コード例 #1
0
    def run(self, ubiquityThreshold, singleCopyThreshold, minGenomes, mostSpecificRank, minMarkers, completenessThreshold, contaminationThreshold):
        print 'Ubiquity threshold: ' + str(ubiquityThreshold)
        print 'Single-copy threshold: ' + str(singleCopyThreshold)
        print 'Min. genomes: ' + str(minGenomes)
        print 'Most specific taxonomic rank: ' + str(mostSpecificRank)
        print 'Min markers: ' + str(minMarkers)
        print 'Completeness threshold: ' + str(completenessThreshold)
        print 'Contamination threshold: ' + str(contaminationThreshold)

        img = IMG()
        markerset = MarkerSet()

        lineages = img.lineagesByCriteria(minGenomes, mostSpecificRank)

        degenerateGenomes = {}
        for lineage in lineages:
            genomeIds = img.genomeIdsByTaxonomy(lineage, 'Final')

            print ''
            print 'Lineage ' + lineage + ' contains ' + str(len(genomeIds)) + ' genomes.'

            # get table of PFAMs and do some initial filtering to remove PFAMs that are
            # clearly not going to pass the ubiquity and single-copy thresholds
            countTable = img.countTable(genomeIds)
            countTable = img.filterTable(genomeIds, countTable, ubiquityThreshold*0.9, singleCopyThreshold*0.9)

            markerGenes = markerset.markerGenes(genomeIds, countTable, ubiquityThreshold*len(genomeIds), singleCopyThreshold*len(genomeIds))
            if len(markerGenes) < minMarkers:
                continue

            geneDistTable = img.geneDistTable(genomeIds, markerGenes, spacingBetweenContigs=1e6)
            colocatedGenes = markerset.colocatedGenes(geneDistTable)
            colocatedSets = markerset.colocatedSets(colocatedGenes, markerGenes)

            for genomeId in genomeIds:
                completeness, contamination = markerset.genomeCheck(colocatedSets, genomeId, countTable)

                if completeness < completenessThreshold or contamination > contaminationThreshold:
                    degenerateGenomes[genomeId] = degenerateGenomes.get(genomeId, []) + [[lineage.split(';')[-1].strip(), len(genomeIds), len(colocatedSets), completeness, contamination]]

        # write out degenerate genomes
        metadata = img.genomeMetadata('Final')

        fout = open('./data/degenerate_genomes.tsv', 'w')
        fout.write('Genome Id\tTaxonomy\tGenome Size (Gbps)\tScaffolds\tBiotic Relationships\tStatus\tLineage\t# genomes\tMarker set size\tCompleteness\tContamination\n')
        for genomeId, data in degenerateGenomes.iteritems():
            fout.write(genomeId + '\t' + '; '.join(metadata[genomeId]['taxonomy']) + '\t%.2f' % (float(metadata[genomeId]['genome size']) / 1e6) + '\t' + str(metadata[genomeId]['scaffold count']))
            fout.write('\t' + metadata[genomeId]['biotic relationships'] + '\t' + metadata[genomeId]['status'])

            for d in data:
                fout.write('\t' + d[0] + '\t' + str(d[1]) + '\t' + str(d[2]) + '\t%.3f\t%.3f' % (d[3], d[4]))
            fout.write('\n')

        fout.close()
コード例 #2
0
    def run(self, ubiquityThreshold, singleCopyThreshold, rank):
        img = IMG()
        markerset = MarkerSet()

        print('Reading metadata.')
        metadata = img.genomeMetadata()
        print('  Genomes with metadata: ' + str(len(metadata)))

        # calculate marker set for each lineage at the specified rank
        sortedLineages = img.lineagesSorted(metadata, rank)
        markerGeneLists = {}
        for lineage in sortedLineages:
            taxonomy = lineage.split(';')
            if len(taxonomy) != rank + 1:
                continue

        genomeIds = img.genomeIdsByTaxonomy(lineage, metadata, 'Final')
        countTable = img.countTable(genomeIds)

        if len(genomeIds) < 3:
            continue

        print('Lineage ' + lineage + ' contains ' + str(len(genomeIds)) +
              ' genomes.')

        markerGenes = markerset.markerGenes(
            genomeIds, countTable, ubiquityThreshold * len(genomeIds),
            singleCopyThreshold * len(genomeIds))

        print('  Marker genes: ' + str(len(markerGenes)))
        print('')

        markerGeneLists[lineage] = markerGenes

        # calculate union of marker gene list for higher taxonomic groups
        for r in range(rank - 1, -1, -1):
            print('Processing rank ' + str(r))
            rankMarkerGeneLists = {}
            for lineage, markerGenes in markerGeneLists.iteritems():
                taxonomy = lineage.split(';')
                if len(taxonomy) != r + 2:
                    continue

                curLineage = '; '.join(taxonomy[0:r + 1])
                if curLineage not in rankMarkerGeneLists:
                    rankMarkerGeneLists[curLineage] = markerGenes
                else:
                    curMarkerGenes = rankMarkerGeneLists[curLineage]
                    curMarkerGenes = curMarkerGenes.intersection(markerGenes)
                    rankMarkerGeneLists[curLineage] = curMarkerGenes

            # combine marker gene list dictionaries
            markerGeneLists.update(rankMarkerGeneLists)
コード例 #3
0
    def run(self, ubiquityThreshold, singleCopyThreshold, rank):
        img = IMG()
        markerset = MarkerSet()

        print 'Reading metadata.'
        metadata = img.genomeMetadata()
        print '  Genomes with metadata: ' + str(len(metadata))

        # calculate marker set for each lineage at the specified rank
        sortedLineages = img.lineagesSorted(metadata, rank)
        markerGeneLists = {}
        for lineage in sortedLineages:
            taxonomy = lineage.split(';')
            if len(taxonomy) != rank+1:
                continue

        genomeIds = img.genomeIdsByTaxonomy(lineage, metadata, 'Final')
        countTable = img.countTable(genomeIds)

        if len(genomeIds) < 3:
            continue

        print 'Lineage ' + lineage + ' contains ' + str(len(genomeIds)) + ' genomes.'

