def main(outfn='ccds-annotated.fits', ccds=None, **kwargs): survey = LegacySurveyData(ccds=ccds) if ccds is None: ccds = survey.get_ccds() # Set to True if we successfully read the calibration products and computed # annotated values init_annotations(ccds) annotate(ccds, **kwargs) print('Writing to', outfn) ccds.writeto(outfn) print('Wrote', outfn)
def queue(): if False: survey = LegacySurveyData() ccds = survey.get_ccds() bricks = survey.get_bricks() print(len(bricks), 'bricks') print(len(ccds), 'CCDs') bricks.cut((bricks.dec >= -30) * (bricks.dec <= 30)) print(len(bricks), 'in Dec [-30, +30]') I = survey.photometric_ccds(ccds) ccds.cut(I) print(len(ccds), 'pass photometric cut') I, J, d = match_radec(bricks.ra, bricks.dec, ccds.ra, ccds.dec, 0.5, nearest=True) print(len(I), 'bricks with CCDs nearby') bricks.cut(I) bricknames = bricks.brickname else: # DR7: use Martin's list of bricks w/ CCD coverage f = open('nccds.dat') bricknames = [] for line in f.readlines(): words = line.strip().split(' ') brick = words[0] nccd = int(words[1]) if nccd > 0: bricknames.append(brick) # qdo bb = bricknames while len(bb): print(' '.join(bb[:100])) bb = bb[100:] return mp = multiproc(16) N = len(bricks) args = [(brick, i, N, plots, {}) for i, brick in enumerate(bricks)] mp.map(run_one_brick, args)
def main(): ps = PlotSequence('cov') survey = LegacySurveyData() ra, dec = 242.0, 10.2 fn = 'coverage-ccds.fits' if not os.path.exists(fn): ccds = survey.get_ccds() ccds.cut(ccds.filter == 'r') ccds.cut(ccds.propid == '2014B-0404') ccds.cut(np.hypot(ccds.ra_bore - ra, ccds.dec_bore - dec) < 2.5) print(np.unique(ccds.expnum), 'unique exposures') print('propids', np.unique(ccds.propid)) ccds.writeto(fn) else: ccds = fits_table(fn) plt.clf() for e in np.unique(ccds.expnum): I = np.flatnonzero(ccds.expnum == e) plt.plot(ccds.ra[I], ccds.dec[I], '.') ps.savefig() degw = 3.0 pixscale = 10. W = degw * 3600 / 10. H = W hi = 6 cmap = cmap_discretize('jet', hi + 1) wcs = Tan(ra, dec, W / 2. + 0.5, H / 2. + 0.5, -pixscale / 3600., 0., 0., pixscale / 3600., float(W), float(H)) r0, d0 = wcs.pixelxy2radec(1, 1) r1, d1 = wcs.pixelxy2radec(W, H) extent = [min(r0, r1), max(r0, r1), min(d0, d1), max(d0, d1)] for expnums in [ [348666], [348666, 348710, 348686], [348659, 348667, 348658, 348666, 348665, 348669, 348668], None, [ 348683, 348687, 347333, 348686, 348685, 348692, 348694, 348659, 348667, 348658, 348666, 348665, 348669, 348668, 348707, 348709, 348708, 348710, 348711, 348716, 348717 ], ]: nexp = np.zeros((H, W), np.uint8) for ccd in ccds: if expnums is not None and not ccd.expnum in expnums: continue ccdwcs = survey.get_approx_wcs(ccd) r, d = ccdwcs.pixelxy2radec(1, 1) ok, x0, y0 = wcs.radec2pixelxy(r, d) r, d = ccdwcs.pixelxy2radec(ccd.width, ccd.height) ok, x1, y1 = wcs.radec2pixelxy(r, d) xlo = np.clip(int(np.round(min(x0, x1))) - 1, 0, W - 1) xhi = np.clip(int(np.round(max(x0, x1))) - 1, 0, W - 1) ylo = np.clip(int(np.round(min(y0, y1))) - 1, 0, H - 1) yhi = np.clip(int(np.round(max(y0, y1))) - 1, 0, H - 1) nexp[ylo:yhi + 1, xlo:xhi + 1] += 1 plt.clf() plt.imshow(nexp, interpolation='nearest', origin='lower', vmin=-0.5, vmax=hi + 0.5, cmap=cmap, extent=extent) plt.colorbar(ticks=np.arange(hi + 1)) ps.savefig() O = fits_table('obstatus/decam-tiles_obstatus.fits') O.cut(np.hypot(O.ra - ra, O.dec - dec) < 2.5) for p in [1, 2, 3]: print('Pass', p, 'exposures:', O.r_expnum[O.get('pass') == p]) O.cut(O.get('pass') == 2) print(len(O), 'pass 2 nearby') d = np.hypot(O.ra - ra, O.dec - dec) print('Dists:', d) I = np.flatnonzero(d < 0.5) assert (len(I) == 1) ocenter = O[I[0]] print('Center expnum', ocenter.r_expnum) I = np.flatnonzero(d >= 0.5) O.cut(I) #center = ccds[ccds.expnum == ocenter.r_expnum] #p2 = ccds[ccds. ok, xc, yc = wcs.radec2pixelxy(ocenter.ra, ocenter.dec) xx, yy = np.meshgrid(np.arange(W) + 1, np.arange(H) + 1) c_d2 = (xc - xx)**2 + (yc - yy)**2 best = np.ones((H, W), bool) for o in O: ok, x, y = wcs.radec2pixelxy(o.ra, o.dec) d2 = (x - xx)**2 + (y - yy)**2 best[d2 < c_d2] = False del d2 del c_d2, xx, yy # plt.clf() # plt.imshow(best, interpolation='nearest', origin='lower', cmap='gray', # vmin=0, vmax=1) # ps.savefig() plt.clf() plt.imshow(nexp * best, interpolation='nearest', origin='lower', vmin=-0.5, vmax=hi + 0.5, cmap=cmap, extent=extent) plt.colorbar(ticks=np.arange(hi + 1)) ps.savefig() plt.clf() n, b, p = plt.hist(np.clip(nexp[best], 0, hi), range=(-0.5, hi + 0.5), bins=hi + 1) plt.xlim(-0.5, hi + 0.5) ps.savefig() print('b', b) print('n', n) print('fracs', np.array(n) / np.sum(n)) print('pcts', ', '.join(['%.1f' % f for f in 100. * np.array(n) / np.sum(n)]))
def main(): """Main program. """ import argparse parser = argparse.ArgumentParser( description= "This script is used to produce lists of CCDs or bricks, for production purposes (building qdo queue, eg)." ) parser.add_argument('--calibs', action='store_true', help='Output CCDs that need to be calibrated.') parser.add_argument('--nper', type=int, default=None, help='Batch N calibs per line') parser.add_argument( '--byexp', action='store_true', default=False, help='Run one whole exposure per job (not one CCD per job)') parser.add_argument('--forced', action='store_true', help='Output forced-photometry commands') parser.add_argument('--lsb', action='store_true', help='Output Low-Surface-Brightness commands') parser.add_argument('--stage', help='Stage image files to given directory') parser.add_argument('--touching', action='store_true', help='Cut to only CCDs touching selected bricks') parser.add_argument('--near', action='store_true', help='Quick cut to only CCDs near selected bricks') parser.add_argument('--check-coadd', action='store_true', help='Check which coadds actually need to run.') parser.add_argument('--out', help='Output filename for calibs, default %(default)s', default='jobs') parser.add_argument('--command', action='store_true', help='Write out full command-line to run calib') parser.add_argument('--opt', help='With --command, extra options to add') parser.add_argument('--maxra', type=float, help='Maximum RA to run') parser.add_argument('--minra', type=float, help='Minimum RA to run') parser.add_argument('--maxdec', type=float, help='Maximum Dec to run') parser.add_argument('--mindec', type=float, help='Minimum Dec to run') parser.add_argument('--region', help='Region to select') parser.add_argument('--bricks', help='Set bricks.fits file to load') parser.add_argument('--ccds', help='Set ccds.fits file to load') parser.add_argument('--ignore_cuts', action='store_true', default=False, help='no photometric cuts') parser.add_argument('--save_to_fits', action='store_true', default=False, help='save cut brick,ccd to fits table') parser.add_argument( '--name', action='store', default='dr3', help='save with this suffix, e.g. refers to ccds table') parser.add_argument('--delete-sky', action='store_true', help='Delete any existing sky calibration files') parser.add_argument('--write-ccds', help='Write CCDs list as FITS table?') parser.add_argument('--nccds', action='store_true', default=False, help='Prints number of CCDs per brick') parser.add_argument('--bands', default='g,r,z', help='Set bands to keep: comma-separated list.') opt = parser.parse_args() want_ccds = (opt.calibs or opt.forced or opt.lsb) want_bricks = not want_ccds survey = LegacySurveyData() if opt.bricks is not None: B = fits_table(opt.bricks) log('Read', len(B), 'from', opt.bricks) else: B = survey.get_bricks() log('Bricks Dec range:', B.dec.min(), B.dec.max()) if opt.ccds is not None: T = fits_table(opt.ccds) log('Read', len(T), 'from', opt.ccds) else: T = survey.get_ccds() log(len(T), 'CCDs') T.index = np.arange(len(T)) if opt.ignore_cuts == False: log('Applying CCD cuts...') if 'ccd_cuts' in T.columns(): T.cut(T.ccd_cuts == 0) log(len(T), 'CCDs survive cuts') bands = opt.bands.split(',') log('Filters:', np.unique(T.filter)) T.cut(np.flatnonzero(np.array([f in bands for f in T.filter]))) log('Cut to', len(T), 'CCDs in filters', bands) log('CCDs Dec range:', T.dec.min(), T.dec.max()) # I,J,d,counts = match_radec(B.ra, B.dec, T.ra, T.dec, 0.2, nearest=True, count=True) # plt.clf() # plt.hist(counts, counts.max()+1) # plt.savefig('bricks.png') # B.cut(I[counts >= 9]) # plt.clf() # plt.plot(B.ra, B.dec, 'b.') # #plt.scatter(B.ra[I], B.dec[I], c=counts) # plt.savefig('bricks2.png') # DES Stripe82 #rlo,rhi = 350.,360. # rlo,rhi = 300., 10. # dlo,dhi = -6., 4. # TINY bit #rlo,rhi = 350.,351.1 #dlo,dhi = 0., 1.1 # EDR+ # 860 bricks # ~10,000 CCDs #rlo,rhi = 239,246 #dlo,dhi = 5, 13 # DR1 #rlo,rhi = 0, 360 # part 1 #dlo,dhi = 25, 40 # part 2 #dlo,dhi = 20,25 # part 3 #dlo,dhi = 15,20 # part 4 #dlo,dhi = 10,15 # part 5 #dlo,dhi = 5,10 # the rest #dlo,dhi = -11, 5 #dlo,dhi = 15,25.5 dlo, dhi = -25, 40 rlo, rhi = 0, 360 # Arjun says 3x3 coverage area is roughly # RA=240-252 DEC=6-12 (but not completely rectangular) # COSMOS #rlo,rhi = 148.9, 151.2 #dlo,dhi = 0.9, 3.5 # A nice well-behaved region (EDR2/3) # rlo,rhi = 243.6, 244.6 # dlo,dhi = 8.1, 8.6 # 56 bricks, ~725 CCDs #B.cut((B.ra > 240) * (B.ra < 242) * (B.dec > 5) * (B.dec < 7)) # 240 bricks, ~3000 CCDs #B.cut((B.ra > 240) * (B.ra < 244) * (B.dec > 5) * (B.dec < 9)) # 535 bricks, ~7000 CCDs #B.cut((B.ra > 240) * (B.ra < 245) * (B.dec > 5) * (B.dec < 12)) if opt.region in ['test1', 'test2', 'test3', 'test4']: nm = dict( test1='2446p115', # weird stuff around bright star test2='1183p292', # faint sources around bright galaxy test3='3503p005', # DES test4='1163p277', # Pollux )[opt.region] B.cut(np.flatnonzero(np.array([s == nm for s in B.brickname]))) log('Cut to', len(B), 'bricks') log(B.ra, B.dec) dlo, dhi = -90, 90 rlo, rhi = 0, 360 elif opt.region == 'edr': # EDR: # 535 bricks, ~7000 CCDs rlo, rhi = 240, 245 dlo, dhi = 5, 12 elif opt.region == 'dr8-decam': rlo, rhi = 0, 360 dlo, dhi = -70, 40 log('DR8-DECam region') elif opt.region == 'edrplus': rlo, rhi = 235, 248 dlo, dhi = 5, 15 elif opt.region == 'edr-south': rlo, rhi = 240, 245 dlo, dhi = 5, 10 elif opt.region == 'cosmos1': # 16 bricks in the core of the COSMOS field. rlo, rhi = 149.75, 150.75 dlo, dhi = 1.6, 2.6 elif opt.region == 'pristine': # Stream? rlo, rhi = 240, 250 dlo, dhi = 10, 15 elif opt.region == 'des': dlo, dhi = -6., 4. rlo, rhi = 317., 7. T.cut(np.flatnonzero(np.array(['CPDES82' in fn for fn in T.cpimage]))) log('Cut to', len(T), 'CCDs with "CPDES82" in filename') elif opt.region == 'subdes': rlo, rhi = 320., 360. dlo, dhi = -1.25, 1.25 elif opt.region == 'northwest': rlo, rhi = 240, 360 dlo, dhi = 20, 40 elif opt.region == 'north': rlo, rhi = 120, 240 dlo, dhi = 20, 40 elif opt.region == 'northeast': rlo, rhi = 0, 120 dlo, dhi = 20, 40 elif opt.region == 'southwest': rlo, rhi = 240, 360 dlo, dhi = -20, 0 elif opt.region == 'south': rlo, rhi = 120, 240 dlo, dhi = -20, 0 elif opt.region == 'southeast': rlo, rhi = 0, 120 dlo, dhi = -20, 0 elif opt.region == 'southsoutheast': rlo, rhi = 0, 120 dlo, dhi = -20, -10 elif opt.region == 'midwest': rlo, rhi = 240, 360 dlo, dhi = 0, 20 elif opt.region == 'middle': rlo, rhi = 120, 240 dlo, dhi = 0, 20 elif opt.region == 'mideast': rlo, rhi = 0, 120 dlo, dhi = 0, 20 elif opt.region == 'grz': # Bricks with grz coverage. # Be sure to use --bricks survey-bricks-in-dr1.fits # which has_[grz] columns. B.cut((B.has_g == 1) * (B.has_r == 1) * (B.has_z == 1)) log('Cut to', len(B), 'bricks with grz coverage') elif opt.region == 'nogrz': # Bricks without grz coverage. # Be sure to use --bricks survey-bricks-in-dr1.fits # which has_[grz] columns. B.cut(np.logical_not((B.has_g == 1) * (B.has_r == 1) * (B.has_z == 1))) log('Cut to', len(B), 'bricks withOUT grz coverage') elif opt.region == 'deep2': rlo, rhi = 250, 260 dlo, dhi = 30, 35 elif opt.region == 'deep2f2': rlo, rhi = 251.4, 