コード例 #1
0
    def test_psf_type(self):
        assert self.data_adu._psf_type == 'GAUSSIAN'
        kwargs_observations = {
            'exposure_time': 1,
            'sky_brightness': 1,
            'magnitude_zero_point': self.magnitude_zero_point,
            'num_exposures': 1,
            'seeing': 1,
            'psf_type': 'PIXEL'
        }
        kwargs_data = util.merge_dicts(self.kwargs_instrument,
                                       kwargs_observations)
        data_pixel = SingleBand(data_count_unit='ADU', **kwargs_data)
        assert data_pixel._psf_type == 'PIXEL'

        kwargs_observations = {
            'exposure_time': 1,
            'sky_brightness': 1,
            'magnitude_zero_point': self.magnitude_zero_point,
            'num_exposures': 1,
            'seeing': 1,
            'psf_type': 'NONE'
        }
        kwargs_data = util.merge_dicts(self.kwargs_instrument,
                                       kwargs_observations)
        data_pixel = SingleBand(data_count_unit='ADU', **kwargs_data)
        assert data_pixel._psf_type == 'NONE'
コード例 #2
0
ファイル: test_LSST.py プロジェクト: jiwoncpark/lenstronomy
    def setUp(self):
        self.g = LSST()  # default is g_band
        self.r = LSST(band='r')
        self.i = LSST(band='i')

        kwargs_g_band = self.g.kwargs_single_band()
        kwargs_r_band = self.r.kwargs_single_band()
        kwargs_i_band = self.i.kwargs_single_band()

        self.g_band = SingleBand(**kwargs_g_band)
        self.r_band = SingleBand(**kwargs_r_band)
        self.i_band = SingleBand(**kwargs_i_band)

        # dictionaries mapping LSST kwargs to SingleBand kwargs
        self.camera_settings = {'read_noise': '_read_noise',
                                'pixel_scale': 'pixel_scale',
                                'ccd_gain': 'ccd_gain'}
        self.obs_settings = {'exposure_time': '_exposure_time',
                             'sky_brightness': '_sky_brightness_',
                             'magnitude_zero_point': '_magnitude_zero_point',
                             'num_exposures': '_num_exposures',
                             'seeing': '_seeing',
                             'psf_type': '_psf_type'}

        self.instrument = Instrument(**self.g.camera)
コード例 #3
0
    def setup(self):
        self.ccd_gain = 4.
        pixel_scale = 0.13
        self.read_noise = 10.
        self.kwargs_instrument = {
            'read_noise': self.read_noise,
            'pixel_scale': pixel_scale,
            'ccd_gain': self.ccd_gain
        }

        exposure_time = 100
        sky_brightness = 20.
        self.magnitude_zero_point = 21.
        num_exposures = 2
        seeing = 0.9
        kwargs_observations = {
            'exposure_time': exposure_time,
            'sky_brightness': sky_brightness,
            'magnitude_zero_point': self.magnitude_zero_point,
            'num_exposures': num_exposures,
            'seeing': seeing,
            'psf_type': 'GAUSSIAN'
        }
        self.kwargs_data = util.merge_dicts(self.kwargs_instrument,
                                            kwargs_observations)
        self.data_adu = SingleBand(data_count_unit='ADU', **self.kwargs_data)
        self.data_e_ = SingleBand(data_count_unit='e-', **self.kwargs_data)
コード例 #4
0
    def test_raise(self):
        self.ccd_gain = 4.
        pixel_scale = 0.13
        self.read_noise = 10.
        kwargs_instrument = {'read_noise': self.read_noise, 'pixel_scale': pixel_scale, 'ccd_gain': self.ccd_gain}

        exposure_time = 100
        sky_brightness = 20.
        self.magnitude_zero_point = 21.
        num_exposures = 2
        seeing = 0.9
        kwargs_observations = {'exposure_time': exposure_time, 'sky_brightness': sky_brightness,
                               'magnitude_zero_point': self.magnitude_zero_point, 'num_exposures': num_exposures,
                               'seeing': seeing, 'psf_type': 'GAUSSIAN'}
        self.kwargs_data = util.merge_dicts(kwargs_instrument, kwargs_observations)
        with self.assertRaises(ValueError):
            SingleBand(data_count_unit='wrong', **self.kwargs_data)