        markerGenes = markerset.markerGenes(genomeIds, countTable, ubiquityThreshold*len(genomeIds), singleCopyThreshold*len(genomeIds))

        print '  Marker genes: ' + str(len(markerGenes))
        print ''

        markerGeneLists[lineage] = markerGenes

        # calculate union of marker gene list for higher taxonomic groups
        for r in xrange(rank-1, -1, -1):
            print 'Processing rank ' + str(r)
            rankMarkerGeneLists = {}
            for lineage, markerGenes in markerGeneLists.iteritems():
                taxonomy = lineage.split(';')
                if len(taxonomy) != r+2:
                    continue

                curLineage = '; '.join(taxonomy[0:r+1])
                if curLineage not in rankMarkerGeneLists:
                    rankMarkerGeneLists[curLineage] = markerGenes
                else:
                    curMarkerGenes = rankMarkerGeneLists[curLineage]
                    curMarkerGenes = curMarkerGenes.intersection(markerGenes)
                    rankMarkerGeneLists[curLineage] = curMarkerGenes

            # combine marker gene list dictionaries
            markerGeneLists.update(rankMarkerGeneLists)
コード例 #4
0
    def run(self, taxonomyStr, ubiquityThreshold, singleCopyThreshold,
            percentCompletion, numReplicates, numGenomes, contigLen):
        img = IMG()

        genomeIds = img.genomeIdsByTaxonomy(taxonomyStr, 'Final')
        print('\nLineage ' + taxonomyStr + ' contains ' + str(len(genomeIds)) +
              ' genomes.')

        # build marker genes and colocated marker sets
        countTable = img.countTable(genomeIds)
        markerGenes = img.markerGenes(genomeIds, countTable,
                                      ubiquityThreshold * len(genomeIds),
                                      singleCopyThreshold * len(genomeIds))
        print('  Marker genes: ' + str(len(markerGenes)))

        geneDistTable = img.geneDistTable(genomeIds,
                                          markerGenes,
                                          spacingBetweenContigs=1e6)
        colocatedGenes = img.colocatedGenes(geneDistTable)
        colocatedSets = img.colocatedSets(colocatedGenes, markerGenes)
        print('  Co-located gene sets: ' + str(len(colocatedSets)))

        # random sample genomes
        if numGenomes == -1:
            rndGenomeIds = genomeIds
        else:
            rndGenomeIds = random.sample(genomeIds, numGenomes)

        # estimate completion for each genome using both the marker genes and marker sets
        metadata = img.genomeMetadata('Final')
        plotLabels = []
        plotData = []
        for genomeId in rndGenomeIds:
            mgCompletion = []
            msCompletion = []
            for _ in range(0, numReplicates):
                startPartialGenomeContigs = img.sampleGenome(
                    metadata[genomeId]['genome size'], percentCompletion,
                    contigLen)

                # calculate completion with marker genes
                containedMarkerGenes = img.containedMarkerGenes(
                    markerGenes, geneDistTable[genomeId],
                    startPartialGenomeContigs, contigLen)
                mgCompletion.append(
                    float(len(containedMarkerGenes)) / len(markerGenes) -
                    percentCompletion)

                # calculate completion with marker set
                comp = 0.0
                for cs in colocatedSets:
                    present = 0
                    for contigId in cs:
                        if contigId in containedMarkerGenes:
                            present += 1

                    comp += float(present) / len(cs)
                msCompletion.append(comp / len(colocatedSets) -
                                    percentCompletion)

            plotData.append(mgCompletion)
            plotData.append(msCompletion)

            species = ' '.join(
                metadata[genomeId]['taxonomy'][ranksByLabel['Genus']:])

            plotLabels.append(species + ' (' + genomeId + ')')
            plotLabels.append('')

        # plot data
        boxPlot = BoxPlot()
        plotFilename = './images/sim.MGvsMS.' + taxonomyStr.replace(
            ';', '_') + '.' + str(percentCompletion) + '.errorbar.png'
        title = taxonomyStr.replace(
            ';', '; ') + '\n' + 'Percent completion = %.2f' % percentCompletion
        boxPlot.plot(plotFilename, plotData, plotLabels,
                     r'$\Delta$' + ' Percent Completion', '', False, title)
コード例 #5
0
    def run(self, ubiquityThreshold, singleCopyThreshold, minGenomes,
            mostSpecificRank, minMarkers, completenessThreshold,
            contaminationThreshold):
        print 'Ubiquity threshold: ' + str(ubiquityThreshold)
        print 'Single-copy threshold: ' + str(singleCopyThreshold)
        print 'Min. genomes: ' + str(minGenomes)
        print 'Most specific taxonomic rank: ' + str(mostSpecificRank)
        print 'Min markers: ' + str(minMarkers)
        print 'Completeness threshold: ' + str(completenessThreshold)
        print 'Contamination threshold: ' + str(contaminationThreshold)

        img = IMG()
        markerset = MarkerSet()

        lineages = img.lineagesByCriteria(minGenomes, mostSpecificRank)

        degenerateGenomes = {}
        for lineage in lineages:
            genomeIds = img.genomeIdsByTaxonomy(lineage, 'Final')

            print ''
            print 'Lineage ' + lineage + ' contains ' + str(
                len(genomeIds)) + ' genomes.'