254.4 dlo, dhi = 34.6, 35.3 elif opt.region == 'deep2f3': rlo, rhi = 351.25, 353.75 dlo, dhi = 0, 0.5 elif opt.region == 'deep3': rlo, rhi = 214, 216 dlo, dhi = 52.25, 53.25 elif opt.region == 'virgo': rlo, rhi = 185, 190 dlo, dhi = 10, 15 elif opt.region == 'virgo2': rlo, rhi = 182, 192 dlo, dhi = 8, 18 elif opt.region == 'coma': # van Dokkum et al Coma cluster ultra-diffuse galaxies: 3x3 field centered on Coma cluster rc, dc = 195., 28. dd = 1.5 cosdec = np.cos(np.deg2rad(dc)) rlo, rhi = rc - dd / cosdec, rc + dd / cosdec dlo, dhi = dc - dd, dc + dd elif opt.region == 'lsb': rlo, rhi = 147.2, 147.8 dlo, dhi = -0.4, 0.4 elif opt.region == 'eboss-sgc': # generous boundaries to make sure get all relevant images # RA -45 to +45 # Dec -5 to +7 rlo, rhi = 310., 50. dlo, dhi = -6., 6. elif opt.region == 'eboss-ngc': # generous boundaries to make sure get all relevant images # NGC ELGs # RA 115 to 175 # Dec 15 to 30 # rlo,rhi = 122., 177. # dlo,dhi = 12., 32. rlo, rhi = 126., 168. dlo, dhi = 18., 33. elif opt.region == 'mzls': dlo, dhi = -10., 90. # -10: pull in Stripe 82 data too elif opt.region == 'dr4-bootes': # https://desi.lbl.gov/trac/wiki/DecamLegacy/DR4sched #dlo,dhi = 34., 35. #rlo,rhi = 209.5, 210.5 dlo, dhi = 33., 36. rlo, rhi = 216.5, 219.5 elif opt.region == 'des-sn-x3': #rlo,rhi = 36., 37. #dlo,dhi = -5., -4. rlo, rhi = 36., 36.5 dlo, dhi = -4.5, -4. elif opt.region == 'ngc2632': # open cluster rlo, rhi = 129.0, 131.0 dlo, dhi = 19.0, 20.5 elif opt.region == 'dr8sky': rlo, rhi = 35.0, 37.0 dlo, dhi = -3.0, -1.0 # ADM DR8 test regions, see, e.g.: # https://desi.lbl.gov/trac/wiki/DecamLegacy/DR8#Testregions elif opt.region == 'dr8-test-s82': rlo, rhi = 0, 45 dlo, dhi = -1.25, 1.25 elif opt.region == 'dr8-test-hsc-sgc': rlo, rhi = 30, 40 dlo, dhi = -6.5, -1.25 elif opt.region == 'dr8-test-hsc-ngc': rlo, rhi = 177.5, 182.5 dlo, dhi = -1, 1 elif opt.region == 'dr8-test-edr': rlo, rhi = 240, 245 dlo, dhi = 5, 12 elif opt.region == 'dr8-test-hsc-north': rlo, rhi = 240, 250 dlo, dhi = 42, 45 elif opt.region == 'dr8-test-deep2-egs': rlo, rhi = 213, 216.5 dlo, dhi = 52, 54 elif opt.region == 'dr8-test-overlap': rlo, rhi = 132, 140.5 dlo, dhi = 31.5, 35 if opt.mindec is not None: dlo = opt.mindec if opt.maxdec is not None: dhi = opt.maxdec if opt.minra is not None: rlo = opt.minra if opt.maxra is not None: rhi = opt.maxra if rlo < rhi: B.cut((B.ra >= rlo) * (B.ra <= rhi) * (B.dec >= dlo) * (B.dec <= dhi)) else: # RA wrap B.cut( np.logical_or(B.ra >= rlo, B.ra <= rhi) * (B.dec >= dlo) * (B.dec <= dhi)) log(len(B), 'bricks in range; cut Dec range', B.dec.min(), B.dec.max()) #for name in B.get('brickname'): # print(name) #B.writeto('bricks-cut.fits') bricksize = 0.25 # A bit more than 0.25-degree brick radius + Bok image radius ~ 0.57 search_radius = 1.05 * np.sqrt(2.) * (bricksize + (0.455 * 4096 / 3600.)) / 2. log(len(T), 'CCDs') log(len(B), 'Bricks') I, J, d = match_radec(B.ra, B.dec, T.ra, T.dec, search_radius, nearest=True) B.cut(I) log('Cut to', len(B), 'bricks near CCDs') log('Bricks Dec range:', B.dec.min(), B.dec.max()) # plt.clf() # plt.plot(B.ra, B.dec, 'b.') # plt.title('DR3 bricks') # plt.axis([360, 0, np.min(B.dec)-1, np.max(B.dec)+1]) # plt.savefig('bricks.png') if opt.touching: I, J, d = match_radec(T.ra, T.dec, B.ra, B.dec, search_radius, nearest=True) # list the ones that will be cut # drop = np.ones(len(T)) # drop[I] = False # for i in np.flatnonzero(drop): # from astrometry.util.starutil_numpy import degrees_between # dists = degrees_between(B.ra, B.dec, T.ra[i], T.dec[i]) # mindist = min(dists) # print('Dropping:', T.ra[i], T.dec[i], 'min dist', mindist, 'search_radius', search_radius) T.cut(I) log('Cut to', len(T), 'CCDs near bricks') # sort by RA increasing B.cut(np.argsort(B.ra)) if opt.save_to_fits: assert (opt.touching) # Write cut tables to file for tab, typ in zip([B, T], ['bricks', 'ccds']): fn = '%s-%s-cut.fits' % (typ, opt.region) if os.path.exists(fn): os.remove(fn) tab.writeto(fn) log('Wrote %s' % fn) # Write text files listing ccd and filename names # nm1,nm2= 'ccds-%s.txt'% opt.region,'filenames-%s.txt' % opt.region # if os.path.exists(nm1): # os.remove(nm1) # if os.path.exists(nm2): # os.remove(nm2) # f1,f2=open(nm1,'w'),open(nm2,'w') # fns= list(set(T.get('image_filename'))) # for fn in fns: # f2.write('%s\n' % fn.strip()) # for ti in T: # f1.write('%s\n' % ti.get('image_filename').strip()) # f1.close() # f2.close() # log('Wrote *-names.txt') if opt.touching: if want_bricks: # Shortcut the list of bricks that are definitely touching CCDs -- # a brick-ccd pair within this radius must be touching. closest_radius = 0.95 * (bricksize + 0.262 * 2048 / 3600.) / 2. J1, nil, nil = match_radec(B.ra, B.dec, T.ra, T.dec, closest_radius, nearest=True) log(len(J1), 'of', len(B), 'bricks definitely touch CCDs') tocheck = np.ones(len(B), bool) tocheck[J1] = False J2 = [] for j in np.flatnonzero(tocheck): b = B[j] wcs = wcs_for_brick(b) I = ccds_touching_wcs(wcs, T) log(len(I), 'CCDs for brick', b.brickname) if len(I) == 0: continue J2.append(j) J = np.hstack((J1, J2)) J = np.sort(J).astype(int) B.cut(J) log('Cut to', len(B), 'bricks touching CCDs') else: J = [] allI = set() for j, b in enumerate(B): wcs = wcs_for_brick(b) I = ccds_touching_wcs(wcs, T) log(len(I), 'CCDs for brick', b.brickname) if len(I) == 0: continue allI.update(I) J.append(j) allI = list(allI) allI.sort() B.cut(np.array(J)) log('Cut to', len(B), 'bricks touching CCDs') elif opt.near: # Find CCDs near bricks allI, nil, nil = match_radec(T.ra, T.dec, B.ra, B.dec, search_radius, nearest=True) # Find bricks near CCDs J, nil, nil = match_radec(B.ra, B.dec, T.ra, T.dec, search_radius, nearest=True) B.cut(J) log('Cut to', len(B), 'bricks near CCDs') else: allI = np.arange(len(T)) if opt.byexp: nil, eI = np.unique(T.expnum[allI], return_index=True) allI = allI[eI] print('Cut to', len(allI), 'expnums') if opt.nccds: from queue import Queue from threading import Thread log('Checking number of CCDs per brick') def worker(): while True: i = q.get() if i is None: break b = B[i] wcs = wcs_for_brick(b) I = ccds_touching_wcs(wcs, T) log(b.brickname, len(I)) q.task_done() q = Queue() num_threads = 24 threads = [] for i in range(num_threads): t = Thread(target=worker) t.start() threads.append(t) for i in range(len(B)): q.put(i) q.join() for i in range(num_threads): q.put(None) for t in threads: t.join() if opt.write_ccds: T[allI].writeto(opt.write_ccds) log('Wrote', opt.write_ccds) if want_bricks: # Print the list of bricks and exit. for b in B: print(b.brickname) if opt.save_to_fits: B.writeto('bricks-%s-touching.fits' % opt.region) if not want_ccds: sys.exit(0) ## Be careful here -- T has been cut; we want to write out T.index. ## 'allI' contains indices into T. if opt.stage is not None: cmd_pat = 'rsync -LRarv %s %s' fns = set() for iccd in allI: im = survey.get_image_object(T[iccd]) fns.update([ im.imgfn, im.wtfn, im.dqfn, im.psffn, im.merged_psffn, im.merged_splineskyfn, im.splineskyfn ]) for i, fn in enumerate(fns): print('File', i + 1, 'of', len(fns), ':', fn) if not os.path.exists(fn): print('No such file:', fn) continue base = survey.get_survey_dir() if base.endswith('/'): base = base[:-1] rel = os.path.relpath(fn, base) dest = os.path.join(opt.stage, rel) print('Dest:', dest) if os.path.exists(dest): print('Exists:', dest) continue cmd = cmd_pat % ('%s/./%s' % (base, rel), opt.stage) print(cmd) rtn = os.system(cmd) assert (rtn == 0) sys.exit(0) if opt.forced: log('Writing forced-photometry commands to', opt.out) f = open(opt.out, 'w') log('Total of', len(allI), 'CCDs') for j, i in enumerate(allI): expstr = '%08i' % T.expnum[i] imgfn = os.path.join(survey.survey_dir, 'images', T.image_filename[i].strip()) if (not os.path.exists(imgfn) and imgfn.endswith('.fz') and os.path.exists(imgfn[:-3])): imgfn = imgfn[:-3] outfn = os.path.join( expstr[:5], expstr, 'forced-%s-%s-%s.fits' % (T.camera[i].strip(), expstr, T.ccdname[i])) f.write( 'python legacypipe/forced_photom.py --apphot --derivs --catalog-dir /project/projectdirs/cosmo/data/legacysurvey/dr7/ %i %s forced/%s\n' % (T.expnum[i], T.ccdname[i], outfn)) f.close() log('Wrote', opt.out) fn = 'forced-ccds.fits' T[allI].writeto(fn) print('Wrote', fn) sys.exit(0) if opt.lsb: log('Writing LSB commands to', opt.out) f = open(opt.out, 'w') log('Total of', len(allI), 'CCDs') for j, i in enumerate(allI): exp = T.expnum[i] ext = T.ccdname[i].strip() outfn = 'lsb/lsb-%s-%s.fits' % (exp, ext) f.write( 'python legacyanalysis/lsb.py --expnum %i --extname %s --out %s -F -n > lsb/lsb-%s-%s.log 2>&1\n' % (exp, ext, outfn, exp, ext)) f.close() log('Wrote', opt.out) sys.exit(0) log('Writing calibs to', opt.out) f = open(opt.out, 'w') log('Total of', len(allI), 'CCDs') batch = [] def write_batch(f, batch, cmd): if cmd is None: cmd = '' f.write(cmd + ' '.join(batch) + '\n') cmd = None if opt.command: cmd = 'python legacypipe/run-calib.py ' if opt.opt is not None: cmd += opt.opt + ' ' for j, i in enumerate(allI): if opt.delete_sky: log(j + 1, 'of', len(allI)) im = survey.get_image_object(T[i]) if opt.delete_sky and os.path.exists(im.skyfn): log(' deleting:', im.skyfn) os.unlink(im.skyfn) if opt.command: if opt.byexp: s = '--expnum %i' % (T.expnum[i]) else: s = '%i-%s' % (T.expnum[i], T.ccdname[i]) prefix = 'python legacypipe/run-calib.py ' if opt.opt is not None: prefix = prefix + opt.opt #('python legacypipe/run-calib.py --expnum %i --ccdname %s' % # (T.expnum[i], T.ccdname[i])) else: s = '%i' % T.index[i] prefix = '' if j < 10: print('Index', T.index[i], 'expnum', T.expnum[i], 'ccdname', T.ccdname[i], 'filename', T.image_filename[i]) if not opt.nper: f.write(prefix + s + '\n') else: batch.append(s) if len(batch) >= opt.nper: write_batch(f, batch, cmd) batch = [] if len(batch): write_batch(f, batch, cmd) f.close() log('Wrote', opt.out) return 0
def main(): parser = argparse.ArgumentParser() parser.add_argument('--build-sample', action='store_true', help='Build the sample.') parser.add_argument('--jpg-cutouts', action='store_true', help='Get jpg cutouts from the viewer.') parser.add_argument('--ccd-cutouts', action='store_true', help='Get CCD cutouts of each galaxy.') parser.add_argument('--runbrick', action='store_true', help='Run the pipeline.') parser.add_argument('--build-webpage', action='store_true', help='(Re)build the web content.') args = parser.parse_args() # Top-level directory key = 'LEGACY_SURVEY_LARGE_GALAXIES' if key not in os.environ: print('Required ${} environment variable not set'.format(key)) return 0 largedir = os.getenv(key) samplefile = os.path.join(largedir, 'large-galaxies-sample.fits') # -------------------------------------------------- # Build the sample of large galaxies based on the available imaging. if args.build_sample: # Read the parent catalog. cat = read_rc3() # Create a simple WCS object for each object and find all the CCDs # touching that WCS footprint. survey = LegacySurveyData(version='dr2') # hack! allccds = survey.get_ccds() keep = np.concatenate((survey.apply_blacklist(allccds), survey.photometric_ccds(allccds))) allccds.cut(keep) ccdlist = [] outcat = [] for gal in cat: galwcs = _simplewcs(gal) ccds1 = allccds[ccds_touching_wcs(galwcs, allccds)] ccds1 = ccds1[_uniqccds(ccds1)] if len(ccds1) > 0 and 'g' in ccds1.filter and 'r' in ccds1.filter and 'z' in ccds1.filter: print('Found {} CCDs for {}, D(25)={:.4f}'.format( len(ccds1), gal['GALAXY'], gal['RADIUS'])) ccdsfile = os.path.join(largedir, 'ccds', '{}-ccds.fits'.format(gal['GALAXY'].strip().lower())) print(' Writing {}'.format(ccdsfile)) if os.path.isfile(ccdsfile): os.remove(ccdsfile) ccds1.writeto(ccdsfile) ccdlist.append(ccds1) if len(outcat) == 0: outcat = gal else: outcat = vstack((outcat, gal)) #if gal['GALAXY'] == 