        with self.assertRaises(ValueError):
            band = SingleBand(pixel_scale=1, exposure_time=1, magnitude_zero_point=1, read_noise=None, ccd_gain=None,
                              sky_brightness=None, seeing=None, num_exposures=1, psf_type='GAUSSIAN', kernel_point_source=None,
                              data_count_unit='ADU', background_noise=None)
            out = band.sky_brightness

        with self.assertRaises(ValueError):
            band = SingleBand(pixel_scale=1, exposure_time=1, magnitude_zero_point=1, read_noise=None, ccd_gain=None,
                              sky_brightness=None, seeing=None, num_exposures=1, psf_type='GAUSSIAN', kernel_point_source=None,
                              data_count_unit='ADU', background_noise=None)
            out = band.read_noise

        with self.assertRaises(ValueError):
            band = SingleBand(pixel_scale=1, exposure_time=1, magnitude_zero_point=1, read_noise=None, ccd_gain=None,
                              sky_brightness=None, seeing=None, num_exposures=1, psf_type='GAUSSIAN', kernel_point_source=None,
                              data_count_unit='ADU', background_noise=None)
            out = band.background_noise
コード例 #5
0
ファイル: test_HST.py プロジェクト: musoke/lenstronomy
    def setUp(self):
        self.TDLMC_F160W = HST()  # default is TDLMC_F160W
        self.F160W = HST(band='F160W')
        self.F160W2 = HST(band='F160W', psf_type='GAUSSIAN')

        kwargs_TDLMC_F160W = self.TDLMC_F160W.kwargs_single_band()
        kwargs_F160W = self.F160W.kwargs_single_band()
        kwargs_F160W2 = self.F160W2.kwargs_single_band()

        self.TDLMC_F160W_band = SingleBand(**kwargs_TDLMC_F160W)
        self.F160W_band = SingleBand(**kwargs_F160W)
        self.F160W2_band = SingleBand(**kwargs_F160W2)

        # dictionaries mapping HST kwargs to SingleBand kwargs
        self.camera_settings = {'read_noise': '_read_noise',
                                'pixel_scale': 'pixel_scale',
                                'ccd_gain': 'ccd_gain'}
        self.obs_settings = {'exposure_time': '_exposure_time',
                             'sky_brightness': '_sky_brightness_',
                             'magnitude_zero_point': '_magnitude_zero_point',
                             'num_exposures': '_num_exposures',
                             'seeing': '_seeing',
                             'psf_type': '_psf_type'}

        self.instrument = Instrument(**self.TDLMC_F160W.camera)
コード例 #6
0
    def __init__(self, numpix, **kwargs_single_band):
        """

        :param numpix: number of pixels per axis in the simulation to be modelled
        :param kwargs_single_band: keyword arguments used to create instance of SingleBand class
        """
        self.numpix = numpix
        SingleBand.__init__(self, **kwargs_single_band)
コード例 #7
0
def add_noise(image, kwargs_band, background_noise=True, poisson_noise=True):
    """

    :param image: 2d numpy array of a simlulated image without noise
    :param kwargs_band: keyword arguments containing the noise estimates
    :return: noisy image
    """
    single_band = SingleBand(**kwargs_band)
    noise = single_band.noise_for_model(model=image,
                                        background_noise=background_noise,
                                        poisson_noise=poisson_noise)
    return image + noise
コード例 #8
0
def get_noise_sigma2_lenstronomy(img, pixel_scale, exposure_time, magnitude_zero_point, read_noise=None, ccd_gain=None, sky_brightness=None, seeing=None, num_exposures=1, psf_type='GAUSSIAN', kernel_point_source=None, truncation=5, data_count_unit='ADU', background_noise=None):
    """Get the variance of sky, readout, and Poisson flux noise sources using lenstronomy

    Parameters
    ----------
    img : 2D numpy array
        image on which the noise will be evaluated
    pixel_scale : float
        pixel scale in arcsec/pixel
    exposure_time : float
        exposure time per image in seconds
    magnitude_zero_point : float
        magnitude at which 1 count per second per arcsecond square is registered
    read_noise : float
        std of noise generated by readout (in units of electrons)
    ccd_gain : float
        electrons/ADU (analog-to-digital unit). A gain of 8 means that the camera digitizes the CCD signal so that each ADU corresponds to 8 photoelectrons
    sky_brightness : float
         sky brightness (in magnitude per square arcsec)
    seeing : float
        fwhm of PSF
    num_exposures : float
        number of exposures that are combined
    psf_type : str
        type of PSF ('GAUSSIAN' and 'PIXEL' supported)
    kernel_point_source : 2d numpy array
        model of PSF centered with odd number of pixels per axis(optional when psf_type='PIXEL' is chosen)
    truncation : float
        Gaussian truncation (in units of sigma), only required for 'GAUSSIAN' model
    data_count_unit : str
        unit of the data (and other properties), 'e-': (electrons assumed to be IID), 'ADU': (analog-to-digital unit)
    background_noise : float
        sqrt(variance of background) as a total contribution from read noise, sky brightness, etc. in units of the data_count_units
        If you set this parameter, it will override read_noise, sky_brightness. Default: None