            # get table of PFAMs and do some initial filtering to remove PFAMs that are
            # clearly not going to pass the ubiquity and single-copy thresholds
            countTable = img.countTable(genomeIds)
            countTable = img.filterTable(genomeIds, countTable,
                                         ubiquityThreshold * 0.9,
                                         singleCopyThreshold * 0.9)

            markerGenes = markerset.markerGenes(
                genomeIds, countTable, ubiquityThreshold * len(genomeIds),
                singleCopyThreshold * len(genomeIds))
            if len(markerGenes) < minMarkers:
                continue

            geneDistTable = img.geneDistTable(genomeIds,
                                              markerGenes,
                                              spacingBetweenContigs=1e6)
            colocatedGenes = markerset.colocatedGenes(geneDistTable)
            colocatedSets = markerset.colocatedSets(colocatedGenes,
                                                    markerGenes)

            for genomeId in genomeIds:
                completeness, contamination = markerset.genomeCheck(
                    colocatedSets, genomeId, countTable)

                if completeness < completenessThreshold or contamination > contaminationThreshold:
                    degenerateGenomes[genomeId] = degenerateGenomes.get(
                        genomeId, []) + [[
                            lineage.split(';')[-1].strip(),
                            len(genomeIds),
                            len(colocatedSets), completeness, contamination
                        ]]

        # write out degenerate genomes
        metadata = img.genomeMetadata('Final')

        fout = open('./data/degenerate_genomes.tsv', 'w')
        fout.write(
            'Genome Id\tTaxonomy\tGenome Size (Gbps)\tScaffolds\tBiotic Relationships\tStatus\tLineage\t# genomes\tMarker set size\tCompleteness\tContamination\n'
        )
        for genomeId, data in degenerateGenomes.iteritems():
            fout.write(genomeId + '\t' +
                       '; '.join(metadata[genomeId]['taxonomy']) + '\t%.2f' %
                       (float(metadata[genomeId]['genome size']) / 1e6) +
                       '\t' + str(metadata[genomeId]['scaffold count']))
            fout.write('\t' + metadata[genomeId]['biotic relationships'] +
                       '\t' + metadata[genomeId]['status'])

            for d in data:
                fout.write('\t' + d[0] + '\t' + str(d[1]) + '\t' + str(d[2]) +
                           '\t%.3f\t%.3f' % (d[3], d[4]))
            fout.write('\n')

        fout.close()
コード例 #6
0
    def run(self):
        img = IMG()
        markerset = MarkerSet()

        print 'Reading metadata.'
        metadata = img.genomeMetadata('Final')

        print 'Getting marker genes.'
        pfamMarkers, tigrMarkers = markerset.getLineageMarkerGenes('Archaea')
        markerGenes = pfamMarkers.union(tigrMarkers)
        print '  Marker genes: ' + str(len(markerGenes))

        print 'Getting genomes of interest.'
        genomeIds = img.genomeIdsByTaxonomy('Archaea', 'Final')
        print '  Genomes: ' + str(len(genomeIds))

        print 'Getting position of each marker gene.'
        geneDistTable = img.geneDistTable(genomeIds, markerGenes)

        spearmanValues = []
        pearsonValues = []
        genomeIds = list(genomeIds)
        for i in xrange(0, len(genomeIds)):
            print str(i+1) + ' of ' + str(len(genomeIds))

            geneOrderI = []
            maskI = []
            for markerGenesId in markerGenes:
                if markerGenesId in geneDistTable[genomeIds[i]]:
                    geneOrderI.append(float(geneDistTable[genomeIds[i]][markerGenesId][0][0]) / metadata[genomeIds[i]]['genome size'])
                    maskI.append(0)
                else:
                    geneOrderI.append(-1)
                    maskI.append(1)


            for j in xrange(i+1, len(genomeIds)):
                geneOrderJ = []
                maskJ = []
                for markerGenesId in markerGenes:
                    if markerGenesId in geneDistTable[genomeIds[j]]:
                        geneOrderJ.append(float(geneDistTable[genomeIds[j]][markerGenesId][0][0]) / metadata[genomeIds[j]]['genome size'])
                        maskJ.append(0)
                    else:
                        geneOrderJ.append(-1)
                        maskJ.append(1)

                # test all translations
                bestSpearman = 0
                bestPearson = 0
                for _ in xrange(0, len(markerGenes)):
                    maskedI = []
                    maskedJ = []
                    for k in xrange(0, len(maskI)):
                        if maskI[k] == 0 and maskJ[k] == 0:
                            maskedI.append(geneOrderI[k])
                            maskedJ.append(geneOrderJ[k])
                    r, _ = spearmanr(maskedI, maskedJ)
                    if abs(r) > bestSpearman:
                        bestSpearman = abs(r)

                    r, _ = pearsonr(maskedI, maskedJ)
                    if abs(r) > bestPearson:
                        bestPearson = abs(r)

                    geneOrderJ = geneOrderJ[1:] + [geneOrderJ[0]]
                    maskJ = maskJ[1:] + [maskJ[0]]

                spearmanValues.append(bestSpearman)
                pearsonValues.append(bestPearson)

        print 'Spearman: %.2f +/- %.2f: ' % (mean(spearmanValues), std(spearmanValues))
        print 'Pearson: %.2f +/- %.2f: ' % (mean(pearsonValues), std(pearsonValues))
コード例 #7
0
    def run(self, taxonomyStr, mostSpecificRank, minGenomes, ubiquityThreshold,
            singleCopyThreshold, percentCompletion, numReplicates, numGenomes,
            contigLen):
        img = IMG()

        lineages = []
        taxon = taxonomyStr.split(';')
        for r in range(0, len(taxon)):
            lineages.append(';'.join(taxon[0:r + 1]))

        # get all marker sets
        markerGenes = []
        geneDistTable = []
        colocatedSets = []
        for lineage in lineages:
            genomeIds = img.genomeIdsByTaxonomy(lineage, 'Final')
            print('\nLineage ' + lineage + ' contains ' + str(len(genomeIds)) +
                  ' genomes.')