'MCG5-19-36': # pdb.set_trace() # Write out the final catalog. samplefile = os.path.join(largedir, 'large-galaxies-sample.fits') if os.path.isfile(samplefile): os.remove(samplefile) print('Writing {}'.format(samplefile)) outcat.write(samplefile) print(outcat) # Do we need to transfer any of the data to nyx? _getfiles(merge_tables(ccdlist)) # -------------------------------------------------- # Get data, model, and residual cutouts from the legacysurvey viewer. Also # get thumbnails that are lower resolution. if args.jpg_cutouts: thumbsize = 100 sample = fits.getdata(samplefile, 1) for gal in sample: size = np.ceil(10*gal['RADIUS']/PIXSCALE) thumbpixscale = PIXSCALE*size/thumbsize #imageurl = 'http://legacysurvey.org/viewer/jpeg-cutout-decals-dr2?ra={:.6f}&dec={:.6f}'.format(gal['RA'], gal['DEC'])+\ # '&pixscale={:.3f}&size={:g}'.format(PIXSCALE, size) #imagejpg = os.path.join(largedir, 'cutouts', gal['GALAXY'].strip().lower()+'-image.jpg') #if os.path.isfile(imagejpg): # os.remove(imagejpg) #os.system('wget --continue -O {:s} "{:s}"' .format(imagejpg, imageurl)) thumburl = 'http://legacysurvey.org/viewer/jpeg-cutout-decals-dr2?ra={:.6f}&dec={:.6f}'.format(gal['RA'], gal['DEC'])+\ '&pixscale={:.3f}&size={:g}'.format(thumbpixscale, thumbsize) thumbjpg = os.path.join(largedir, 'cutouts', gal['GALAXY'].strip().lower()+'-image-thumb.jpg') if os.path.isfile(thumbjpg): os.remove(thumbjpg) os.system('wget --continue -O {:s} "{:s}"' .format(thumbjpg, thumburl)) # -------------------------------------------------- # (Re)build the webpage. if args.build_webpage: # index.html html = open(os.path.join(largedir, 'index.html'), 'w') html.write('<html><body>\n') html.write('<h1>Sample of Large Galaxies</h1>\n') html.write('<table border="2" width="30%">\n') html.write('<tbody>\n') sample = fits.getdata(samplefile, 1) for gal in sample: # Add coordinates and sizes here. galaxy = gal['GALAXY'].strip().lower() html.write('<tr>\n') html.write('<td><a href="html/{}.html">{}</a></td>\n'.format(galaxy, galaxy.upper())) html.write('<td><a href="http://legacysurvey.org/viewer/?ra={:.6f}&dec={:.6f}" target="_blank"><img src=cutouts/{}-image-thumb.jpg alt={} /></a></td>\n'.format(gal['RA'], gal['DEC'], galaxy, galaxy.upper())) # html.write('<td><a href="html/{}.html"><img src=cutouts/{}-image-thumb.jpg alt={} /></a></td>\n'.format(galaxy, galaxy, galaxy.upper())) html.write('</tr>\n') html.write('</tbody>\n') html.write('</table>\n') html.write('</body></html>\n') html.close() sys.exit(1) # individual galaxy pages for gal in sample[:3]: galaxy = gal['GALAXY'].strip().lower() html = open(os.path.join(largedir, 'html/{}.html'.format(galaxy)), 'w') html.write('<html><body>\n') html.write('<a href=../cutouts/{}.jpg><img src=../cutouts/{}-image.jpg alt={} /></a>\n'.format(galaxy, galaxy, galaxy, galaxy.upper())) html.write('</body></html>\n') html.close() # -------------------------------------------------- # Get cutouts of all the CCDs for each galaxy. if args.ccd_cutouts: sample = fits.getdata(samplefile, 1) for gal in sample[1:2]: galaxy = gal['GALAXY'].strip().lower() ccdsfile = os.path.join(largedir, 'ccds', '{}-ccds.fits'.format(galaxy)) ccds = fits.getdata(ccdsfile) pdb.set_trace() # -------------------------------------------------- # Run the pipeline. if args.runbrick: sample = fits.getdata(samplefile, 1) for gal in sample[1:2]: galaxy = gal['GALAXY'].strip().lower() diam = 10*np.ceil(gal['RADIUS']/PIXSCALE).astype('int16') # [pixels] # Note: zoom is relative to the center of an imaginary brick with # dimensions (0, 3600, 0, 3600). survey = LegacySurveyData(version='dr2', output_dir=largedir) run_brick(None, survey, radec=(gal['RA'], gal['DEC']), blobxy=zip([diam/2], [diam/2]), threads=1, zoom=(1800-diam/2, 1800+diam/2, 1800-diam/2, 1800+diam/2), wise=False, forceAll=True, writePickles=False, do_calibs=False, write_metrics=False, pixPsf=True, splinesky=True, early_coadds=True, stages=['writecat'], ceres=False) pdb.set_trace()
def main(): ps = PlotSequence('cov') survey = LegacySurveyData() ra,dec = 242.0, 10.2 fn = 'coverage-ccds.fits' if not os.path.exists(fn): ccds = survey.get_ccds() ccds.cut(ccds.filter == 'r') ccds.cut(ccds.propid == '2014B-0404') ccds.cut(np.hypot(ccds.ra_bore - ra, ccds.dec_bore - dec) < 2.5) print(np.unique(ccds.expnum), 'unique exposures') print('propids', np.unique(ccds.propid)) ccds.writeto(fn) else: ccds = fits_table(fn) plt.clf() for e in np.unique(ccds.expnum): I = np.flatnonzero(ccds.expnum == e) plt.plot(ccds.ra[I], ccds.dec[I], '.') ps.savefig() degw = 3.0 pixscale = 10. W = degw * 3600 / 10. H = W hi = 6 cmap = cmap_discretize('jet', hi+1) wcs = Tan(ra, dec, W/2.+0.5, H/2.+0.5, -pixscale/3600., 0., 0., pixscale/3600., float(W), float(H)) r0,d0 = wcs.pixelxy2radec(1,1) r1,d1 = wcs.pixelxy2radec(W,H) extent = [min(r0,r1),max(r0,r1), min(d0,d1),max(d0,d1)] for expnums in [ [348666], [348666,348710, 348686], [348659, 348667, 348658, 348666, 348665, 348669, 348668], None, [348683, 348687, 347333, 348686, 348685, 348692, 348694, 348659, 348667, 348658, 348666, 348665, 348669, 348668, 348707, 348709, 348708, 348710, 348711, 348716, 348717], ]: nexp = np.zeros((H,W), np.uint8) for ccd in ccds: if expnums is not None and not ccd.expnum in expnums: continue ccdwcs = survey.get_approx_wcs(ccd) r,d = ccdwcs.pixelxy2radec(1, 1) ok,x0,y0 = wcs.radec2pixelxy(r, d) r,d = ccdwcs.pixelxy2radec(ccd.width, ccd.height) ok,x1,y1 = wcs.radec2pixelxy(r, d) xlo = np.clip(int(np.round(min(x0,x1))) - 1, 0, W-1) xhi = np.clip(int(np.round(max(x0,x1))) - 1, 0, W-1) ylo = np.clip(int(np.round(min(y0,y1))) - 1, 0, H-1) yhi = np.clip(int(np.round(max(y0,y1))) - 1, 0, H-1) nexp[ylo:yhi+1, xlo:xhi+1] += 1 plt.clf() plt.imshow(nexp, interpolation='nearest', origin='lower', vmin=-0.5, vmax=hi+0.5, cmap=cmap, extent=extent) plt.colorbar(ticks=np.arange(hi+1)) ps.savefig() O = fits_table('obstatus/decam-tiles_obstatus.fits') O.cut(np.hypot(O.ra - ra, O.dec - dec) < 2.5) for p in [1,2,3]: print('Pass', p, 'exposures:', O.r_expnum[O.get('pass') == p]) O.cut(O.get('pass') == 2) print(len(O), 'pass 2 nearby') d = np.hypot(O.ra - ra, O.dec - dec) print('Dists:', d) I = np.flatnonzero(d < 0.5) assert(len(I) == 1) ocenter = O[I[0]] print('Center expnum', ocenter.r_expnum) I = np.flatnonzero(d >= 0.5) O.cut(I) #center = ccds[ccds.expnum == ocenter.r_expnum] #p2 = ccds[ccds. ok,xc,yc = wcs.radec2pixelxy(ocenter.ra, ocenter.dec) xx,yy = np.meshgrid(np.arange(W)+1, np.arange(H)+1) c_d2 = (xc - xx)**2 + (yc - yy)**2 best = np.ones((H,W), bool) for o in O: ok,x,y = wcs.radec2pixelxy(o.ra, o.dec) d2 = (x - xx)**2 + (y - yy)**2 best[d2 < c_d2] = False del d2 del c_d2,xx,yy # plt.clf() # plt.imshow(best, interpolation='nearest', origin='lower', cmap='gray', # vmin=0, vmax=1) # ps.savefig() plt.clf() plt.imshow(nexp * best, interpolation='nearest', origin='lower', vmin=-0.5, vmax=hi+0.5, cmap=cmap, extent=extent) plt.colorbar(ticks=np.arange(hi+1)) ps.savefig() plt.clf() n,b,p = plt.hist(np.clip(nexp[best], 0, hi), range=(-0.5,hi+0.5), bins=hi+1) plt.xlim(-0.5, hi+0.5) ps.savefig() print('b', b) print('n', n) print('fracs', np.array(n) / np.sum(n)) print('pcts', ', '.join(['%.1f' % f for f in 100. * np.array(n)/np.sum(n)]))
def main(): """Main program. """ import argparse parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--force', action='store_true', help='Run calib processes even if files already exist?') parser.add_argument('--ccds', help='Set ccds.fits file to load') parser.add_argument( '--expnum', type=str, help='Cut to a single or set of exposures; comma-separated list') parser.add_argument('--extname', '--ccdname', help='Cut to a single extension/CCD name') parser.add_argument('--no-psf', dest='psfex', action='store_false', help='Do not compute PsfEx calibs') parser.add_argument('--no-sky', dest='sky', action='store_false', help='Do not compute sky models') parser.add_argument('--run-se', action='store_true', help='Run SourceExtractor') parser.add_argument('--splinesky', action='store_true', help='Spline sky, not constant') parser.add_argument('--threads', type=int, help='Run multi-threaded', default=None) parser.add_argument('--continue', dest='cont', default=False, action='store_true', help='Continue even if one file fails?') parser.add_argument('args', nargs=argparse.REMAINDER) opt = parser.parse_args() survey = LegacySurveyData() if opt.ccds is not None: T = fits_table(opt.ccds) T = survey.cleanup_ccds_table(T) print('Read', len(T), 'from', opt.ccds) else: T = survey.get_ccds() #print len(T), 'CCDs' if len(opt.args) == 0: if opt.expnum is not None: expnums = set([int(e) for e in opt.expnum.split(',')]) T.cut(np.array([e in expnums for e in T.expnum])) print('Cut to', len(T), 'with expnum in', expnums) if opt.extname is not None: T.cut(np.array([(t.strip() == opt.extname) for t in T.ccdname])) print('Cut to', len(T), 'with extname =', opt.extname) opt.args = range(len(T)) args = [] for a in opt.args: # Check for "expnum-ccdname" format. if '-' in str(a): words = a.split('-') assert (len(words) == 2) expnum = int(words[0]) ccdname = words[1] I = np.flatnonzero((T.expnum == expnum) * (T.ccdname == ccdname)) if len(I) != 1: print('Found', len(I), 'CCDs for expnum', expnum, 'CCDname', ccdname, ':', I) print('WARNING: skipping this expnum,ccdname') continue assert (len(I) == 1) t = T[I[0]] else: i = int(a) print('Index', i) t = T[i] #print('CCDnmatch', t.ccdnmatch) #if t.ccdnmatch < 20 and not opt.force: # print('Skipping ccdnmatch = %i' % t.ccdnmatch) # continue im = survey.get_image_object(t) print('Running', im.name) kwargs = dict(psfex=opt.psfex, sky=opt.sky) if opt.force: kwargs.update(force=True) if opt.run_se: kwargs.update(se=True) if opt.splinesky: kwargs.update(splinesky=True) if opt.cont: kwargs.update(noraise=True) if opt.threads: args.append((im, kwargs)) else: run_calibs((im, kwargs)) if opt.threads: from astrometry.util.multiproc import multiproc mp = multiproc(opt.threads) mp.map(run_calibs, args) return 0
def main(outfn='ccds-annotated.fits', ccds=None): survey = LegacySurveyData(ccds=ccds) if ccds is None: ccds = survey.get_ccds() # File from the "observing" svn repo: # https://desi.lbl.gov/svn/decam/code/observing/trunk tiles = fits_table('decam-tiles_obstatus.fits') I = survey.photometric_ccds(ccds) ccds.photometric = np.zeros(len(ccds), bool) ccds.photometric[I] = True I = survey.apply_blacklist(ccds) ccds.blacklist_ok = np.zeros(len(ccds), bool) ccds.blacklist_ok[I] = True ccds.good_region = np.empty((len(ccds), 4), np.int16) ccds.good_region[:,:] = -1 ccds.ra0 = np.zeros(len(ccds), np.float64) ccds.dec0 = np.zeros(len(ccds), np.float64) ccds.ra1 = np.zeros(len(ccds), np.float64) ccds.dec1 = np.zeros(len(ccds), np.float64) ccds.ra2 = np.zeros(len(ccds), np.float64) ccds.dec2 = np.zeros(len(ccds), np.float64) ccds.ra3 = np.zeros(len(ccds), np.float64) ccds.dec3 = np.zeros(len(ccds), np.float64) ccds.dra = np.zeros(len(ccds), np.float32) ccds.ddec = np.zeros(len(ccds), np.float32) ccds.ra_center = np.zeros(len(ccds), np.float64) ccds.dec_center = np.zeros(len(ccds), np.float64) ccds.sig1 = np.zeros(len(ccds), np.float32) ccds.meansky = np.zeros(len(ccds), np.float32) ccds.stdsky = np.zeros(len(ccds), np.float32) ccds.maxsky = np.zeros(len(ccds), np.float32) ccds.minsky = np.zeros(len(ccds), np.float32) ccds.pixscale_mean = np.zeros(len(ccds), np.float32) ccds.pixscale_std = np.zeros(len(ccds), np.float32) ccds.pixscale_max = np.zeros(len(ccds), np.float32) ccds.pixscale_min = np.zeros(len(ccds), np.float32) ccds.psfnorm_mean = np.zeros(len(ccds), np.float32) ccds.psfnorm_std = np.zeros(len(ccds), np.float32) ccds.galnorm_mean = np.zeros(len(ccds), np.float32) ccds.galnorm_std = np.zeros(len(ccds), np.float32) gaussgalnorm = np.zeros(len(ccds), np.float32) # 