f2.write('%s\n' % fn.strip()) for ti in T: f1.write('%s\n' % ti.get('image_filename').strip()) f1.close() f2.close() print('Wrote *-names.txt') if opt.brickq_deps: import qdo from legacypipe.survey import on_bricks_dependencies #... find Queue... q = qdo.connect(opt.queue, create_ok=True) print('Connected to QDO queue', opt.queue, q) brick_to_task = dict() I = survey.photometric_ccds(T) print(len(I), 'CCDs are photometric') T.cut(I) I = survey.apply_blacklist(T) print(len(I), 'CCDs are not blacklisted') T.cut(I) print(len(T), 'CCDs remaining') T.wra = T.ra + (T.ra > 180) * -360 wra = rlo - 360 plt.clf() plt.plot(T.wra, T.dec, 'b.') ax = [wra, rhi, dlo, dhi] plt.axis(ax) plt.title('CCDs') plt.savefig('q-ccds.png') B.wra = B.ra + (B.ra > 180) * -360 # this slight overestimate (for DECam images) is fine radius = 0.3 Iccds = match_radec(B.ra, B.dec, T.ra, T.dec, radius, indexlist=True) ikeep = [] for ib, (b, Iccd) in enumerate(zip(B, Iccds)): if Iccd is None or len(Iccd) == 0: print('No matched CCDs to brick', b.brickname) continue wcs = wcs_for_brick(b) cI = ccds_touching_wcs(wcs, T[np.array(Iccd)]) print(len(cI), 'CCDs touching brick', b.brickname) if len(cI) == 0: continue ikeep.append(ib) B.cut(np.array(ikeep)) print('Cut to', len(B), 'bricks touched by CCDs') for brickq in range(4): I = np.flatnonzero(B.brickq == brickq) print(len(I), 'bricks with brickq =', brickq) J = np.flatnonzero(B.brickq < brickq) preB = B[J] reqs = [] if brickq > 0: for b in B[I]: # find brick dependencies brickdeps = on_bricks_dependencies(b, survey, bricks=preB) # convert to task ids taskdeps = [ brick_to_task.get(b.brickname, None) for b in brickdeps ] # If we dropped a dependency brick from a previous brickq because # of no overlapping CCDs, it won't appear in the brick_to_task map. taskdeps = [t for t in taskdeps if t is not None] reqs.append(taskdeps) plt.clf() plt.plot(B.wra, B.dec, '.', color='0.5') plt.plot(B.wra[I], B.dec[I], 'b.') plt.axis(ax) plt.title('Bricks: brickq=%i' % brickq) plt.savefig('q-bricks-%i.png' % brickq) # submit to qdo queue print('Queuing', len(B[I]), 'bricks') if brickq == 0: reqs = None else: assert (len(I) == len(reqs)) taskids = q.add_multiple(B.brickname[I], requires=reqs) assert (len(taskids) == len(I)) print('Queued', len(taskids), 'bricks') brick_to_task.update(dict(zip(B.brickname[I], taskids))) if not (opt.calibs or opt.forced or opt.lsb): sys.exit(0) bands = 'grz' log('Filters:', np.unique(T.filter)) T.cut(np.flatnonzero(np.array([f in bands for f in T.filter]))) log('Cut to', len(T), 'CCDs in filters', bands) if opt.touching: allI = set() for b in B: wcs = wcs_for_brick(b) I = ccds_touching_wcs(wcs, T) log(len(I), 'CCDs for brick', b.brickid, 'RA,Dec (%.2f, %.2f)' % (b.ra, b.dec)) if len(I) == 0: continue allI.update(I) allI = list(allI) allI.sort() elif opt.near: # Roughly brick radius + DECam image radius radius = 0.35 allI, nil, nil = match_radec(T.ra, T.dec, B.ra, B.dec, radius, nearest=True) else: allI = np.arange(len(T)) if opt.write_ccds: T[allI].writeto(opt.write_ccds) log('Wrote', opt.write_ccds) ## Be careful here -- T has been cut; we want to write out T.index. ## 'allI' contains indices into T. if opt.forced: log('Writing forced-photometry commands to', opt.out) f = open(opt.out, 'w') log('Total of', len(allI), 'CCDs') for j, i in enumerate(allI): expstr = '%08i' % T.expnum[i] outfn = os.path.join( 'forced', expstr[:5], expstr, 'decam-%s-%s-forced.fits' % (expstr, T.ccdname[i])) imgfn = os.path.join(survey.survey_dir, 'images', T.image_filename[i].strip()) if (not os.path.exists(imgfn) and imgfn.endswith('.fz') and os.path.exists(imgfn[:-3])): imgfn = imgfn[:-3] #f.write('python legacypipe/forced_photom_decam.py %s %i DR3 %s\n' % # (imgfn, T.image_hdu[i], outfn)) f.write( 'python legacypipe/forced_photom_decam.py --apphot --constant-invvar %i %s DR3 %s\n' % (T.expnum[i], T.ccdname[i], outfn)) f.close() log('Wrote', opt.out) sys.exit(0) if opt.lsb: log('Writing LSB commands to', opt.out) f = open(opt.out, 'w') log('Total of', len(allI), 'CCDs') for j, i in enumerate(allI): exp = T.expnum[i] ext = T.ccdname[i].strip() outfn = 'lsb/lsb-%s-%s.fits' % (exp, ext) f.write( 'python projects/desi/lsb.py --expnum %i --extname %s --out %s -F -n > lsb/lsb-%s-%s.log 2>&1\n' % (exp, ext, outfn, exp, ext)) f.close() log('Wrote', opt.out) sys.exit(0) log('Writing calibs to', opt.out) f = open(opt.out, 'w') log('Total of', len(allI), 'CCDs') batch = [] def write_batch(f, batch, cmd): if cmd is None: cmd = '' f.write(cmd + ' '.join(batch) + '\n') cmd = None if opt.command: cmd = 'python legacypipe/run-calib.py ' if opt.opt is not None: cmd += opt.opt + ' ' for j, i in enumerate(allI): if opt.delete_sky or opt.delete_pvastrom: log(j + 1, 'of', len(allI)) im = survey.get_image_object(T[i]) if opt.delete_sky and os.path.exists(im.skyfn): log(' deleting:', im.skyfn) os.unlink(im.skyfn) if opt.delete_pvastrom and os.path.exists(im.pvwcsfn): log(' deleting:', im.pvwcsfn) os.unlink(im.pvwcsfn) if opt.check: log(j + 1, 'of', len(allI)) im = survey.get_image_object(T[i]) if not im.run_calibs(im, just_check=True): log('Calibs for', im.expnum, im.ccdname, im.calname, 'already done') continue if opt.command: s = '%i-%s' % (T.expnum[i], T.ccdname[i]) prefix = 'python legacypipe/run-calib.py ' + opt.opt #('python legacypipe/run-calib.py --expnum %i --ccdname %s' % # (T.expnum[i], T.ccdname[i])) else: s = '%i' % T.index[i] prefix = '' if j < 10: print('Index', T.index[i], 'expnum', T.expnum[i], 'ccdname', T.ccdname[i], 'filename', T.image_filename[i]) if not opt.nper: f.write(prefix + s + '\n') else: batch.append(s) if len(batch) >= opt.nper: write_batch(f, batch, cmd) batch = [] if opt.check: f.flush() if len(batch): write_batch(f, batch, cmd) f.close() log('Wrote', opt.out) return 0