            # build marker genes and colocated marker sets
            countTable = img.countTable(genomeIds)
            mg = img.markerGenes(genomeIds, countTable,
                                 ubiquityThreshold * len(genomeIds),
                                 singleCopyThreshold * len(genomeIds))
            print('  Marker genes: ' + str(len(mg)))

            mdt = img.geneDistTable(genomeIds, mg, spacingBetweenContigs=1e6)
            colocatedGenes = img.colocatedGenes(mdt)
            cs = img.colocatedSets(colocatedGenes, mg)
            print('  Co-located gene sets: ' + str(len(cs)))

            markerGenes.append(mg)
            geneDistTable.append(mdt)
            colocatedSets.append(cs)

        # random sample genomes
        if numGenomes == -1:
            rndGenomeIds = genomeIds
        else:
            rndGenomeIds = random.sample(genomeIds, numGenomes)

        # estimate completion for each genome using both the marker genes and marker sets
        metadata = img.genomeMetadata('Final')
        plotLabels = []
        plotData = []
        for genomeId in rndGenomeIds:
            completion = [[] for _ in range(len(lineages))]
            for _ in range(0, numReplicates):
                startPartialGenomeContigs = img.sampleGenome(
                    metadata[genomeId]['genome size'], percentCompletion,
                    contigLen)

                # calculate completion with marker set
                for i in range(len(lineages)):
                    containedMarkerGenes = img.containedMarkerGenes(
                        markerGenes[i], geneDistTable[i][genomeId],
                        startPartialGenomeContigs, contigLen)

                    comp = 0.0
                    for cs in colocatedSets[i]:
                        present = 0
                        for contigId in cs:
                            if contigId in containedMarkerGenes:
                                present += 1

                        comp += float(present) / len(cs)

                    completion[i].append(comp / len(colocatedSets[i]) -
                                         percentCompletion)

                    plotLabels.append(genomeId + '  - ' + lineages[i])

            for d in completion:
                plotData.append(d)

        # plot data
        boxPlot = BoxPlot()
        plotFilename = './images/sim.lineages.' + taxonomyStr.replace(
            ';', '_') + '.' + str(percentCompletion) + '.errorbar.png'
        title = taxonomyStr.replace(
            ';', '; ') + '\n' + 'Percent completion = %.2f' % percentCompletion
        boxPlot.plot(plotFilename, plotData, plotLabels,
                     r'$\Delta$' + ' Percent Completion', '', False, title)
コード例 #8
0
    def run(self):
        img = IMG()
        markerset = MarkerSet()

        print('Reading metadata.')
        metadata = img.genomeMetadata('Final')

        print('Getting marker genes.')
        pfamMarkers, tigrMarkers = markerset.getLineageMarkerGenes('Archaea')
        markerGenes = pfamMarkers.union(tigrMarkers)
        print('  Marker genes: ' + str(len(markerGenes)))

        print('Getting genomes of interest.')
        genomeIds = img.genomeIdsByTaxonomy('Archaea', 'Final')
        print('  Genomes: ' + str(len(genomeIds)))

        print('Getting position of each marker gene.')
        geneDistTable = img.geneDistTable(genomeIds,
                                          markerGenes,
                                          spacingBetweenContigs=1e6)

        spearmanValues = []
        pearsonValues = []
        genomeIds = list(genomeIds)
        for i in range(0, len(genomeIds)):
            print(str(i + 1) + ' of ' + str(len(genomeIds)))

            geneOrderI = []
            maskI = []
            for markerGenesId in markerGenes:
                if markerGenesId in geneDistTable[genomeIds[i]]:
                    geneOrderI.append(
                        float(geneDistTable[genomeIds[i]][markerGenesId][0][0])
                        / metadata[genomeIds[i]]['genome size'])
                    maskI.append(0)
                else:
                    geneOrderI.append(-1)
                    maskI.append(1)

            for j in range(i + 1, len(genomeIds)):
                geneOrderJ = []
                maskJ = []
                for markerGenesId in markerGenes:
                    if markerGenesId in geneDistTable[genomeIds[j]]:
                        geneOrderJ.append(
                            float(geneDistTable[genomeIds[j]][markerGenesId][0]
                                  [0]) / metadata[genomeIds[j]]['genome size'])
                        maskJ.append(0)
                    else:
                        geneOrderJ.append(-1)
                        maskJ.append(1)

                # test all translations
                bestSpearman = 0
                bestPearson = 0
                for _ in range(0, len(markerGenes)):
                    maskedI = []
                    maskedJ = []
                    for k in range(0, len(maskI)):
                        if maskI[k] == 0 and maskJ[k] == 0:
                            maskedI.append(geneOrderI[k])
                            maskedJ.append(geneOrderJ[k])
                    r, _ = spearmanr(maskedI, maskedJ)
                    if abs(r) > bestSpearman:
                        bestSpearman = abs(r)

                    r, _ = pearsonr(maskedI, maskedJ)
                    if abs(r) > bestPearson:
                        bestPearson = abs(r)

                    geneOrderJ = geneOrderJ[1:] + [geneOrderJ[0]]
                    maskJ = maskJ[1:] + [maskJ[0]]

                spearmanValues.append(bestSpearman)
                pearsonValues.append(bestPearson)

        print('Spearman: %.2f +/- %.2f: ' %
              (mean(spearmanValues), std(spearmanValues)))
        print('Pearson: %.2f +/- %.2f: ' %
              (mean(pearsonValues), std(pearsonValues)))
コード例 #9
0
    def run(self, taxonomyStr, ubiquityThreshold, singleCopyThreshold, numBins,
            numRndGenomes):
        img = IMG()
        markerSet = MarkerSet()

        metadata = img.genomeMetadata()
        lineageGenomeIds = img.genomeIdsByTaxonomy(taxonomyStr, metadata)

        # build marker set from finished prokaryotic genomes
        genomeIds = []
        for genomeId in lineageGenomeIds:
            if metadata[genomeId]['status'] == 'Finished' and (
                    metadata[genomeId]['taxonomy'][0] == 'Bacteria'
                    or metadata[genomeId]['taxonomy'][0] == 'Archaea'):
                genomeIds.append(genomeId)
        genomeIds = set(genomeIds) - img.genomesWithMissingData(genomeIds)

        print 'Lineage ' + taxonomyStr + ' contains ' + str(
            len(genomeIds)) + ' genomes.'