2nd moments ccds.psf_mx2 = np.zeros(len(ccds), np.float32) ccds.psf_my2 = np.zeros(len(ccds), np.float32) ccds.psf_mxy = np.zeros(len(ccds), np.float32) # ccds.psf_a = np.zeros(len(ccds), np.float32) ccds.psf_b = np.zeros(len(ccds), np.float32) ccds.psf_theta = np.zeros(len(ccds), np.float32) ccds.psf_ell = np.zeros(len(ccds), np.float32) ccds.humidity = np.zeros(len(ccds), np.float32) ccds.outtemp = np.zeros(len(ccds), np.float32) ccds.tileid = np.zeros(len(ccds), np.int32) ccds.tilepass = np.zeros(len(ccds), np.uint8) ccds.tileebv = np.zeros(len(ccds), np.float32) plvers = [] for iccd,ccd in enumerate(ccds): im = survey.get_image_object(ccd) print('Reading CCD %i of %i:' % (iccd+1, len(ccds)), im) X = im.get_good_image_subregion() for i,x in enumerate(X): if x is not None: ccds.good_region[iccd,i] = x W,H = ccd.width, ccd.height psf = None wcs = None sky = None try: tim = im.get_tractor_image(pixPsf=True, splinesky=True, subsky=False, pixels=False, dq=False, invvar=False) except: import traceback traceback.print_exc() plvers.append('') continue if tim is None: plvers.append('') continue psf = tim.psf wcs = tim.wcs.wcs sky = tim.sky hdr = tim.primhdr # print('Got PSF', psf) # print('Got sky', type(sky)) # print('Got WCS', wcs) ccds.humidity[iccd] = hdr.get('HUMIDITY') ccds.outtemp[iccd] = hdr.get('OUTTEMP') ccds.sig1[iccd] = tim.sig1 plvers.append(tim.plver) # parse 'DECaLS_15150_r' to get tile number obj = ccd.object.strip() words = obj.split('_') tile = None if len(words) == 3 and words[0] == 'DECaLS': try: tileid = int(words[1]) tile = tiles[tileid - 1] if tile.tileid != tileid: I = np.flatnonzero(tile.tileid == tileid) tile = tiles[I[0]] except: pass if tile is not None: ccds.tileid [iccd] = tile.tileid ccds.tilepass[iccd] = tile.get('pass') ccds.tileebv [iccd] = tile.ebv_med # Instantiate PSF on a grid S = 32 xx = np.linspace(1+S, W-S, 5) yy = np.linspace(1+S, H-S, 5) xx,yy = np.meshgrid(xx, yy) psfnorms = [] galnorms = [] for x,y in zip(xx.ravel(), yy.ravel()): p = im.psf_norm(tim, x=x, y=y) g = im.galaxy_norm(tim, x=x, y=y) psfnorms.append(p) galnorms.append(g) ccds.psfnorm_mean[iccd] = np.mean(psfnorms) ccds.psfnorm_std [iccd] = np.std (psfnorms) ccds.galnorm_mean[iccd] = np.mean(galnorms) ccds.galnorm_std [iccd] = np.std (galnorms) # PSF in center of field cx,cy = (W+1)/2., (H+1)/2. p = psf.getPointSourcePatch(cx, cy).patch ph,pw = p.shape px,py = np.meshgrid(np.arange(pw), np.arange(ph)) psum = np.sum(p) # print('psum', psum) p /= psum # centroids cenx = np.sum(p * px) ceny = np.sum(p * py) # print('cenx,ceny', cenx,ceny) # second moments x2 = np.sum(p * (px - cenx)**2) y2 = np.sum(p * (py - ceny)**2) xy = np.sum(p * (px - cenx)*(py - ceny)) # semi-major/minor axes and position angle theta = np.rad2deg(np.arctan2(2 * xy, x2 - y2) / 2.) theta = np.abs(theta) * np.sign(xy) s = np.sqrt(((x2 - y2)/2.)**2 + xy**2) a = np.sqrt((x2 + y2) / 2. + s) b = np.sqrt((x2 + y2) / 2. - s) ell = 1. - b/a # print('PSF second moments', x2, y2, xy) # print('PSF position angle', theta) # print('PSF semi-axes', a, b) # print('PSF ellipticity', ell) ccds.psf_mx2[iccd] = x2 ccds.psf_my2[iccd] = y2 ccds.psf_mxy[iccd] = xy ccds.psf_a[iccd] = a ccds.psf_b[iccd] = b ccds.psf_theta[iccd] = theta ccds.psf_ell [iccd] = ell print('Computing Gaussian approximate PSF quantities...') # Galaxy norm using Gaussian approximation of PSF. realpsf = tim.psf tim.psf = im.read_psf_model(0, 0, gaussPsf=True, psf_sigma=tim.psf_sigma) gaussgalnorm[iccd] = im.galaxy_norm(tim, x=cx, y=cy) tim.psf = realpsf # Sky -- evaluate on a grid (every ~10th pixel) skygrid = sky.evaluateGrid(np.linspace(0, ccd.width-1, int(1+ccd.width/10)), np.linspace(0, ccd.height-1, int(1+ccd.height/10))) ccds.meansky[iccd] = np.mean(skygrid) ccds.stdsky[iccd] = np.std(skygrid) ccds.maxsky[iccd] = skygrid.max() ccds.minsky[iccd] = skygrid.min() # WCS ccds.ra0[iccd],ccds.dec0[iccd] = wcs.pixelxy2radec(1, 1) ccds.ra1[iccd],ccds.dec1[iccd] = wcs.pixelxy2radec(1, H) ccds.ra2[iccd],ccds.dec2[iccd] = wcs.pixelxy2radec(W, H) ccds.ra3[iccd],ccds.dec3[iccd] = wcs.pixelxy2radec(W, 1) midx, midy = (W+1)/2., (H+1)/2. rc,dc = wcs.pixelxy2radec(midx, midy) ra,dec = wcs.pixelxy2radec([1,W,midx,midx], [midy,midy,1,H]) ccds.dra [iccd] = max(degrees_between(ra, dc+np.zeros_like(ra), rc, dc)) ccds.ddec[iccd] = max(degrees_between(rc+np.zeros_like(dec), dec, rc, dc)) ccds.ra_center [iccd] = rc ccds.dec_center[iccd] = dc # Compute scale change across the chip # how many pixels to step step = 10 xx = np.linspace(1+step, W-step, 5) yy = np.linspace(1+step, H-step, 5) xx,yy = np.meshgrid(xx, yy) pixscale = [] for x,y in zip(xx.ravel(), yy.ravel()): sx = [x-step, x-step, x+step, x+step, x-step] sy = [y-step, y+step, y+step, y-step, y-step] sr,sd = wcs.pixelxy2radec(sx, sy) rc,dc = wcs.pixelxy2radec(x, y) # project around a tiny little TAN WCS at (x,y), with 1" pixels locwcs = Tan(rc, dc, 0., 0., 1./3600, 0., 0., 1./3600, 1., 1.) ok,lx,ly = locwcs.radec2pixelxy(sr, sd) #print('local x,y:', lx, ly) A = polygon_area((lx, ly)) pixscale.append(np.sqrt(A / (2*step)**2)) # print('Pixel scales:', pixscale) ccds.pixscale_mean[iccd] = np.mean(pixscale) ccds.pixscale_min[iccd] = min(pixscale) ccds.pixscale_max[iccd] = max(pixscale) ccds.pixscale_std[iccd] = np.std(pixscale) ccds.plver = np.array(plvers) sfd = tractor.sfd.SFDMap() allbands = 'ugrizY' filts = ['%s %s' % ('DES', f) for f in allbands] wisebands = ['WISE W1', 'WISE W2', 'WISE W3', 'WISE W4'] ebv,ext = sfd.extinction(filts + wisebands, ccds.ra_center, ccds.dec_center, get_ebv=True) ext = ext.astype(np.float32) ccds.ebv = ebv.astype(np.float32) ccds.decam_extinction = ext[:,:len(allbands)] ccds.wise_extinction = ext[:,len(allbands):] # Depth detsig1 = ccds.sig1 / ccds.psfnorm_mean depth = 5. * detsig1 # that's flux in nanomaggies -- convert to mag ccds.psfdepth = -2.5 * (np.log10(depth) - 9) detsig1 = ccds.sig1 / ccds.galnorm_mean depth = 5. * detsig1 # that's flux in nanomaggies -- convert to mag ccds.galdepth = -2.5 * (np.log10(depth) - 9) # Depth using Gaussian FWHM. psf_sigma = ccds.fwhm / 2.35 gnorm = 1./(2. * np.sqrt(np.pi) * psf_sigma) detsig1 = ccds.sig1 / gnorm depth = 5. * detsig1 # that's flux in nanomaggies -- convert to mag ccds.gausspsfdepth = -2.5 * (np.log10(depth) - 9) # Gaussian galaxy depth detsig1 = ccds.sig1 / gaussgalnorm depth = 5. * detsig1 # that's flux in nanomaggies -- convert to mag ccds.gaussgaldepth = -2.5 * (np.log10(depth) - 9) ccds.writeto(outfn)
from __future__ import print_function from legacypipe.survey import LegacySurveyData import numpy as np from glob import glob import os if __name__ == '__main__': survey = LegacySurveyData() ccds = survey.get_ccds() print('Read', len(ccds), 'CCDs') expnums = np.unique(ccds.expnum) print(len(expnums), 'unique exposure numbers') #### sky = False ### #expnums = expnums[expnums < 140000] #pat = os.path.join(survey.survey_dir, 'calib', 'decam', # 'psfex-merged', '0013*', '*.fits') pat = os.path.join(survey.survey_dir, 'calib', 'decam', 'psfex-merged', '*', '*.fits') if sky: pat.replace('psfex', 'splinesky') print('file pattern:', pat) got_expnums = set() merged_fns = glob(pat) merged_fns.sort()
def main(): survey = LegacySurveyData() ccds = survey.get_ccds() print(len(ccds), 'CCDs') expnums = np.unique(ccds.expnum) print(len(expnums), 'unique exposures') for expnum in expnums: expnumstr = '%08i' % expnum skyoutfn = os.path.join('splinesky', expnumstr[:5], 'decam-%s.fits' % expnumstr) psfoutfn = os.path.join('psfex', expnumstr[:5], 'decam-%s.fits' % expnumstr) if os.path.exists(skyoutfn) and os.path.exists(psfoutfn): print('Exposure', expnum, 'is done already') continue C = ccds[ccds.expnum == expnum] print(len(C), 'CCDs in expnum', expnum) psfex = [] psfhdrvals = [] splinesky = [] skyhdrvals = [] for ccd in C: im = survey.get_image_object(ccd) fn = im.splineskyfn if os.path.exists(fn): T = fits_table(fn) splinesky.append(T) # print(fn) # T.about() hdr = fitsio.read_header(fn) skyhdrvals.append([hdr[k] for k in [ 'SKY', 'LEGPIPEV', 'PLVER']] + [expnum, ccd.ccdname]) else: print('File not found:', fn) fn = im.psffn if os.path.exists(fn): T = fits_table(fn) hdr = fitsio.read_header(fn, ext=1) keys = ['LOADED', 'ACCEPTED', 'CHI2', 'POLNAXIS', 'POLNGRP', 'PSF_FWHM', 'PSF_SAMP', 'PSFNAXIS', 'PSFAXIS1', 'PSFAXIS2', 'PSFAXIS3',] if hdr['POLNAXIS'] == 0: # No polynomials. Fake it. T.polgrp1 = np.array([0]) T.polgrp2 = np.array([0]) T.polname1 = np.array(['fake']) T.polname2 = np.array(['fake']) T.polzero1 = np.array([0]) T.polzero2 = np.array([0]) T.polscal1 = np.array([1]) T.polscal2 = np.array([1]) T.poldeg1 = np.array([0]) T.poldeg2 = np.array([0]) else: keys.extend([ 'POLGRP1', 'POLNAME1', 'POLZERO1', 'POLSCAL1', 'POLGRP2', 'POLNAME2', 'POLZERO2', 'POLSCAL2', 'POLDEG1']) for k in keys: T.set(k.lower(), np.array([hdr[k]])) psfex.append(T) #print(fn) #T.about() hdr = fitsio.read_header(fn) psfhdrvals.append([hdr.get(k,'') for k in [ 'LEGPIPEV', 'PLVER']] + [expnum, ccd.ccdname]) else: print('File not found:', fn) if len(psfex): padded = pad_arrays([p.psf_mask[0] for p in psfex]) cols = psfex[0].columns() cols.remove('psf_mask') T = merge_tables(psfex, columns=cols) T.psf_mask = np.concatenate([[p] for p in padded]) T.legpipev = np.array([h[0] for h in psfhdrvals]) T.plver = np.array([h[1] for h in psfhdrvals]) T.expnum = np.array([h[2] for h in psfhdrvals]) T.ccdname = np.array([h[3] for h in psfhdrvals]) fn = psfoutfn trymakedirs(fn, dir=True) T.writeto(fn) print('Wrote', fn) if len(splinesky): T = fits_table() T.gridw = np.array([t.gridvals[0].shape[1] for t in splinesky]) T.gridh = np.array([t.gridvals[0].shape[0] for t in splinesky]) padded = pad_arrays([t.gridvals[0] for t in splinesky]) T.gridvals = np.concatenate([[p] for p in padded]) padded = pad_arrays([t.xgrid[0] for t in splinesky]) T.xgrid = np.concatenate([[p] for p in padded]) padded = pad_arrays([t.xgrid[0] for t in splinesky]) T.ygrid = np.concatenate([[p] for p in padded]) cols = splinesky[0].columns() print('Columns:', cols) for c in ['gridvals', 'xgrid', 'ygrid']: cols.remove(c) T.add_columns_from(merge_tables(splinesky, columns=cols)) T.skyclass = np.array([h[0] for h in skyhdrvals]) T.legpipev = np.array([h[1] for h in skyhdrvals]) T.plver = np.array([h[2] for h in skyhdrvals]) T.expnum = np.array([h[3] for h in skyhdrvals]) T.ccdname = np.array([h[4] for h in skyhdrvals]) fn = skyoutfn trymakedirs(fn, dir=True) T.writeto(fn) print('Wrote', fn)
def main(): """Main program. """ import argparse parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('--force', action='store_true', help='Run calib processes even if files already exist?') parser.add_argument('--ccds', help='Set ccds.fits file to load') parser.add_argument('--expnum', type=int, help='Cut to a single exposure') parser.add_argument('--extname', '--ccdname', help='Cut to a single extension/CCD name') parser.add_argument('--no-psf', dest='psfex', action='store_false', help='Do not compute PsfEx calibs') parser.add_argument('--no-sky', dest='sky', action='store_false', help='Do not compute sky models') parser.add_argument('--run-se', action='store_true', help='Run SourceExtractor') parser.add_argument('--splinesky', action='store_true', help='Spline sky, not constant') parser.add_argument('--threads', type=int, help='Run multi-threaded', default=None) parser.add_argument('args',nargs=argparse.REMAINDER) opt = parser.parse_args() survey = LegacySurveyData() if opt.ccds is not None: T = fits_table(opt.ccds) print('Read', len(T), 'from', opt.ccds) else: T = survey.get_ccds() #print len(T), 'CCDs' if len(opt.args) == 0: if opt.expnum is not None: T.cut(T.expnum == opt.expnum) print('Cut to', len(T), 'with expnum =', opt.expnum) if opt.extname is not None: T.cut(np.array([(t.strip() == opt.extname) for t in T.ccdname])) print('Cut to', len(T), 'with extname =', opt.extname) opt.args = range(len(T)) args = [] for a in opt.args: # Check for "expnum-ccdname" format. if '-' in str(a): words = a.split('-') assert(len(words) == 2) expnum = int(words[0]) ccdname = words[1] I = np.flatnonzero((T.expnum == expnum) * (T.ccdname == ccdname)) if len(I) != 1: print('Found', len(I), 'CCDs for expnum', expnum, 'CCDname', ccdname, ':', I) assert(len(I) == 1) t = T[I[0]] else: i = int(a) print('Index', i) t = T[i] print('CCDnmatch', t.ccdnmatch) if t.ccdnmatch < 20 and not opt.force: print('Skipping ccdnmatch = %i' % t.ccdnmatch) continue im = survey.get_image_object(t) print('Running', im.calname) kwargs = dict(psfex=opt.psfex, sky=opt.sky) if opt.force: kwargs.update(force=True) if opt.run_se: kwargs.update(se=True) if opt.splinesky: kwargs.update(splinesky=True) if opt.threads: args.append((im, kwargs)) else: run_calibs((im, kwargs)) if opt.threads: from astrometry.util.multiproc import multiproc mp = multiproc(opt.threads) mp.map(run_calibs, args) return 0