    Returns
    -------
    dict
        variance in the poisson, sky, and readout noise sources

    """
    single_band = SingleBand(pixel_scale, exposure_time, magnitude_zero_point, read_noise=read_noise, ccd_gain=ccd_gain, sky_brightness=sky_brightness, seeing=seeing, num_exposures=num_exposures, psf_type=psf_type, kernel_point_source=kernel_point_source, truncation=truncation, data_count_unit=data_count_unit, background_noise=background_noise)
    noise_sigma2 = {}
    noise_sigma2['poisson'] = single_band.flux_noise(img)**2.0
    exposure_time_tot = single_band._num_exposures * single_band._exposure_time
    readout_noise_tot = single_band._num_exposures * single_band.read_noise**2.0
    sky_per_pixel = single_band.sky_brightness * single_band.pixel_scale ** 2
    noise_sigma2['sky'] = sky_per_pixel**2.0/exposure_time_tot
    noise_sigma2['readout'] = readout_noise_tot / exposure_time_tot**2.0
    return noise_sigma2
コード例 #9
0
    def test_raise(self):
        self.ccd_gain = 4.
        pixel_scale = 0.13
        self.read_noise = 10.
        kwargs_instrument = {
            'read_noise': self.read_noise,
            'pixel_scale': pixel_scale,
            'ccd_gain': self.ccd_gain
        }

        exposure_time = 100
        sky_brightness = 20.
        self.magnitude_zero_point = 21.
        num_exposures = 2
        seeing = 0.9
        kwargs_observations = {
            'exposure_time': exposure_time,
            'sky_brightness': sky_brightness,
            'magnitude_zero_point': self.magnitude_zero_point,
            'num_exposures': num_exposures,
            'seeing': seeing,
            'psf_type': 'GAUSSIAN'
        }
        self.kwargs_data = util.merge_dicts(kwargs_instrument,
                                            kwargs_observations)
        with self.assertRaises(ValueError):
            SingleBand(data_count_unit='wrong', **self.kwargs_data)
コード例 #10
0
def add_arc(image, kwargs_band, kwargs_params, kwargs_model, kwargs_numerics={}):
    """
    routine to add lensed arc to existing image

    :param image: 2d square numpy array of original image
    :param kwargs_band: keyword arguments specifying the observation to be simulated according to lenstronomy.SimulationAPI
    :param kwargs_model: keyword arguments of model configurations. All possibilities available at lenstronom.Util.class_creator
    :param kwargs_params: keyword arguments of the different model components. Supports 'kwargs_lens', 'kwargs_source_mag',
    'kwargs_lens_light_mag', 'kwargs_ps_mag'
    :param kwargs_numerics: keyword arguments describing the numerical setting of lenstronomy as outlined in lenstronomy.ImSim.Numerics
    :return: 2d numpy array
    """
    numpix = len(image)
    arc = _arc_model(numpix, kwargs_band, kwargs_model, kwargs_numerics=kwargs_numerics, **kwargs_params)
    band = SingleBand(**kwargs_band)
    noisy_arc = arc + band.flux_noise(arc)
    return image + noisy_arc
コード例 #11
0
    def __init__(self, numpix, kwargs_pixel_grid=None, **kwargs_single_band):
        """