        # get marker set
        countTable = img.countTable(genomeIds)
        countTable = img.filterTable(genomeIds, countTable,
                                     0.9 * ubiquityThreshold,
                                     0.9 * singleCopyThreshold)
        markerGenes = markerSet.markerGenes(
            genomeIds, countTable, ubiquityThreshold * len(genomeIds),
            singleCopyThreshold * len(genomeIds))
        tigrToRemove = img.identifyRedundantTIGRFAMs(markerGenes)
        markerGenes = markerGenes - tigrToRemove
        geneDistTable = img.geneDistTable(genomeIds,
                                          markerGenes,
                                          spacingBetweenContigs=1e6)

        print 'Number of marker genes: ' + str(len(markerGenes))

        # randomly set genomes to plot
        if numRndGenomes != -1:
            genomeIds = random.sample(list(genomeIds), numRndGenomes)
        genomeIds = set(genomeIds)

        # plot distribution of marker genes
        filename = 'geneDistribution.' + taxonomyStr.replace(
            ';', '_') + '.' + str(ubiquityThreshold) + '-' + str(
                singleCopyThreshold) + '.tsv'
        fout = open(filename, 'w')
        fout.write(
            'Genome ID\tLineage\tNumber of Genes\tUniformity\tDistribution\n')
        matrix = []
        rowLabels = []
        for genomeId in genomeIds:
            binSize = float(metadata[genomeId]['genome size']) / numBins

            binCounts = [0] * numBins
            pts = []
            for _, data in geneDistTable[genomeId].iteritems():
                for genePos in data:
                    binNum = int(genePos[1] / binSize)
                    binCounts[binNum] += 1
                    pts.append(genePos[1])
            matrix.append(binCounts)

            u = markerSet.uniformity(metadata[genomeId]['genome size'], pts)

            fout.write(genomeId + '\t' +
                       '; '.join(metadata[genomeId]['taxonomy']) + '\t' +
                       str(len(geneDistTable[genomeId])) + '\t%.3f' % u)
            for b in xrange(0, numBins):
                fout.write('\t' + str(binCounts[b]))
            fout.write('\n')

            rowLabels.append('%.2f' % u + ', ' + str(genomeId) + ' - ' +
                             '; '.join(metadata[genomeId]['taxonomy'][0:5]))

        fout.close()

        # plot data
        heatmap = Heatmap()
        plotFilename = 'geneDistribution.' + taxonomyStr.replace(
            ';', '_') + '.' + str(ubiquityThreshold) + '-' + str(
                singleCopyThreshold) + '.png'
        heatmap.plot(plotFilename, matrix, rowLabels, 0.6)
コード例 #10
0
    def run(self, taxonomyStr, ubiquityThreshold, singleCopyThreshold, numBins, numRndGenomes):
        img = IMG()
        markerSet = MarkerSet()

        metadata = img.genomeMetadata()
        lineageGenomeIds = img.genomeIdsByTaxonomy(taxonomyStr, metadata)

        # build marker set from finished prokaryotic genomes
        genomeIds = []
        for genomeId in lineageGenomeIds:
            if metadata[genomeId]['status'] == 'Finished' and (metadata[genomeId]['taxonomy'][0] == 'Bacteria' or metadata[genomeId]['taxonomy'][0] == 'Archaea'):
                genomeIds.append(genomeId)
        genomeIds = set(genomeIds) - img.genomesWithMissingData(genomeIds)

        print 'Lineage ' + taxonomyStr + ' contains ' + str(len(genomeIds)) + ' genomes.'

        # get marker set
        countTable = img.countTable(genomeIds)
        countTable = img.filterTable(genomeIds, countTable, 0.9*ubiquityThreshold, 0.9*singleCopyThreshold)
        markerGenes = markerSet.markerGenes(genomeIds, countTable, ubiquityThreshold*len(genomeIds), singleCopyThreshold*len(genomeIds))
        tigrToRemove = img.identifyRedundantTIGRFAMs(markerGenes)
        markerGenes = markerGenes - tigrToRemove
        geneDistTable = img.geneDistTable(genomeIds, markerGenes, spacingBetweenContigs=1e6)

        print 'Number of marker genes: ' + str(len(markerGenes))

        # randomly set genomes to plot
        if numRndGenomes != -1:
            genomeIds = random.sample(list(genomeIds), numRndGenomes)
        genomeIds = set(genomeIds)

        # plot distribution of marker genes
        filename = 'geneDistribution.' + taxonomyStr.replace(';','_') + '.' + str(ubiquityThreshold) + '-' + str(singleCopyThreshold) + '.tsv'
        fout = open(filename, 'w')
        fout.write('Genome ID\tLineage\tNumber of Genes\tUniformity\tDistribution\n')
        matrix = []
        rowLabels = []
        for genomeId in genomeIds:
            binSize = float(metadata[genomeId]['genome size']) / numBins

            binCounts = [0]*numBins
            pts = []
            for _, data in geneDistTable[genomeId].iteritems():
                for genePos in data:
                    binNum = int(genePos[1] / binSize)
                    binCounts[binNum] += 1
                    pts.append(genePos[1])
            matrix.append(binCounts)

            u = markerSet.uniformity(metadata[genomeId]['genome size'], pts)

            fout.write(genomeId + '\t' + '; '.join(metadata[genomeId]['taxonomy']) + '\t' + str(len(geneDistTable[genomeId])) + '\t%.3f' % u)
            for b in xrange(0, numBins):
                fout.write('\t' + str(binCounts[b]))
            fout.write('\n')

            rowLabels.append('%.2f' % u + ', ' + str(genomeId) + ' - ' + '; '.join(metadata[genomeId]['taxonomy'][0:5]))

        fout.close()

        # plot data
        heatmap = Heatmap()
        plotFilename = 'geneDistribution.' + taxonomyStr.replace(';','_') + '.' + str(ubiquityThreshold) + '-' + str(singleCopyThreshold) + '.png'
        heatmap.plot(plotFilename, matrix, rowLabels, 0.6)
コード例 #11
0
    def run(self, ubiquityThreshold, singleCopyThreshold, trustedCompleteness, trustedContamination, genomeCompleteness, genomeContamination):
        img = IMG()
        markerset = MarkerSet()

        metadata = img.genomeMetadata()

        trustedOut = open('./data/trusted_genomes.tsv', 'w')
        trustedOut.write('Genome Id\tLineage\tGenome size (Mbps)\tScaffold count\tBiotic Relationship\tStatus\tCompleteness\tContamination\n')

        filteredOut = open('./data/filtered_genomes.tsv', 'w')
        filteredOut.write('Genome Id\tLineage\tGenome size (Mbps)\tScaffold count\tBiotic Relationship\tStatus\tCompleteness\tContamination\n')

        allGenomeIds = set()
        allTrustedGenomeIds = set()
        for lineage in ['Archaea', 'Bacteria']:
            # get all genomes in lineage and build gene count table
            print '\nBuilding gene count table.'
            allLineageGenomeIds = img.genomeIdsByTaxonomy(lineage, metadata, 'All')
            countTable = img.countTable(allLineageGenomeIds)
            countTable = img.filterTable(allLineageGenomeIds, countTable, 0.9*ubiquityThreshold, 0.9*singleCopyThreshold)

            # get all genomes from specific lineage
            allGenomeIds = allGenomeIds.union(allLineageGenomeIds)

            print 'Lineage ' + lineage + ' contains ' + str(len(allLineageGenomeIds)) + ' genomes.'