def make_pickle_file(pfn, derivs=False, agn=False): survey = LegacySurveyData() ccds = survey.get_ccds() brickname = '0364m042' bricks = survey.get_bricks() brick = bricks[bricks.brickname == brickname][0] print('Brick', brick) catfn = survey.find_file('tractor', brick=brickname) print('Reading catalog from', catfn) cat = fits_table(catfn) print(len(cat), 'catalog entries') cat.cut(cat.brick_primary) print(len(cat), 'brick primary') ''' BRICKNAM BRICKID BRICKQ BRICKROW BRICKCOL RA DEC 0364m042 306043 3 343 145 36.4255910987483 -4.25000000000000 RA1 RA2 DEC1 DEC2 36.3004172461752 36.5507649513213 -4.37500000000000 -4.12500000000000 ''' rlo, rhi = brick.ra1, brick.ra2 dlo, dhi = brick.dec1, brick.dec2 #rlo,rhi = 36.4, 36.5 #dlo,dhi = -4.4, -4.3 ra, dec = (rlo + rhi) / 2., (dlo + dhi) / 2. ## optional cat.cut( (cat.ra > rlo) * (cat.ra < rhi) * (cat.dec > dlo) * (cat.dec < dhi)) print('Cut to', len(cat), 'catalog objects in RA,Dec box') lightcurves = dict([((brickname, oid), []) for oid in cat.objid]) # close enough to equator to ignore cos(dec) dra = 4096 / 2. * 0.262 / 3600. ddec = 2048 / 2. * 0.262 / 3600. ccds.cut((np.abs(ccds.ra - ra) < (rhi - rlo) / 2. + dra) * (np.abs(ccds.dec - dec) < (dhi - dlo) / 2. + ddec)) print('Cut to', len(ccds), 'CCDs overlapping brick') ### HACK #ccds = ccds[:50] for i, (expnum, ccdname) in enumerate(zip(ccds.expnum, ccds.ccdname)): ee = '%08i' % expnum flavor = 'vanilla' cols = [ 'brickname', 'objid', 'camera', 'expnum', 'ccdname', 'mjd', 'filter', 'flux', 'flux_ivar' ] if derivs: flavor = 'derivs' cols.extend( ['flux_dra', 'flux_ddec', 'flux_dra_ivar', 'flux_ddec_ivar']) if agn: flavor = 'agn' cols.extend(['flux_agn', 'flux_agn_ivar']) fn = 'forced/%s/%s/%s/forced-decam-%s-%s.fits' % (flavor, ee[:5], ee, ee, ccdname) if not os.path.exists(fn): print('WARNING: missing:', fn) continue T = fits_table(fn) print(i + 1, 'of', len(ccds), ':', len(T), 'in', fn) T.cut(T.brickname == brickname) print(len(T), 'in brick', brickname) found = 0 for t in T: #oid,expnum,ccdname,mjd,filter,flux,fluxiv in zip(T.objid, T.expnum, T.ccdname, T.mjd, T.filter, T.flux, T.flux_ivar): lc = lightcurves.get((t.brickname, t.objid), None) if lc is None: continue found += 1 #lc.append((expnum, ccdname, mjd, filter, flux, fluxiv)) lc.append([t.get(c) for c in cols]) print('Matched', found, 'sources to light curves') #pickle_to_file(lightcurves, pfn) ll = {} for k, v in lightcurves.items(): if len(v) == 0: continue T = fits_table() # T.expnum = np.array([vv[0] for vv in v]) # T.ccdname= np.array([vv[1] for vv in v]) # T.mjd = np.array([vv[2] for vv in v]) # T.filter = np.array([vv[3] for vv in v]) # T.flux = np.array([vv[4] for vv in v]) # T.fluxiv = np.array([vv[5] for vv in v]) for i, c in enumerate(cols): T.set(c, np.array([vv[i] for vv in v])) ll[k] = T pickle_to_file(ll, pfn)
def main(): survey = LegacySurveyData() ccds = survey.get_ccds() print(len(ccds), 'CCDs') expnums = np.unique(ccds.expnum) print(len(expnums), 'unique exposures') for expnum in expnums: expnumstr = '%08i' % expnum skyoutfn = os.path.join('splinesky', expnumstr[:5], 'decam-%s.fits' % expnumstr) psfoutfn = os.path.join('psfex', expnumstr[:5], 'decam-%s.fits' % expnumstr) if os.path.exists(skyoutfn) and os.path.exists(psfoutfn): print('Exposure', expnum, 'is done already') continue C = ccds[ccds.expnum == expnum] print(len(C), 'CCDs in expnum', expnum) psfex = [] psfhdrvals = [] splinesky = [] skyhdrvals = [] for ccd in C: im = survey.get_image_object(ccd) fn = im.splineskyfn if os.path.exists(fn): print('Reading', fn) T = None try: T = fits_table(fn) except KeyboardInterrupt: raise except: print('Failed to read file', fn, ':', sys.exc_info()[1]) if T is not None: splinesky.append(T) # print(fn) # T.about() hdr = fitsio.read_header(fn) skyhdrvals.append([hdr[k] for k in [ 'SKY', 'LEGPIPEV', 'PLVER']] + [expnum, ccd.ccdname]) else: print('File not found:', fn) fn = im.psffn if os.path.exists(fn): T = fits_table(fn) hdr = fitsio.read_header(fn, ext=1) keys = ['LOADED', 'ACCEPTED', 'CHI2', 'POLNAXIS', 'POLNGRP', 'PSF_FWHM', 'PSF_SAMP', 'PSFNAXIS', 'PSFAXIS1', 'PSFAXIS2', 'PSFAXIS3',] if hdr['POLNAXIS'] == 0: # No polynomials. Fake it. T.polgrp1 = np.array([0]) T.polgrp2 = np.array([0]) T.polname1 = np.array(['fake']) T.polname2 = np.array(['fake']) T.polzero1 = np.array([0]) T.polzero2 = np.array([0]) T.polscal1 = np.array([1]) T.polscal2 = np.array([1]) T.poldeg1 = np.array([0]) else: keys.extend([ 'POLGRP1', 'POLNAME1', 'POLZERO1', 'POLSCAL1', 'POLGRP2', 'POLNAME2', 'POLZERO2', 'POLSCAL2', 'POLDEG1']) for k in keys: try: v = hdr[k] except: print('Did not find key', k, 'in', fn) sys.exit(-1) T.set(k.lower(), np.array([hdr[k]])) psfex.append(T) #print(fn) #T.about() hdr = fitsio.read_header(fn) psfhdrvals.append([hdr.get(k,'') for k in [ 'LEGPIPEV', 'PLVER']] + [expnum, ccd.ccdname]) else: print('File not found:', fn) if len(psfex): padded = pad_arrays([p.psf_mask[0] for p in psfex]) cols = psfex[0].columns() cols.remove('psf_mask') T = merge_tables(psfex, columns=cols) T.psf_mask = np.concatenate([[p] for p in padded]) T.legpipev = np.array([h[0] for h in psfhdrvals]) T.plver = np.array([h[1] for h in psfhdrvals]) T.expnum = np.array([h[2] for h in psfhdrvals]) T.ccdname = np.array([h[3] for h in psfhdrvals]) fn = psfoutfn trymakedirs(fn, dir=True) T.writeto(fn) print('Wrote', fn) if len(splinesky): T = fits_table() T.gridw = np.array([t.gridvals[0].shape[1] for t in splinesky]) T.gridh = np.array([t.gridvals[0].shape[0] for t in splinesky]) padded = pad_arrays([t.gridvals[0] for t in splinesky]) T.gridvals = np.concatenate([[p] for p in padded]) padded = pad_arrays([t.xgrid[0] for t in splinesky]) T.xgrid = np.concatenate([[p] for p in padded]) padded = pad_arrays([t.xgrid[0] for t in splinesky]) T.ygrid = np.concatenate([[p] for p in padded]) cols = splinesky[0].columns() print('Columns:', cols) for c in ['gridvals', 'xgrid', 'ygrid']: cols.remove(c) T.add_columns_from(merge_tables(splinesky, columns=cols)) T.skyclass = np.array([h[0] for h in skyhdrvals]) T.legpipev = np.array([h[1] for h in skyhdrvals]) T.plver = np.array([h[2] for h in skyhdrvals]) T.expnum = np.array([h[3] for h in skyhdrvals]) T.ccdname = np.array([h[4] for h in skyhdrvals]) fn = skyoutfn trymakedirs(fn, dir=True) T.writeto(fn) print('Wrote', fn)
def main(): parser = argparse.ArgumentParser() parser.add_argument('--build-sample', action='store_true', help='Build the sample.') parser.add_argument('--jpg-cutouts', action='store_true', help='Get jpg cutouts from the viewer.') parser.add_argument('--ccd-cutouts', action='store_true', help='Get CCD cutouts of each galaxy.') parser.add_argument('--runbrick', action='store_true', help='Run the pipeline.') parser.add_argument('--build-webpage', action='store_true', help='(Re)build the web content.') args = parser.parse_args() # Top-level directory key = 'LEGACY_SURVEY_LARGE_GALAXIES' if key not in os.environ: print('Required ${} environment variable not set'.format(key)) return 0 largedir = os.getenv(key) samplefile = os.path.join(largedir, 'large-galaxies-sample.fits') # -------------------------------------------------- # Build the sample of large galaxies based on the available imaging. if args.build_sample: # Read the parent catalog. cat = read_rc3() # Create a simple WCS object for each object and find all the CCDs # touching that WCS footprint. survey = LegacySurveyData(version='dr2') # hack! allccds = survey.get_ccds() keep = np.concatenate((survey.apply_blacklist(allccds), survey.photometric_ccds(allccds))) allccds.cut(keep) ccdlist = [] outcat = [] for gal in cat: galwcs = _simplewcs(gal) ccds1 = allccds[ccds_touching_wcs(galwcs, allccds)] ccds1 = ccds1[_uniqccds(ccds1)] if len( ccds1 ) > 0 and 'g' in ccds1.filter and 'r' in ccds1.filter and 'z' in ccds1.filter: print('Found {} CCDs for {}, D(25)={:.4f}'.format( len(ccds1), gal['GALAXY'], gal['RADIUS'])) ccdsfile = os.path.join( largedir, 'ccds', '{}-ccds.fits'.format(gal['GALAXY'].strip().lower())) print(' Writing {}'.format(ccdsfile)) if os.path.isfile(ccdsfile): os.remove(ccdsfile) ccds1.writeto(ccdsfile) ccdlist.append(ccds1) if len(outcat) == 0: outcat = gal else: outcat = vstack((outcat, gal)) #if gal['GALAXY'] == 'MCG5-19-36': # pdb.set_trace() # Write out the final catalog. samplefile = os.path.join(largedir, 'large-galaxies-sample.fits') if os.path.isfile(samplefile): os.remove(samplefile) print('Writing {}'.format(samplefile)) outcat.write(samplefile) print(outcat) # Do we need to transfer any of the data to nyx? _getfiles(merge_tables(ccdlist)) # -------------------------------------------------- # Get data, model, and residual cutouts from the legacysurvey viewer. Also # get thumbnails that are lower resolution. if args.jpg_cutouts: thumbsize = 100 sample = fits.getdata(samplefile, 1) for gal in sample: size = np.ceil(10 * gal['RADIUS'] / PIXSCALE) thumbpixscale = PIXSCALE * size / thumbsize #imageurl = 'http://legacysurvey.org/viewer/jpeg-cutout-decals-dr2?ra={:.6f}&dec={:.6f}'.format(gal['RA'], gal['DEC'])+\ # '&pixscale={:.3f}&size={:g}'.format(PIXSCALE, size) #imagejpg = os.path.join(largedir, 'cutouts', gal['GALAXY'].strip().lower()+'-image.jpg') #if os.path.isfile(imagejpg): # os.remove(imagejpg) #os.system('wget --continue -O {:s} "{:s}"' .format(imagejpg, imageurl)) thumburl = 'http://legacysurvey.org/viewer/jpeg-cutout-decals-dr2?ra={:.6f}&dec={:.6f}'.format(gal['RA'], gal['DEC'])+\ '&pixscale={:.3f}&size={:g}'.format(thumbpixscale, thumbsize) thumbjpg = os.path.join( largedir, 'cutouts', gal['GALAXY'].strip().lower() + '-image-thumb.jpg') if os.path.isfile(thumbjpg): os.remove(thumbjpg) os.system('wget --continue -O {:s} "{:s}"'.format( thumbjpg, thumburl)) # -------------------------------------------------- # (Re)build the webpage. if args.build_webpage: # index.html html = open(os.path.join(largedir, 'index.html'), 'w') html.write('<html><body>\n') html.write('<h1>Sample of Large Galaxies</h1>\n') html.write('<table border="2" width="30%">\n') html.write('<tbody>\n') sample = fits.getdata(samplefile, 1) for gal in sample: # Add coordinates and sizes here. galaxy = gal['GALAXY'].strip().lower() html.write('<tr>\n') html.write('<td><a href="html/{}.html">{}</a></td>\n'.format( galaxy, galaxy.upper())) html.write( '<td><a href="http://legacysurvey.org/viewer/?ra={:.6f}&dec={:.6f}" target="_blank"><img src=cutouts/{}-image-thumb.jpg alt={} /></a></td>\n' .format(gal['RA'], gal['DEC'], galaxy, galaxy.upper())) # html.write('<td><a href="html/{}.html"><img src=cutouts/{}-image-thumb.jpg alt={} /></a></td>\n'.format(galaxy, galaxy, galaxy.upper())) html.write('</tr>\n') html.write('</tbody>\n') html.write('</table>\n') html.write('</body></html>\n') html.close() sys.exit(1) # individual galaxy pages for gal in sample[:3]: galaxy = gal['GALAXY'].strip().lower() html = open(os.path.join(largedir, 'html/{}.html'.format(galaxy)), 'w') html.write('<html><body>\n') html.write( '<a href=../cutouts/{}.jpg><img src=../cutouts/{}-image.jpg alt={} /></a>\n' .format(galaxy, galaxy, galaxy, galaxy.upper())) html.write('</body></html>\n') html.close() # -------------------------------------------------- # Get cutouts of all the CCDs for each galaxy. if args.ccd_cutouts: sample = fits.getdata(samplefile, 1) for gal in sample[1:2]: galaxy = gal['GALAXY'].strip().lower() ccdsfile = os.path.join(largedir, 'ccds', '{}-ccds.fits'.format(galaxy)) ccds = fits.getdata(ccdsfile) pdb.set_trace() # -------------------------------------------------- # Run the pipeline. if args.runbrick: sample = fits.getdata(samplefile, 1) for gal in sample[1:2]: galaxy = gal['GALAXY'].strip().lower() diam = 10 * np.ceil(gal['RADIUS'] / PIXSCALE).astype( 'int16') # [pixels] # Note: zoom is relative to the center of an imaginary brick with # dimensions (0, 3600, 0, 3600). survey = LegacySurveyData(version='dr2', output_dir=largedir) run_brick(None, survey, radec=(gal['RA'], gal['DEC']), blobxy=zip([diam / 2], [diam / 2]), threads=1, zoom=(1800 - diam / 2, 1800 + diam / 2, 1800 - diam / 2, 1800 + diam / 2), wise=False, forceAll=True, writePickles=False, do_calibs=False, write_metrics=False, pixPsf=True, splinesky=True, early_coadds=True, stages=['writecat'], ceres=False) pdb.set_trace()