        :param numpix: number of pixels per axis in the simulation to be modelled
        :param kwargs_pixel_grid: if None, uses default pixel grid option
            if defined, must contain keyword arguments PixelGrid() class
        :param kwargs_single_band: keyword arguments used to create instance of SingleBand class
        """
        self.numpix = numpix
        if kwargs_pixel_grid is not None:
            required_keys = [
                'ra_at_xy_0', 'dec_at_xy_0', 'transform_pix2angle'
            ]
            if not all(k in kwargs_pixel_grid for k in required_keys):
                raise ValueError('Missing 1 or more required' +
                                 'kwargs_pixel_grid parameters')
        self._kwargs_pixel_grid = kwargs_pixel_grid
        SingleBand.__init__(self, **kwargs_single_band)
コード例 #12
0
ファイル: test_Roman.py プロジェクト: sibirrer/lenstronomy
    def setUp(self):
        self.F062 = Roman()  # default is F062
        self.F087 = Roman(band='F087', survey_mode='microlensing')
        self.F106 = Roman(band='F106', psf_type='GAUSSIAN')
        self.F129 = Roman(band='F129', psf_type='GAUSSIAN')
        self.F158 = Roman(band='F158', psf_type='GAUSSIAN')
        self.F184 = Roman(band='F184', psf_type='GAUSSIAN')
        self.F146 = Roman(band='F146',
                          survey_mode='microlensing',
                          psf_type='GAUSSIAN')

        kwargs_F062 = self.F062.kwargs_single_band()
        kwargs_F087 = self.F087.kwargs_single_band()
        kwargs_F106 = self.F106.kwargs_single_band()
        kwargs_F129 = self.F129.kwargs_single_band()
        kwargs_F158 = self.F158.kwargs_single_band()
        kwargs_F184 = self.F184.kwargs_single_band()
        kwargs_F146 = self.F146.kwargs_single_band()

        self.F062_band = SingleBand(**kwargs_F062)
        self.F087_band = SingleBand(**kwargs_F087)
        self.F106_band = SingleBand(**kwargs_F106)
        self.F129_band = SingleBand(**kwargs_F129)
        self.F158_band = SingleBand(**kwargs_F158)
        self.F184_band = SingleBand(**kwargs_F184)
        self.F146_band = SingleBand(**kwargs_F146)

        # dictionaries mapping Roman kwargs to SingleBand kwargs
        self.camera_settings = {
            'read_noise': '_read_noise',
            'pixel_scale': 'pixel_scale',
            'ccd_gain': 'ccd_gain'
        }
        self.obs_settings = {
            'exposure_time': '_exposure_time',
            'sky_brightness': '_sky_brightness_',
            'magnitude_zero_point': '_magnitude_zero_point',
            'num_exposures': '_num_exposures',
            'seeing': '_seeing',
            'psf_type': '_psf_type'
        }

        self.instrument = Instrument(**self.F062.camera)
コード例 #13
0
    def setUp(self):
        self.VIS = Euclid()

        kwargs_VIS = self.VIS.kwargs_single_band()

        self.VIS_band = SingleBand(**kwargs_VIS)

        # dictionaries mapping Euclid kwargs to SingleBand kwargs
        self.camera_settings = {
            'read_noise': '_read_noise',
            'pixel_scale': 'pixel_scale',
            'ccd_gain': 'ccd_gain'
        }
        self.obs_settings = {
            'exposure_time': '_exposure_time',
            'sky_brightness': '_sky_brightness_',
            'magnitude_zero_point': '_magnitude_zero_point',
            'num_exposures': '_num_exposures',
            'seeing': '_seeing',
            'psf_type': '_psf_type'
        }

        self.instrument = Instrument(**self.VIS.camera)
コード例 #14
0
class TestData(object):
    def setup(self):
        self.ccd_gain = 4.
        pixel_scale = 0.13
        self.read_noise = 10.
        self.kwargs_instrument = {
            'read_noise': self.read_noise,
            'pixel_scale': pixel_scale,
            'ccd_gain': self.ccd_gain
        }

        exposure_time = 100
        sky_brightness = 20.
        self.magnitude_zero_point = 21.
        num_exposures = 2
        seeing = 0.9
        kwargs_observations = {
            'exposure_time': exposure_time,
            'sky_brightness': sky_brightness,
            'magnitude_zero_point': self.magnitude_zero_point,
            'num_exposures': num_exposures,
            'seeing': seeing,
            'psf_type': 'GAUSSIAN'
        }
        self.kwargs_data = util.merge_dicts(self.kwargs_instrument,
                                            kwargs_observations)
        self.data_adu = SingleBand(data_count_unit='ADU', **self.kwargs_data)
        self.data_e_ = SingleBand(data_count_unit='e-', **self.kwargs_data)

    def test_sky_brightness(self):
        sky_adu = self.data_adu.sky_brightness
        sky_e_ = self.data_e_.sky_brightness
        assert sky_e_ == sky_adu * self.ccd_gain
        npt.assert_almost_equal(sky_adu, 0.627971607877395, decimal=6)

    def test_background_noise(self):
        bkg_adu = self.data_adu.background_noise
        bkg_e_ = self.data_e_.background_noise
        assert bkg_adu == bkg_e_ / self.ccd_gain