            # tabulate genomes from each phylum
            allPhylumCounts = {}
            for genomeId in allLineageGenomeIds:
                taxon = metadata[genomeId]['taxonomy'][1]
                allPhylumCounts[taxon] = allPhylumCounts.get(taxon, 0) + 1

            # identify marker set for genomes
            markerGenes = markerset.markerGenes(allLineageGenomeIds, countTable, ubiquityThreshold*len(allLineageGenomeIds), singleCopyThreshold*len(allLineageGenomeIds))
            print '  Marker genes: ' + str(len(markerGenes))

            geneDistTable = img.geneDistTable(allLineageGenomeIds, markerGenes, spacingBetweenContigs=1e6)
            colocatedGenes = markerset.colocatedGenes(geneDistTable, metadata)
            colocatedSets = markerset.colocatedSets(colocatedGenes, markerGenes)
            print '  Marker set size: ' + str(len(colocatedSets))

            # identifying trusted genomes (highly complete, low contamination genomes)
            trustedGenomeIds = set()
            for genomeId in allLineageGenomeIds:
                completeness, contamination = markerset.genomeCheck(colocatedSets, genomeId, countTable)

                if completeness >= trustedCompleteness and contamination <= trustedContamination:
                    trustedGenomeIds.add(genomeId)
                    allTrustedGenomeIds.add(genomeId)

                    trustedOut.write(genomeId + '\t' + '; '.join(metadata[genomeId]['taxonomy']))
                    trustedOut.write('\t%.2f' % (float(metadata[genomeId]['genome size']) / 1e6))
                    trustedOut.write('\t' + str(metadata[genomeId]['scaffold count']))
                    trustedOut.write('\t' + metadata[genomeId]['biotic relationships'])
                    trustedOut.write('\t' + metadata[genomeId]['status'])
                    trustedOut.write('\t%.3f\t%.3f' % (completeness, contamination) + '\n')
                else:
                    filteredOut.write(genomeId + '\t' + '; '.join(metadata[genomeId]['taxonomy']))
                    filteredOut.write('\t%.2f' % (float(metadata[genomeId]['genome size']) / 1e6))
                    filteredOut.write('\t' + str(metadata[genomeId]['scaffold count']))
                    filteredOut.write('\t' + metadata[genomeId]['biotic relationships'])
                    filteredOut.write('\t' + metadata[genomeId]['status'])
                    filteredOut.write('\t%.3f\t%.3f' % (completeness, contamination) + '\n')

            print '  Trusted genomes: ' + str(len(trustedGenomeIds))

            # determine status of trusted genomes
            statusBreakdown = {}
            for genomeId in trustedGenomeIds:
                statusBreakdown[metadata[genomeId]['status']] = statusBreakdown.get(metadata[genomeId]['status'], 0) + 1

            print '  Trusted genome status breakdown: '
            for status, count in statusBreakdown.iteritems():
                print '    ' + status + ': ' + str(count)

            # determine status of retained genomes
            proposalNameBreakdown = {}
            for genomeId in trustedGenomeIds:
                proposalNameBreakdown[metadata[genomeId]['proposal name']] = proposalNameBreakdown.get(metadata[genomeId]['proposal name'], 0) + 1

            print '  Retained genome proposal name breakdown: '
            for pn, count in proposalNameBreakdown.iteritems():
                if 'KMG' in pn or 'GEBA' in pn or 'HMP' in pn:
                    print '    ' + pn + ': ' + str(count)

            print '  Filtered genomes by phylum:'
            trustedPhylumCounts = {}
            for genomeId in trustedGenomeIds:
                taxon = metadata[genomeId]['taxonomy'][1]
                trustedPhylumCounts[taxon] = trustedPhylumCounts.get(taxon, 0) + 1

            for phylum, count in allPhylumCounts.iteritems():
                print phylum + ': %d of %d' % (trustedPhylumCounts.get(phylum, 0), count)

        trustedOut.close()
        filteredOut.close()

        # write out lineage statistics for genome distribution
        allStats = {}
        trustedStats = {}

        for r in xrange(0, 6): # Domain to Genus
            for genomeId, data in metadata.iteritems():
                taxaStr = '; '.join(data['taxonomy'][0:r+1])
                allStats[taxaStr] = allStats.get(taxaStr, 0) + 1
                if genomeId in allTrustedGenomeIds:
                    trustedStats[taxaStr] = trustedStats.get(taxaStr, 0) + 1

        sortedLineages = img.lineagesSorted()

        fout = open('./data/lineage_stats.tsv', 'w')
        fout.write('Lineage\tGenomes with metadata\tTrusted genomes\n')
        for lineage in sortedLineages:
            fout.write(lineage + '\t' + str(allStats.get(lineage, 0))+ '\t' + str(trustedStats.get(lineage, 0))+ '\n')
        fout.close()
コード例 #12
0
    def run(self, ubiquityThreshold, singleCopyThreshold, trustedCompleteness,
            trustedContamination, genomeCompleteness, genomeContamination):
        img = IMG()
        markerset = MarkerSet()

        metadata = img.genomeMetadata()