def main(): """Main program. """ import argparse parser = argparse.ArgumentParser(description="This script is used to produce lists of CCDs or bricks, for production purposes (building qdo queue, eg).") parser.add_argument('--calibs', action='store_true', help='Output CCDs that need to be calibrated.') parser.add_argument('--nper', type=int, default=None, help='Batch N calibs per line') parser.add_argument('--forced', action='store_true', help='Output forced-photometry commands') parser.add_argument('--lsb', action='store_true', help='Output Low-Surface-Brightness commands') parser.add_argument('--touching', action='store_true', help='Cut to only CCDs touching selected bricks') parser.add_argument('--near', action='store_true', help='Quick cut to only CCDs near selected bricks') parser.add_argument('--check', action='store_true', help='Check which calibrations actually need to run.') parser.add_argument('--check-coadd', action='store_true', help='Check which caoadds actually need to run.') parser.add_argument('--out', help='Output filename for calibs, default %(default)s', default='jobs') parser.add_argument('--command', action='store_true', help='Write out full command-line to run calib') parser.add_argument('--opt', help='With --command, extra options to add') parser.add_argument('--maxdec', type=float, help='Maximum Dec to run') parser.add_argument('--mindec', type=float, help='Minimum Dec to run') parser.add_argument('--region', help='Region to select') parser.add_argument('--bricks', help='Set bricks.fits file to load') parser.add_argument('--ccds', help='Set ccds.fits file to load') parser.add_argument('--ignore_cuts', action='store_true',default=False,help='no photometric or blacklist cuts') parser.add_argument('--save_to_fits', action='store_true',default=False,help='save cut brick,ccd to fits table') parser.add_argument('--name', action='store',default='dr3',help='save with this suffix, e.g. refers to ccds table') parser.add_argument('--delete-sky', action='store_true', help='Delete any existing sky calibration files') parser.add_argument('--delete-pvastrom', action='store_true', help='Delete any existing PV WCS calibration files') parser.add_argument('--write-ccds', help='Write CCDs list as FITS table?') parser.add_argument('--brickq', type=int, default=None, help='Queue only bricks with the given "brickq" value [0 to 3]') parser.add_argument('--brickq-deps', action='store_true', default=False, help='Queue bricks directly using qdo API, setting brickq dependencies') parser.add_argument('--queue', default='bricks', help='With --brickq-deps, the QDO queue name to use') opt = parser.parse_args() survey = LegacySurveyData() if opt.bricks is not None: B = fits_table(opt.bricks) log('Read', len(B), 'from', opt.bricks) else: B = survey.get_bricks() if opt.ccds is not None: T = fits_table(opt.ccds) log('Read', len(T), 'from', opt.ccds) else: T = survey.get_ccds() log(len(T), 'CCDs') T.index = np.arange(len(T)) if opt.ignore_cuts == False: I = survey.photometric_ccds(T) print(len(I), 'CCDs are photometric') T.cut(I) I = survey.apply_blacklist(T) print(len(I), 'CCDs are not blacklisted') T.cut(I) print(len(T), 'CCDs remain') # I,J,d,counts = match_radec(B.ra, B.dec, T.ra, T.dec, 0.2, nearest=True, count=True) # plt.clf() # plt.hist(counts, counts.max()+1) # plt.savefig('bricks.png') # B.cut(I[counts >= 9]) # plt.clf() # plt.plot(B.ra, B.dec, 'b.') # #plt.scatter(B.ra[I], B.dec[I], c=counts) # plt.savefig('bricks2.png') # DES Stripe82 #rlo,rhi = 350.,360. # rlo,rhi = 300., 10. # dlo,dhi = -6., 4. # TINY bit #rlo,rhi = 350.,351.1 #dlo,dhi = 0., 1.1 # EDR+ # 860 bricks # ~10,000 CCDs #rlo,rhi = 239,246 #dlo,dhi = 5, 13 # DR1 #rlo,rhi = 0, 360 # part 1 #dlo,dhi = 25, 40 # part 2 #dlo,dhi = 20,25 # part 3 #dlo,dhi = 15,20 # part 4 #dlo,dhi = 10,15 # part 5 #dlo,dhi = 5,10 # the rest #dlo,dhi = -11, 5 #dlo,dhi = 15,25.5 dlo,dhi = -25, 40 rlo,rhi = 0, 360 # Arjun says 3x3 coverage area is roughly # RA=240-252 DEC=6-12 (but not completely rectangular) # COSMOS #rlo,rhi = 148.9, 151.2 #dlo,dhi = 0.9, 3.5 # A nice well-behaved region (EDR2/3) # rlo,rhi = 243.6, 244.6 # dlo,dhi = 8.1, 8.6 # 56 bricks, ~725 CCDs #B.cut((B.ra > 240) * (B.ra < 242) * (B.dec > 5) * (B.dec < 7)) # 240 bricks, ~3000 CCDs #B.cut((B.ra > 240) * (B.ra < 244) * (B.dec > 5) * (B.dec < 9)) # 535 bricks, ~7000 CCDs #B.cut((B.ra > 240) * (B.ra < 245) * (B.dec > 5) * (B.dec < 12)) if opt.region in ['test1', 'test2', 'test3', 'test4']: nm = dict(test1='2446p115', # weird stuff around bright star test2='1183p292', # faint sources around bright galaxy test3='3503p005', # DES test4='1163p277', # Pollux )[opt.region] B.cut(np.flatnonzero(np.array([s == nm for s in B.brickname]))) log('Cut to', len(B), 'bricks') log(B.ra, B.dec) dlo,dhi = -90,90 rlo,rhi = 0, 360 elif opt.region == 'edr': # EDR: # 535 bricks, ~7000 CCDs rlo,rhi = 240,245 dlo,dhi = 5, 12 elif opt.region == 'edrplus': rlo,rhi = 235,248 dlo,dhi = 5, 15 elif opt.region == 'edr-south': rlo,rhi = 240,245 dlo,dhi = 5, 10 elif opt.region == 'cosmos1': # 16 bricks in the core of the COSMOS field. rlo,rhi = 149.75, 150.75 dlo,dhi = 1.6, 2.6 elif opt.region == 'pristine': # Stream? rlo,rhi = 240,250 dlo,dhi = 10,15 elif opt.region == 'des': dlo, dhi = -6., 4. rlo, rhi = 317., 7. T.cut(np.flatnonzero(np.array(['CPDES82' in fn for fn in T.cpimage]))) log('Cut to', len(T), 'CCDs with "CPDES82" in filename') elif opt.region == 'subdes': rlo,rhi = 320., 360. dlo,dhi = -1.25, 1.25 elif opt.region == 'northwest': rlo,rhi = 240,360 dlo,dhi = 20,40 elif opt.region == 'north': rlo,rhi = 120,240 dlo,dhi = 20,40 elif opt.region == 'northeast': rlo,rhi = 0,120 dlo,dhi = 20,40 elif opt.region == 'southwest': rlo,rhi = 240,360 dlo,dhi = -20,0 elif opt.region == 'south': rlo,rhi = 120,240 dlo,dhi = -20,0 elif opt.region == 'southeast': rlo,rhi = 0,120 dlo,dhi = -20,0 elif opt.region == 'southsoutheast': rlo,rhi = 0,120 dlo,dhi = -20,-10 elif opt.region == 'midwest': rlo,rhi = 240,360 dlo,dhi = 0,20 elif opt.region == 'middle': rlo,rhi = 120,240 dlo,dhi = 0,20 elif opt.region == 'mideast': rlo,rhi = 0,120 dlo,dhi = 0,20 elif opt.region == 'grz': # Bricks with grz coverage. # Be sure to use --bricks survey-bricks-in-dr1.fits # which has_[grz] columns. B.cut((B.has_g == 1) * (B.has_r == 1) * (B.has_z == 1)) log('Cut to', len(B), 'bricks with grz coverage') elif opt.region == 'nogrz': # Bricks without grz coverage. # Be sure to use --bricks survey-bricks-in-dr1.fits # which has_[grz] columns. B.cut(np.logical_not((B.has_g == 1) * (B.has_r == 1) * (B.has_z == 1))) log('Cut to', len(B), 'bricks withOUT grz coverage') elif opt.region == 'deep2': rlo,rhi = 250,260 dlo,dhi = 30,35 elif opt.region == 'deep2f3': rlo,rhi = 351.25, 353.75 dlo,dhi = 0, 0.5 elif opt.region == 'virgo': rlo,rhi = 185,190 dlo,dhi = 10, 15 elif opt.region == 'virgo2': rlo,rhi = 182,192 dlo,dhi = 8, 18 elif opt.region == 'lsb': rlo,rhi = 147.2, 147.8 dlo,dhi = -0.4, 0.4 elif opt.region == 'eboss-elg': # RA -45 to +45 # Dec -5 to +7 rlo,rhi = 315., 45. dlo,dhi = -5., 7. elif opt.region == 'eboss-ngc': # NGC ELGs # RA 115 to 175 # Dec 15 to 30 rlo,rhi = 115., 175. dlo,dhi = 15., 30. elif opt.region == 'mzls': dlo,dhi = 30., 90. elif opt.region == 'dr4-bootes': # https://desi.lbl.gov/trac/wiki/DecamLegacy/DR4sched #dlo,dhi = 34., 35. #rlo,rhi = 209.5, 210.5 dlo,dhi = 33., 36. rlo,rhi = 216.5, 219.5 if opt.mindec is not None: dlo = opt.mindec if opt.maxdec is not None: dhi = opt.maxdec if rlo < rhi: B.cut((B.ra >= rlo) * (B.ra <= rhi) * (B.dec >= dlo) * (B.dec <= dhi)) else: # RA wrap B.cut(np.logical_or(B.ra >= rlo, B.ra <= rhi) * (B.dec >= dlo) * (B.dec <= dhi)) log(len(B), 'bricks in range') for name in B.get('brickname'): print(name) B.writeto('bricks-cut.fits') I,J,d = match_radec(B.ra, B.dec, T.ra, T.dec, survey.bricksize) keep = np.zeros(len(B), bool) for i in I: keep[i] = True B.cut(keep) log('Cut to', len(B), 'bricks near CCDs') plt.clf() plt.plot(B.ra, B.dec, 'b.') plt.title('DR3 bricks') plt.axis([360, 0, np.min(B.dec)-1, np.max(B.dec)+1]) plt.savefig('bricks.png') if opt.brickq is not None: B.cut(B.brickq == opt.brickq) log('Cut to', len(B), 'with brickq =', opt.brickq) if opt.touching: keep = np.zeros(len(T), bool) for j in J: keep[j] = True T.cut(keep) log('Cut to', len(T), 'CCDs near bricks') # Aside -- how many near DR1=1 CCDs? if False: T2 = D.get_ccds() log(len(T2), 'CCDs') T2.cut(T2.dr1 == 1) log(len(T2), 'CCDs marked DR1=1') log(len(B), 'bricks in range') I,J,d = match_radec(B.ra, B.dec, T2.ra, T2.dec, survey.bricksize) keep = np.zeros(len(B), bool) for i in I: keep[i] = True B2 = B[keep] log('Total of', len(B2), 'bricks near CCDs with DR1=1') for band in 'grz': Tb = T2[T2.filter == band] log(len(Tb), 'in filter', band) I,J,d = match_radec(B2.ra, B2.dec, Tb.ra, Tb.dec, survey.bricksize) good = np.zeros(len(B2), np.uint8) for i in I: good[i] = 1 B2.set('has_' + band, good) B2.writeto('survey-bricks-in-dr1.fits') sys.exit(0) # sort by dec decreasing #B.cut(np.argsort(-B.dec)) # RA increasing B.cut(np.argsort(B.ra)) for b in B: if opt.check: fn = 'dr1n/tractor/%s/tractor-%s.fits' % (b.brickname[:3], b.brickname) if os.path.exists(fn): print('Exists:', fn, file=sys.stderr) continue if opt.check_coadd: fn = 'dr1b/coadd/%s/%s/decals-%s-image.jpg' % (b.brickname[:3], b.brickname, b.brickname) if os.path.exists(fn): print('Exists:', fn, file=sys.stderr) continue print(b.brickname) if opt.save_to_fits: assert(opt.touching) # Write cut tables to file for tab,typ in zip([B,T],['bricks','ccds']): fn='%s-%s-cut.fits' % (typ,opt.name) if os.path.exists(fn): os.remove(fn) tab.writeto(fn) print('Wrote %s' % fn) # Write text files listing ccd and filename names nm1,nm2= 'ccds-%s.txt'% opt.name,'filenames-%s.txt' % opt.name if os.path.exists(nm1): os.remove(nm1) if os.path.exists(nm2): os.remove(nm2) f1,f2=open(nm1,'w'),open(nm2,'w') fns= list(set(T.get('image_filename'))) for fn in fns: f2.write('%s\n' % fn.strip()) for ti in T: f1.write('%s\n' % ti.get('image_filename').strip()) f1.close() f2.close() print('Wrote *-names.txt') if opt.brickq_deps: import qdo from legacypipe.survey import on_bricks_dependencies #... find Queue... q = qdo.connect(opt.queue, create_ok=True) print('Connected to QDO queue', opt.queue, q) brick_to_task = dict() I = survey.photometric_ccds(T) print(len(I), 'CCDs are photometric') T.cut(I) I = survey.apply_blacklist(T) print(len(I), 'CCDs are not blacklisted') T.cut(I) print(len(T), 'CCDs remaining') T.wra = T.ra + (T.ra > 180) * -360 wra = rlo - 360 plt.clf() plt.plot(T.wra, T.dec, 'b.') ax = [wra, rhi, dlo, dhi] plt.axis(ax) plt.title('CCDs') plt.savefig('q-ccds.png') B.wra = B.ra + (B.ra > 180) * -360 # this slight overestimate (for DECam images) is fine radius = 0.3 Iccds = match_radec(B.ra, B.dec, T.ra, T.dec, radius, indexlist=True) ikeep = [] for ib,(b,Iccd) in enumerate(zip(B, Iccds)): if Iccd is None or len(Iccd) == 0: print('No matched CCDs to brick', b.brickname) continue wcs = wcs_for_brick(b) cI = ccds_touching_wcs(wcs, T[np.array(Iccd)]) print(len(cI), 'CCDs touching brick', b.brickname) if len(cI) == 0: continue ikeep.append(ib) B.cut(np.array(ikeep)) print('Cut to', len(B), 'bricks touched by CCDs') for brickq in range(4): I = np.flatnonzero(B.brickq == brickq) print(len(I), 'bricks with brickq =', brickq) J = np.flatnonzero(B.brickq < brickq) preB = B[J] reqs = [] if brickq > 0: for b in B[I]: # find brick dependencies brickdeps = on_bricks_dependencies(b, survey, bricks=preB) # convert to task ids taskdeps = [brick_to_task.get(b.brickname,None) for b in brickdeps] # If we dropped a dependency brick from a previous brickq because # of no overlapping CCDs, it won't appear in the brick_to_task map. taskdeps = [t for t in taskdeps if t is not None] reqs.append(taskdeps) plt.clf() plt.plot(B.wra, B.dec, '.', color='0.5') plt.plot(B.wra[I], B.dec[I], 'b.') plt.axis(ax) plt.title('Bricks: brickq=%i' % brickq) plt.savefig('q-bricks-%i.png' % brickq) # submit to qdo queue print('Queuing', len(B[I]), 'bricks') if brickq == 0: reqs = None else: assert(len(I) == len(reqs)) taskids = q.add_multiple(B.brickname[I], requires=reqs) assert(len(taskids) == len(I)) print('Queued', len(taskids), 'bricks') brick_to_task.update(dict(zip(B.brickname[I], taskids))) if not (opt.calibs or opt.forced or opt.lsb): sys.exit(0) bands = 'grz' log('Filters:', np.unique(T.filter)) T.cut(np.flatnonzero(np.array([f in bands for f in T.filter]))) log('Cut to', len(T), 'CCDs in filters', bands) if opt.touching: allI = set() for b in B: wcs = wcs_for_brick(b) I = ccds_touching_wcs(wcs, T) log(len(I), 'CCDs for brick', b.brickid, 'RA,Dec (%.2f, %.2f)' % (b.ra, b.dec)) if len(I) == 0: continue allI.update(I) allI = list(allI) allI.sort() elif opt.near: # Roughly brick radius + DECam image radius radius = 0.35 allI,nil,nil = match_radec(T.ra, T.dec, B.ra, B.dec, radius, nearest=True) else: allI = np.arange(len(T)) if opt.write_ccds: T[allI].writeto(opt.write_ccds) log('Wrote', opt.write_ccds) ## Be careful here -- T has been cut; we want to write out T.index. ## 'allI' contains indices into T. if opt.forced: log('Writing forced-photometry commands to', opt.out) f = open(opt.out,'w') log('Total of', len(allI), 'CCDs') for j,i in enumerate(allI): expstr = '%08i' % T.expnum[i] outfn = os.path.join('forced', expstr[:5], expstr, 'decam-%s-%s-forced.fits' % (expstr, T.ccdname[i])) imgfn = os.path.join(survey.survey_dir, 'images', T.image_filename[i].strip()) if (not os.path.exists(imgfn) and imgfn.endswith('.fz') and os.path.exists(imgfn[:-3])): imgfn = imgfn[:-3] #f.write('python legacypipe/forced_photom_decam.py %s %i DR3 %s\n' % # (imgfn, T.image_hdu[i], outfn)) f.write('python legacypipe/forced_photom_decam.py --apphot --constant-invvar %i %s DR3 %s\n' % (T.expnum[i], T.ccdname[i], outfn)) f.close() log('Wrote', opt.out) sys.exit(0) if opt.lsb: log('Writing LSB commands to', opt.out) f = open(opt.out,'w') log('Total of', len(allI), 'CCDs') for j,i in enumerate(allI): exp = T.expnum[i] ext = T.ccdname[i].strip() outfn = 'lsb/lsb-%s-%s.fits' % (exp, ext) f.write('python projects/desi/lsb.py --expnum %i --extname %s --out %s -F -n > lsb/lsb-%s-%s.log 2>&1\n' % (exp, ext, outfn, exp, ext)) f.close() log('Wrote', opt.out) sys.exit(0) log('Writing calibs to', opt.out) f = open(opt.out,'w') log('Total of', len(allI), 'CCDs') batch = [] def write_batch(f, batch, cmd): if cmd is None: cmd = '' f.write(cmd + ' '.join(batch) + '\n') cmd = None if opt.command: cmd = 'python legacypipe/run-calib.py ' if opt.opt is not None: cmd += opt.opt + ' ' for j,i in enumerate(allI): if opt.delete_sky or opt.delete_pvastrom: log(j+1, 'of', len(allI)) im = survey.get_image_object(T[i]) if opt.delete_sky and os.path.exists(im.skyfn): log(' deleting:', im.skyfn) os.unlink(im.skyfn) if opt.delete_pvastrom and os.path.exists(im.pvwcsfn): log(' deleting:', im.pvwcsfn) os.unlink(im.pvwcsfn) if opt.check: log(j+1, 'of', len(allI)) im = survey.get_image_object(T[i]) if not im.run_calibs(im, just_check=True): log('Calibs for', im.expnum, im.ccdname, im.calname, 'already done') continue if opt.command: s = '%i-%s' % (T.expnum[i], T.ccdname[i]) prefix = 'python legacypipe/run-calib.py ' + opt.opt #('python legacypipe/run-calib.py --expnum %i --ccdname %s' % # (T.expnum[i], T.ccdname[i])) else: s = '%i' % T.index[i] prefix = '' if j < 10: print('Index', T.index[i], 'expnum', T.expnum[i], 'ccdname', T.ccdname[i], 'filename', T.image_filename[i]) if not opt.nper: f.write(prefix + s + '\n') else: batch.append(s) if len(batch) >= opt.nper: write_batch(f, batch, cmd) batch = [] if opt.check: f.flush() if len(batch): write_batch(f, batch, cmd) f.close() log('Wrote', opt.out) return 0
def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument( '--expnum', type=str, help='Run specified exposure numbers (can be comma-separated list') parser.add_argument( '--all-found', action='store_true', default=False, help='Only write output if all required input files are found') parser.add_argument('--ccds', help='Set ccds.fits file to load, default is all') parser.add_argument('--continue', dest='con', help='Continue even if one exposure is bad', action='store_true', default=False) parser.add_argument('--outdir', help='Output directory, default %(default)s', default='calib') opt = parser.parse_args() survey = LegacySurveyData() if opt.ccds: ccds = fits_table(opt.ccds) ccds = survey.cleanup_ccds_table(ccds) survey.ccds = ccds if opt.expnum is not None: expnums = [(None, int(x, 10)) for x in opt.expnum.split(',')] else: ccds = survey.get_ccds() expnums = set(zip(ccds.camera, ccds.expnum)) print(len(expnums), 'unique camera+expnums') for i, (camera, expnum) in enumerate(expnums): print() print('Exposure', i + 1, 'of', len(expnums), ':', camera, 'expnum', expnum) if camera is None: C = survey.find_ccds(expnum=expnum) print(len(C), 'CCDs with expnum', expnum) camera = C.camera[0] print('Set camera to', camera) C = survey.find_ccds(expnum=expnum, camera=camera) print(len(C), 'CCDs with expnum', expnum, 'and camera', camera) im0 = survey.get_image_object(C[0]) skyoutfn = im0.merged_skyfn psfoutfn = im0.merged_psffn print('Checking for', skyoutfn) print('Checking for', psfoutfn) if os.path.exists(skyoutfn) and os.path.exists(psfoutfn): print('Exposure', expnum, 'is done already') continue if not os.path.exists(skyoutfn): try: merge_splinesky(survey, expnum, C, skyoutfn, opt) except: if not opt.con: raise import traceback traceback.print_exc() print('Exposure failed:', expnum, '. Continuing...') if not os.path.exists(psfoutfn): try: merge_psfex(survey, expnum, C, psfoutfn, opt) except: if not opt.con: raise import traceback traceback.print_exc() print('Exposure failed:', expnum, '. Continuing...')
def main(): """Main program. """ import argparse parser = argparse.ArgumentParser( description= "This script is used to produce lists of CCDs or bricks, for production purposes (building qdo queue, eg)." ) parser.add_argument('--calibs', action='store_true', help='Output CCDs that need to be calibrated.') parser.add_argument('--nper', type=int, default=None, help='Batch N calibs per line') parser.add_argument('--forced', action='store_true', help='Output forced-photometry commands') parser.add_argument('--lsb', action='store_true', help='Output Low-Surface-Brightness commands') parser.add_argument('--touching', action='store_true', help='Cut to only CCDs touching selected bricks') parser.add_argument('--near', action='store_true', help='Quick cut to only CCDs near selected bricks') parser.add_argument('--check', action='store_true', help='Check which calibrations actually need to run.') parser.add_argument('--check-coadd', action='store_true', help='Check which caoadds actually need to run.') parser.add_argument('--out', help='Output filename for calibs, default %(default)s', default='jobs') parser.add_argument('--command', action='store_true', help='Write out full command-line to run calib') parser.add_argument('--opt', help='With --command, extra options to add') parser.add_argument('--maxdec', type=float, help='Maximum Dec to run') parser.add_argument('--mindec', type=float, help='Minimum Dec to run') parser.add_argument('--region', help='Region to select') parser.add_argument('--bricks', help='Set bricks.fits file to load') parser.add_argument('--ccds', help='Set ccds.fits file to load') parser.add_argument('--ignore_cuts', action='store_true', default=False, help='no photometric or blacklist cuts') parser.add_argument('--save_to_fits', action='store_true', default=False, help='save cut brick,ccd to fits table') parser.add_argument( '--name', action='store', default='dr3', help='save with this suffix, e.g. refers to ccds table') parser.add_argument('--delete-sky', action='store_true', help='Delete any existing sky calibration files') parser.add_argument('--delete-pvastrom', action='store_true', help='Delete any existing PV WCS calibration files') parser.add_argument('--write-ccds', help='Write CCDs list as FITS table?') parser.add_argument( '--brickq', type=int, default=None, help='Queue only bricks with the given "brickq" value [0 to 3]') parser.add_argument( '--brickq-deps', action='store_true', default=False, help='Queue bricks directly using qdo API, setting brickq dependencies' ) parser.add_argument('--queue', default='bricks', help='With --brickq-deps, the QDO queue name to use') opt = parser.parse_args() survey = LegacySurveyData() if opt.bricks is not None: B = fits_table(opt.bricks) log('Read', len(B), 'from', opt.bricks) else: B = survey.get_bricks() if opt.ccds is not None: T = fits_table(opt.ccds) log('Read', len(T), 'from', opt.ccds) else: T = survey.get_ccds() log(len(T), 'CCDs') T.index = np.arange(len(T)) if opt.ignore_cuts == False: I = survey.photometric_ccds(T) print(len(I), 'CCDs are photometric') T.cut(I) I = survey.apply_blacklist(T) print(len(I), 'CCDs are not blacklisted') T.cut(I) print(len(T), 'CCDs remain') # I,J,d,counts = match_radec(B.ra, B.dec, T.ra, T.dec, 0.2, nearest=True, count=True) # plt.clf() # plt.hist(counts, counts.max()+1) # plt.savefig('bricks.png') # B.cut(I[counts >= 9]) # plt.clf() # plt.plot(B.ra, B.dec, 'b.') # #plt.scatter(B.ra[I], B.dec[I], c=counts) # plt.savefig('bricks2.png') # DES Stripe82 #rlo,rhi = 350.,360. # rlo,rhi = 300., 10. # dlo,dhi = -6., 4. # TINY bit #rlo,rhi = 350.,351.1 #dlo,dhi = 0., 1.1 # EDR+ # 860 bricks # ~10,000 CCDs #rlo,rhi = 239,246 #dlo,dhi = 5, 13 # DR1 #rlo,rhi = 0, 360 # part 1 #dlo,dhi = 25, 40 # part 2 #dlo,dhi = 20,25 # part 3 #dlo,dhi = 15,20 # part 4 #dlo,dhi = 10,15 # part 5 #dlo,dhi = 5,10 # the rest #dlo,dhi = -11, 5 #dlo,dhi = 15,25.5 dlo, dhi = -25, 40 rlo, rhi = 0, 360 # Arjun says 3x3 coverage area is roughly # RA=240-252 DEC=6-12 (but not completely rectangular) # COSMOS #rlo,rhi = 148.9, 151.2 #dlo,dhi = 0.9, 3.5 # A nice well-behaved region (EDR2/3) # rlo,rhi = 243.6, 244.6 # dlo,dhi = 8.1, 8.6 # 56 bricks, ~725 CCDs #B.cut((B.ra > 240) * (B.ra < 242) * (B.dec > 5) * (B.dec < 7)) # 240 bricks, ~3000 CCDs #B.cut((B.ra > 240) * (B.ra < 244) * (B.dec > 5) * (B.dec < 9)) # 535 bricks, ~7000 CCDs #B.cut((B.ra > 240) * (B.ra < 245) * (B.dec > 5) * (B.dec < 12)) if opt.region in ['test1', 'test2', 'test3', 'test4']: nm = dict( test1='2446p115', # weird stuff around bright star test2='1183p292', # faint sources around bright galaxy test3='3503p005', # DES test4='1163p277', # Pollux )[opt.region] B.cut(np.flatnonzero(np.array([s == nm for s in B.brickname]))) log('Cut to', len(B), 'bricks') log(B.ra, B.dec) dlo, dhi = -90, 90 rlo, rhi = 0, 360 elif opt.region == 'edr': # EDR: # 535 bricks, ~7000 CCDs rlo, rhi = 240, 245 dlo, dhi = 5, 12 elif opt.region == 'edrplus': rlo, rhi = 235, 248 dlo, dhi = 5, 15 elif opt.region == 'edr-south': rlo, rhi = 240, 245 dlo, dhi = 5, 10 elif opt.region == 'cosmos1': # 16 bricks in the core of the COSMOS field. rlo, rhi = 149.75, 150.75 dlo, dhi = 1.6, 2.6 elif opt.region == 'pristine': # Stream? rlo, rhi = 240, 250 dlo, dhi = 10, 15 elif opt.region == 'des': dlo, dhi = -6., 4. rlo, rhi = 317., 7. T.cut(np.flatnonzero(np.array(['CPDES82' in fn for fn in T.cpimage]))) log('Cut to', len(T), 'CCDs with "CPDES82" in filename') elif opt.region == 'subdes': rlo, rhi = 320., 360. dlo, dhi = -1.25, 1.25 elif opt.region == 'northwest': rlo, rhi = 240, 360 dlo, dhi = 20, 40 elif opt.region == 'north': rlo, rhi = 120, 240 dlo, dhi = 20, 40 elif opt.region == 'northeast': rlo, rhi = 0, 120 dlo, dhi = 20, 40 elif opt.region == 'southwest': rlo, rhi = 240, 360 dlo, dhi = -20, 0 elif opt.region == 'south': rlo, rhi = 120, 240 dlo, dhi = -20, 0 elif opt.region == 'southeast': rlo, rhi = 0, 120 dlo, dhi = -20, 0 elif opt.region == 'southsoutheast': rlo, rhi = 0, 120 dlo, dhi = -20, -10 elif opt.region == 'midwest': rlo, rhi = 240, 360 dlo, dhi = 0, 20 elif opt.region == 'middle': rlo, rhi = 120, 240 dlo, dhi = 0, 20 elif opt.region == 'mideast': rlo, rhi = 0, 120 dlo, dhi = 0, 20 elif opt.region == 'grz': # Bricks with grz coverage. # Be sure to use --bricks survey-bricks-in-dr1.fits # which has_[grz] columns. B.cut((B.has_g == 1) * (B.has_r == 1) * (B.has_z == 1)) log('Cut to', len(B), 'bricks with grz coverage') elif opt.region == 'nogrz': # Bricks without grz coverage. # Be sure to use --bricks survey-bricks-in-dr1.fits # which has_[grz] columns. B.cut(np.logical_not((B.has_g == 1) * (B.has_r == 1) * (B.has_z == 1))) log('Cut to', len(B), 'bricks withOUT grz coverage') elif opt.region == 'deep2': rlo, rhi = 250, 260 dlo, dhi = 30, 35 elif opt.region == 'deep2f3': rlo, rhi = 351.25, 353.75 dlo, dhi = 0, 0.5 elif opt.region == 'virgo': rlo, rhi = 185, 190 dlo, dhi = 10, 15 elif opt.region == 'virgo2': rlo, rhi = 182, 192 dlo, dhi = 8, 18 elif opt.region == 'lsb': rlo, rhi = 147.2, 147.8 dlo, dhi = -0.4, 0.4 elif opt.region == 'eboss-sgc': # generous boundaries to make sure get all relevant images # RA -45 to +45 # Dec -5 to +7 rlo, rhi = 310., 50. dlo, dhi = -6., 6. elif opt.region == 'eboss-ngc': # generous boundaries to make sure get all relevant images # NGC ELGs # RA 115 to 175 # Dec 15 to 30 rlo, rhi = 122., 177. dlo, dhi = 12., 32. elif opt.region == 'mzls': dlo, dhi = 30., 90. elif opt.region == 'dr4-bootes': # https://desi.lbl.gov/trac/wiki/DecamLegacy/DR4sched #dlo,dhi = 34., 35. #rlo,rhi = 209.5, 210.5 dlo, dhi = 33., 36. rlo, rhi = 216.5, 219.5 if opt.mindec is not None: dlo = opt.mindec if opt.maxdec is not None: dhi = opt.maxdec if rlo < rhi: B.cut((B.ra >= rlo) * (B.ra <= rhi) * (B.dec >= dlo) * (B.dec <= dhi)) else: # RA wrap B.cut( np.logical_or(B.ra >= rlo, B.ra <= rhi) * (B.dec >= dlo) * (B.dec <= dhi)) log(len(B), 'bricks in range') #for name in B.get('brickname'): #print(name) B.writeto('bricks-cut.fits') I, J, d = match_radec(B.ra, B.dec, T.ra, T.dec, survey.bricksize) keep = np.zeros(len(B), bool) for i in I: keep[i] = True B.cut(keep) log('Cut to', len(B), 'bricks near CCDs') plt.clf() plt.plot(B.ra, B.dec, 'b.') plt.title('DR3 bricks') plt.axis([360, 0, np.min(B.dec) - 1, np.max(B.dec) + 1]) plt.savefig('bricks.png') if opt.brickq is not None: B.cut(B.brickq == opt.brickq) log('Cut to', len(B), 'with brickq =', opt.brickq) if opt.touching: keep = np.zeros(len(T), bool) for j in J: keep[j] = True T.cut(keep) log('Cut to', len(T), 'CCDs near bricks') # Aside -- how many near DR1=1 CCDs? if False: T2 = D.get_ccds() log(len(T2), 'CCDs') T2.cut(T2.dr1 == 1) log(len(T2), 'CCDs marked DR1=1') log(len(B), 'bricks in range') I, J, d = match_radec(B.ra, B.dec, T2.ra, T2.dec, survey.bricksize) keep = np.zeros(len(B), bool) for i in I: keep[i] = True B2 = B[keep] log('Total of', len(B2), 'bricks near CCDs with DR1=1') for band in 'grz': Tb = T2[T2.filter == band] log(len(Tb), 'in filter', band) I, J, d = match_radec(B2.ra, B2.dec, Tb.ra, Tb.dec, survey.bricksize) good = np.zeros(len(B2), np.uint8) for i in I: good[i] = 1 B2.set('has_' + band, good) B2.writeto('survey-bricks-in-dr1.fits') sys.exit(0) # sort by dec decreasing #B.cut(np.argsort(-B.dec)) # RA increasing B.cut(np.argsort(B.ra)) for b in B: if opt.check: fn = 'dr1n/tractor/%s/tractor-%s.fits' % (b.brickname[:3], b.brickname) if os.path.exists(fn): print('Exists:', fn, file=sys.stderr) continue if opt.check_coadd: fn = 'dr1b/coadd/%s/%s/decals-%s-image.jpg' % ( b.brickname[:3], b.brickname, b.brickname) if os.path.exists(fn): print('Exists:', fn, file=sys.stderr) continue #print(b.brickname) if opt.save_to_fits: assert (opt.touching) # Write cut tables to file for tab, typ in zip([B, T], ['bricks', 'ccds']): fn = '%s-%s-cut.fits' % (typ, opt.region) if os.path.exists(fn): os.remove(fn) tab.writeto(fn) print('Wrote %s' % fn) # Write text files listing ccd and filename names nm1, nm2 = 'ccds-%s.txt' % opt.region, 'filenames-%s.txt' % opt.region if os.path.exists(nm1): os.remove(nm1) if os.path.exists(nm2): os.remove(nm2) f1, f2 = open(nm1, 'w'), open(nm2, 'w') fns = list(set(T.get('image_filename'))) for fn in fns: f2.write('%s\n' % fn.strip()) for ti in T: f1.write('%s\n' % ti.get('image_filename').strip()) f1.close() f2.close() print('Wrote *-names.txt') if opt.brickq_deps: import qdo from legacypipe.survey import on_bricks_dependencies #... find Queue... q = qdo.connect(opt.queue, create_ok=True) print('Connected to QDO queue', opt.queue, q) brick_to_task = dict() I = survey.photometric_ccds(T) print(len(I), 'CCDs are photometric') T.cut(I) I = survey.apply_blacklist(T) print(len(I), 'CCDs are not blacklisted') T.cut(I) print(len(T), 'CCDs remaining') T.wra = T.ra + (T.ra > 180) * -360 wra = rlo - 360 plt.clf() plt.plot(T.wra, T.dec, 'b.') ax = [wra, rhi, dlo, dhi] plt.axis(ax) plt.title('CCDs') plt.savefig('q-ccds.png') B.wra = B.ra + (B.ra > 180) * -360 # this slight overestimate (for DECam images) is fine radius = 0.3 Iccds = match_radec(B.ra, B.dec, T.ra, T.dec, radius, indexlist=True) ikeep = [] for ib, (b, Iccd) in enumerate(zip(B, Iccds)): if Iccd is None or len(Iccd) == 0: print('No matched CCDs to brick', b.brickname) continue wcs = wcs_for_brick(b) cI = ccds_touching_wcs(wcs, T[np.array(Iccd)]) print(len(cI), 'CCDs touching brick', b.brickname) if len(cI) == 0: continue ikeep.append(ib) B.cut(np.array(ikeep)) print('Cut to', len(B), 'bricks touched by CCDs') for brickq in range(4): I = np.flatnonzero(B.brickq == brickq) print(len(I), 'bricks with brickq =', brickq) J = np.flatnonzero(B.brickq < brickq) preB = B[J] reqs = [] if brickq > 0: for b in B[I]: # find brick dependencies brickdeps = on_bricks_dependencies(b, survey, bricks=preB) # convert to task ids taskdeps = [ brick_to_task.get(b.brickname, None) for b in brickdeps ] # If we dropped a dependency brick from a previous brickq because # of no overlapping CCDs, it won't appear in the brick_to_task map. taskdeps = [t for t in taskdeps if t is not None] reqs.append(taskdeps) plt.clf() plt.plot(B.wra, B.dec, '.', color='0.5') plt.plot(B.wra[I], B.dec[I], 'b.') plt.axis(ax) plt.title('Bricks: brickq=%i' % brickq) plt.savefig('q-bricks-%i.png' % brickq) # submit to qdo queue print('Queuing', len(B[I]), 'bricks') if brickq == 0: reqs = None else: assert (len(I) == len(reqs)) taskids = q.add_multiple(B.brickname[I], requires=reqs) assert (len(taskids) == len(I)) print('Queued', len(taskids), 'bricks') brick_to_task.update(dict(zip(B.brickname[I], taskids))) if not (opt.calibs or opt.forced or opt.lsb): sys.exit(0) bands = 'grz' log('Filters:', np.unique(T.filter)) T.cut(np.flatnonzero(np.array([f in bands for f in T.filter]))) log('Cut to', len(T), 'CCDs in filters', bands) if opt.touching: allI = set() for b in B: wcs = wcs_for_brick(b) I = ccds_touching_wcs(wcs, T) log(len(I), 'CCDs for brick', b.brickid, 'RA,Dec (%.2f, %.2f)' % (b.ra, b.dec)) if len(I) == 0: continue allI.update(I) allI = list(allI) allI.sort() elif opt.near: # Roughly brick radius + DECam image radius radius = 0.35 allI, nil, nil = match_radec(T.ra, T.dec, B.ra, B.dec, radius, nearest=True) else: allI = np.arange(len(T)) if opt.write_ccds: T[allI].writeto(opt.write_ccds) log('Wrote', opt.write_ccds) ## Be careful here -- T has been cut; we want to write out T.index. ## 'allI' contains indices into T. if opt.forced: log('Writing forced-photometry commands to', opt.out) f = open(opt.out, 'w') log('Total of', len(allI), 'CCDs') for j, i in enumerate(allI): expstr = '%08i' % T.expnum[i] outfn = os.path.join( 'forced', expstr[:5], expstr, 'decam-%s-%s-forced.fits' % (expstr, T.ccdname[i])) imgfn = os.path.join(survey.survey_dir, 'images', T.image_filename[i].strip()) if (not os.path.exists(imgfn) and imgfn.endswith('.fz') and os.path.exists(imgfn[:-3])): imgfn = imgfn[:-3] #f.write('python legacypipe/forced_photom_decam.py %s %i DR3 %s\n' % # (imgfn, T.image_hdu[i], outfn)) f.write( 'python legacypipe/forced_photom_decam.py --apphot --constant-invvar %i %s DR3 %s\n' % (T.expnum[i], T.ccdname[i], outfn)) f.close() log('Wrote', opt.out) sys.exit(0) if opt.lsb: log('Writing LSB commands to', opt.out) f = open(opt.out, 'w') log('Total of', len(allI), 'CCDs') for j, i in enumerate(allI): exp = T.expnum[i] ext = T.ccdname[i].strip() outfn = 'lsb/lsb-%s-%s.fits' % (exp, ext) f.write( 'python projects/desi/lsb.py --expnum %i --extname %s --out %s -F -n > lsb/lsb-%s-%s.log 2>&1\n' % (exp, ext, outfn, exp, ext)) f.close() log('Wrote', opt.out) sys.exit(0) log('Writing calibs to', opt.out) f = open(opt.out, 'w') log('Total of', len(allI), 'CCDs') batch = [] def write_batch(f, batch, cmd): if cmd is None: cmd = '' f.write(cmd + ' '.join(batch) + '\n') cmd = None if opt.command: cmd = 'python legacypipe/run-calib.py ' if opt.opt is not None: cmd += opt.opt + ' ' for j, i in enumerate(allI): if opt.delete_sky or opt.delete_pvastrom: log(j + 1, 'of', len(allI)) im = survey.get_image_object(T[i]) if opt.delete_sky and os.path.exists(im.skyfn): log(' deleting:', im.skyfn) os.unlink(im.skyfn) if opt.delete_pvastrom and os.path.exists(im.pvwcsfn): log(' deleting:', im.pvwcsfn) os.unlink(im.pvwcsfn) if opt.check: log(j + 1, 'of', len(allI)) im = survey.get_image_object(T[i]) if not im.run_calibs(im, just_check=True): log('Calibs for', im.expnum, im.ccdname, im.calname, 'already done') continue if opt.command: s = '%i-%s' % (T.expnum[i], T.ccdname[i]) prefix = 'python legacypipe/run-calib.py ' + opt.opt #('python legacypipe/run-calib.py --expnum %i --ccdname %s' % # (T.expnum[i], T.ccdname[i])) else: s = '%i' % T.index[i] prefix = '' if j < 10: print('Index', T.index[i], 'expnum', T.expnum[i], 'ccdname', T.ccdname[i], 'filename', T.image_filename[i]) if not opt.nper: f.write(prefix + s + '\n') else: batch.append(s) if len(batch) >= opt.nper: write_batch(f, batch, cmd) batch = [] if opt.check: f.flush() if len(batch): write_batch(f, batch, cmd) f.close() log('Wrote', opt.out) return 0