        self.data_adu._background_noise = 1
        bkg = self.data_adu.background_noise
        assert bkg == 1

    def test_flux_noise(self):
        flux_iid = 50.
        flux_adu = flux_iid / self.ccd_gain
        noise_adu = self.data_adu.flux_noise(flux_adu)
        noise_e_ = self.data_e_.flux_noise(flux_iid)
        assert noise_e_ == 100. / 200.
        assert noise_e_ == noise_adu * self.ccd_gain

    def test_noise_for_model(self):
        model_adu = np.ones((10, 10))
        model_e_ = model_adu * self.ccd_gain
        noise_adu = self.data_adu.noise_for_model(model_adu,
                                                  background_noise=True,
                                                  poisson_noise=True,
                                                  seed=42)
        noise_adu_2 = self.data_adu.noise_for_model(model_adu,
                                                    background_noise=True,
                                                    poisson_noise=True,
                                                    seed=42)
        npt.assert_almost_equal(noise_adu, noise_adu_2, decimal=10)
        noise_e_ = self.data_e_.noise_for_model(model_e_,
                                                background_noise=True,
                                                poisson_noise=True,
                                                seed=42)
        npt.assert_almost_equal(noise_adu,
                                noise_e_ / self.ccd_gain,
                                decimal=10)
        noise_e_ = self.data_e_.noise_for_model(model_e_,
                                                background_noise=True,
                                                poisson_noise=True,
                                                seed=None)

    def test_estimate_noise(self):
        image_adu = np.ones((10, 10))
        image_e_ = image_adu * self.ccd_gain
        noise_adu = self.data_adu.estimate_noise(image_adu)
        noise_e_ = self.data_e_.estimate_noise(image_e_)
        npt.assert_almost_equal(noise_e_, noise_adu * self.ccd_gain)

    def test_magnitude2cps(self):
        mag_0 = self.data_adu.magnitude2cps(
            magnitude=self.magnitude_zero_point)
        npt.assert_almost_equal(mag_0, 1. / self.ccd_gain, decimal=10)
        mag_0_e_ = self.data_e_.magnitude2cps(
            magnitude=self.magnitude_zero_point)
        npt.assert_almost_equal(mag_0_e_, 1, decimal=10)

        mag_0 = self.data_adu.magnitude2cps(
            magnitude=self.magnitude_zero_point + 1)
        npt.assert_almost_equal(mag_0, 0.0995267926383743, decimal=10)

        mag_0 = self.data_adu.magnitude2cps(
            magnitude=self.magnitude_zero_point - 1)
        npt.assert_almost_equal(mag_0, 0.627971607877395, decimal=10)

    def test_flux_iid(self):
        flux_iid_adu = self.data_adu.flux_iid(flux_per_second=1)
        flux_iid_e = self.data_e_.flux_iid(flux_per_second=1)
        npt.assert_almost_equal(flux_iid_e,
                                flux_iid_adu / self.ccd_gain,
                                decimal=6)

        flux_adu = 10
        flux_e_ = flux_adu * self.ccd_gain
        noise_e_ = self.data_e_.flux_noise(flux_e_)
        noise_adu = self.data_adu.flux_noise(flux_adu)
        npt.assert_almost_equal(noise_e_ / self.ccd_gain, noise_adu, decimal=8)

    def test_psf_type(self):
        assert self.data_adu._psf_type == 'GAUSSIAN'
        kwargs_observations = {
            'exposure_time': 1,
            'sky_brightness': 1,
            'magnitude_zero_point': self.magnitude_zero_point,
            'num_exposures': 1,
            'seeing': 1,
            'psf_type': 'PIXEL'
        }
        kwargs_data = util.merge_dicts(self.kwargs_instrument,
                                       kwargs_observations)
        data_pixel = SingleBand(data_count_unit='ADU', **kwargs_data)
        assert data_pixel._psf_type == 'PIXEL'

        kwargs_observations = {
            'exposure_time': 1,
            'sky_brightness': 1,
            'magnitude_zero_point': self.magnitude_zero_point,
            'num_exposures': 1,
            'seeing': 1,
            'psf_type': 'NONE'
        }
        kwargs_data = util.merge_dicts(self.kwargs_instrument,
                                       kwargs_observations)
        data_pixel = SingleBand(data_count_unit='ADU', **kwargs_data)
        assert data_pixel._psf_type == 'NONE'