        trustedOut = open('./data/trusted_genomes.tsv', 'w')
        trustedOut.write(
            'Genome Id\tLineage\tGenome size (Mbps)\tScaffold count\tBiotic Relationship\tStatus\tCompleteness\tContamination\n'
        )

        filteredOut = open('./data/filtered_genomes.tsv', 'w')
        filteredOut.write(
            'Genome Id\tLineage\tGenome size (Mbps)\tScaffold count\tBiotic Relationship\tStatus\tCompleteness\tContamination\n'
        )

        allGenomeIds = set()
        allTrustedGenomeIds = set()
        for lineage in ['Archaea', 'Bacteria']:
            # get all genomes in lineage and build gene count table
            print '\nBuilding gene count table.'
            allLineageGenomeIds = img.genomeIdsByTaxonomy(
                lineage, metadata, 'All')
            countTable = img.countTable(allLineageGenomeIds)
            countTable = img.filterTable(allLineageGenomeIds, countTable,
                                         0.9 * ubiquityThreshold,
                                         0.9 * singleCopyThreshold)

            # get all genomes from specific lineage
            allGenomeIds = allGenomeIds.union(allLineageGenomeIds)

            print 'Lineage ' + lineage + ' contains ' + str(
                len(allLineageGenomeIds)) + ' genomes.'

            # tabulate genomes from each phylum
            allPhylumCounts = {}
            for genomeId in allLineageGenomeIds:
                taxon = metadata[genomeId]['taxonomy'][1]
                allPhylumCounts[taxon] = allPhylumCounts.get(taxon, 0) + 1

            # identify marker set for genomes
            markerGenes = markerset.markerGenes(
                allLineageGenomeIds, countTable,
                ubiquityThreshold * len(allLineageGenomeIds),
                singleCopyThreshold * len(allLineageGenomeIds))
            print '  Marker genes: ' + str(len(markerGenes))

            geneDistTable = img.geneDistTable(allLineageGenomeIds,
                                              markerGenes,
                                              spacingBetweenContigs=1e6)
            colocatedGenes = markerset.colocatedGenes(geneDistTable, metadata)
            colocatedSets = markerset.colocatedSets(colocatedGenes,
                                                    markerGenes)
            print '  Marker set size: ' + str(len(colocatedSets))

            # identifying trusted genomes (highly complete, low contamination genomes)
            trustedGenomeIds = set()
            for genomeId in allLineageGenomeIds:
                completeness, contamination = markerset.genomeCheck(
                    colocatedSets, genomeId, countTable)

                if completeness >= trustedCompleteness and contamination <= trustedContamination:
                    trustedGenomeIds.add(genomeId)
                    allTrustedGenomeIds.add(genomeId)

                    trustedOut.write(genomeId + '\t' +
                                     '; '.join(metadata[genomeId]['taxonomy']))
                    trustedOut.write(
                        '\t%.2f' %
                        (float(metadata[genomeId]['genome size']) / 1e6))
                    trustedOut.write('\t' +
                                     str(metadata[genomeId]['scaffold count']))
                    trustedOut.write(
                        '\t' + metadata[genomeId]['biotic relationships'])
                    trustedOut.write('\t' + metadata[genomeId]['status'])
                    trustedOut.write('\t%.3f\t%.3f' %
                                     (completeness, contamination) + '\n')
                else:
                    filteredOut.write(
                        genomeId + '\t' +
                        '; '.join(metadata[genomeId]['taxonomy']))
                    filteredOut.write(
                        '\t%.2f' %
                        (float(metadata[genomeId]['genome size']) / 1e6))
                    filteredOut.write(
                        '\t' + str(metadata[genomeId]['scaffold count']))
                    filteredOut.write(
                        '\t' + metadata[genomeId]['biotic relationships'])
                    filteredOut.write('\t' + metadata[genomeId]['status'])
                    filteredOut.write('\t%.3f\t%.3f' %
                                      (completeness, contamination) + '\n')

            print '  Trusted genomes: ' + str(len(trustedGenomeIds))

            # determine status of trusted genomes
            statusBreakdown = {}
            for genomeId in trustedGenomeIds:
                statusBreakdown[metadata[genomeId]
                                ['status']] = statusBreakdown.get(
                                    metadata[genomeId]['status'], 0) + 1

            print '  Trusted genome status breakdown: '
            for status, count in statusBreakdown.iteritems():
                print '    ' + status + ': ' + str(count)

            # determine status of retained genomes
            proposalNameBreakdown = {}
            for genomeId in trustedGenomeIds:
                proposalNameBreakdown[metadata[genomeId][
                    'proposal name']] = proposalNameBreakdown.get(
                        metadata[genomeId]['proposal name'], 0) + 1

            print '  Retained genome proposal name breakdown: '
            for pn, count in proposalNameBreakdown.iteritems():
                if 'KMG' in pn or 'GEBA' in pn or 'HMP' in pn:
                    print '    ' + pn + ': ' + str(count)

            print '  Filtered genomes by phylum:'
            trustedPhylumCounts = {}
            for genomeId in trustedGenomeIds:
                taxon = metadata[genomeId]['taxonomy'][1]
                trustedPhylumCounts[taxon] = trustedPhylumCounts.get(taxon,
                                                                     0) + 1

            for phylum, count in allPhylumCounts.iteritems():
                print phylum + ': %d of %d' % (trustedPhylumCounts.get(
                    phylum, 0), count)

        trustedOut.close()
        filteredOut.close()

        # write out lineage statistics for genome distribution
        allStats = {}
        trustedStats = {}

        for r in xrange(0, 6):  # Domain to Genus
            for genomeId, data in metadata.iteritems():
                taxaStr = '; '.join(data['taxonomy'][0:r + 1])
                allStats[taxaStr] = allStats.get(taxaStr, 0) + 1
                if genomeId in allTrustedGenomeIds:
                    trustedStats[taxaStr] = trustedStats.get(taxaStr, 0) + 1

        sortedLineages = img.lineagesSorted()

        fout = open('./data/lineage_stats.tsv', 'w')
        fout.write('Lineage\tGenomes with metadata\tTrusted genomes\n')
        for lineage in sortedLineages:
            fout.write(lineage + '\t' + str(allStats.get(lineage, 0)) + '\t' +
                       str(trustedStats.get(lineage, 0)) + '\n')
        fout.close()
コード例 #13
0
    def run(self, taxonomyStr, ubiquityThreshold, singleCopyThreshold, percentCompletion, numReplicates, numGenomes, contigLen):
        img = IMG()

        genomeIds = img.genomeIdsByTaxonomy(taxonomyStr, 'Final')
        print '\nLineage ' + taxonomyStr + ' contains ' + str(len(genomeIds)) + ' genomes.'

        # build marker genes and colocated marker sets
        countTable = img.countTable(genomeIds)
        markerGenes = img.markerGenes(genomeIds, countTable, ubiquityThreshold*len(genomeIds), singleCopyThreshold*len(genomeIds))
        print '  Marker genes: ' + str(len(markerGenes))

        geneDistTable = img.geneDistTable(genomeIds, markerGenes)
        colocatedGenes = img.colocatedGenes(geneDistTable)
        colocatedSets = img.colocatedSets(colocatedGenes, markerGenes)
        print '  Co-located gene sets: ' + str(len(colocatedSets))


        # random sample genomes
        if numGenomes == -1:
            rndGenomeIds = genomeIds
        else:
            rndGenomeIds = random.sample(genomeIds, numGenomes)

        # estimate completion for each genome using both the marker genes and marker sets
        metadata = img.genomeMetadata('Final')
        plotLabels = []
        plotData = []
        for genomeId in rndGenomeIds:
            mgCompletion = []
            msCompletion = []
            for _ in xrange(0, numReplicates):
                startPartialGenomeContigs = img.sampleGenome(metadata[genomeId]['genome size'], percentCompletion, contigLen)

                # calculate completion with marker genes
                containedMarkerGenes = img.containedMarkerGenes(markerGenes, geneDistTable[genomeId], startPartialGenomeContigs, contigLen)
                mgCompletion.append(float(len(containedMarkerGenes))/len(markerGenes) - percentCompletion)

                # calculate completion with marker set
                comp = 0.0
                for cs in colocatedSets:
                    present = 0
                    for contigId in cs:
                        if contigId in containedMarkerGenes:
                            present += 1

                    comp += float(present) / len(cs)
                msCompletion.append(comp / len(colocatedSets) - percentCompletion)

            plotData.append(mgCompletion)
            plotData.append(msCompletion)

            species = ' '.join(metadata[genomeId]['taxonomy'][ranksByLabel['Genus']:])

            plotLabels.append(species + ' (' + genomeId + ')')
            plotLabels.append('')

        # plot data
        boxPlot = BoxPlot()
        plotFilename = './images/sim.MGvsMS.' + taxonomyStr.replace(';','_') + '.' + str(percentCompletion) + '.errorbar.png'
        title = taxonomyStr.replace(';', '; ') + '\n' + 'Percent completion = %.2f' % percentCompletion
        boxPlot.plot(plotFilename, plotData, plotLabels, r'$\Delta$' + ' Percent Completion', '', False, title)
コード例 #14
0
    def run(self, taxonomyStr, mostSpecificRank, minGenomes, ubiquityThreshold, singleCopyThreshold, percentCompletion, numReplicates, numGenomes, contigLen):
        img = IMG()

        lineages = []
        taxon = taxonomyStr.split(';')
        for r in xrange(0, len(taxon)):
            lineages.append(';'.join(taxon[0:r+1]))

        # get all marker sets
        markerGenes = []
        geneDistTable = []
        colocatedSets = []
        for lineage in lineages:
            genomeIds = img.genomeIdsByTaxonomy(lineage, 'Final')
            print '\nLineage ' + lineage + ' contains ' + str(len(genomeIds)) + ' genomes.'

            # build marker genes and colocated marker sets
            countTable = img.countTable(genomeIds)
            mg = img.markerGenes(genomeIds, countTable, ubiquityThreshold*len(genomeIds), singleCopyThreshold*len(genomeIds))
            print '  Marker genes: ' + str(len(mg))

            mdt = img.geneDistTable(genomeIds, mg, spacingBetweenContigs=1e6)
            colocatedGenes = img.colocatedGenes(mdt)
            cs = img.colocatedSets(colocatedGenes, mg)
            print '  Co-located gene sets: ' + str(len(cs))

            markerGenes.append(mg)
            geneDistTable.append(mdt)
            colocatedSets.append(cs)

        # random sample genomes
        if numGenomes == -1:
            rndGenomeIds = genomeIds
        else:
            rndGenomeIds = random.sample(genomeIds, numGenomes)

        # estimate completion for each genome using both the marker genes and marker sets
        metadata = img.genomeMetadata('Final')
        plotLabels = []
        plotData = []
        for genomeId in rndGenomeIds:
            completion = [[] for _ in xrange(len(lineages))]
            for _ in xrange(0, numReplicates):
                startPartialGenomeContigs = img.sampleGenome(metadata[genomeId]['genome size'], percentCompletion, contigLen)

                # calculate completion with marker set
                for i in xrange(len(lineages)):
                    containedMarkerGenes = img.containedMarkerGenes(markerGenes[i], geneDistTable[i][genomeId], startPartialGenomeContigs, contigLen)

                    comp = 0.0
                    for cs in colocatedSets[i]:
                        present = 0
                        for contigId in cs:
                            if contigId in containedMarkerGenes:
                                present += 1

                        comp += float(present) / len(cs)

                    completion[i].append(comp / len(colocatedSets[i]) - percentCompletion)

                    plotLabels.append(genomeId + '  - ' + lineages[i])

            for d in completion:
                plotData.append(d)

        # plot data
        boxPlot = BoxPlot()
        plotFilename = './images/sim.lineages.' + taxonomyStr.replace(';','_') + '.' + str(percentCompletion) + '.errorbar.png'
        title = taxonomyStr.replace(';', '; ') + '\n' + 'Percent completion = %.2f' % percentCompletion
        boxPlot.plot(plotFilename, plotData, plotLabels, r'$\Delta$' + ' Percent Completion', '', False, title)