def run(self, minThreshold, maxThreshold, stepSize, minGenomes, mostSpecificRanks): img = IMG() trustedGenomeIds = img.trustedGenomes() fout = open('./data/markerSetSize.tsv', 'w') fout.write('Lineage\t# genomes') for threshold in arange(maxThreshold, minThreshold, -stepSize): fout.write('\t' + str(threshold)) fout.write('\n') lineages = img.lineagesSorted(mostSpecificRanks) for lineage in lineages: genomeIds = img.genomeIdsByTaxonomy(lineage) genomeIds = list(genomeIds.intersection(trustedGenomeIds)) if len(genomeIds) < minGenomes: continue print('\nLineage ' + lineage + ' contains ' + str(len(genomeIds)) + ' genomes.') fout.write(lineage + '\t' + str(len(genomeIds))) pfamTable = img.pfamTable(genomeIds) for threshold in arange(maxThreshold, minThreshold, -stepSize): markerSet = img.markerGenes(genomeIds, pfamTable, threshold * len(genomeIds), threshold * len(genomeIds)) fout.write('\t' + str(len(markerSet))) print(' Threshold = %.2f, marker set size = %d' % (threshold, len(markerSet))) fout.write('\n') fout.close()
def run(self, minThreshold, maxThreshold, stepSize, minGenomes, mostSpecificRanks): img = IMG() trustedGenomeIds = img.trustedGenomes() fout = open("./data/markerSetSize.tsv", "w") fout.write("Lineage\t# genomes") for threshold in arange(maxThreshold, minThreshold, -stepSize): fout.write("\t" + str(threshold)) fout.write("\n") lineages = img.lineagesSorted(mostSpecificRanks) for lineage in lineages: genomeIds = img.genomeIdsByTaxonomy(lineage) genomeIds = list(genomeIds.intersection(trustedGenomeIds)) if len(genomeIds) < minGenomes: continue print "\nLineage " + lineage + " contains " + str(len(genomeIds)) + " genomes." fout.write(lineage + "\t" + str(len(genomeIds))) pfamTable = img.pfamTable(genomeIds) for threshold in arange(maxThreshold, minThreshold, -stepSize): markerSet = img.markerGenes( genomeIds, pfamTable, threshold * len(genomeIds), threshold * len(genomeIds) ) fout.write("\t" + str(len(markerSet))) print " Threshold = %.2f, marker set size = %d" % (threshold, len(markerSet)) fout.write("\n") fout.close()
def run(self, ubiquityThreshold, singleCopyThreshold, minGenomes, mostSpecificRank, minMarkers): print('Ubiquity threshold: ' + str(ubiquityThreshold)) print('Single-copy threshold: ' + str(singleCopyThreshold)) print('Min. genomes: ' + str(minGenomes)) print('Most specific taxonomic rank: ' + str(mostSpecificRank)) img = IMG() deltaMarkerSetSizes = [] lineages = img.lineagesByCriteria(minGenomes, mostSpecificRank) lineages = ['prokaryotes'] + lineages boxPlotLabels = [] for lineage in lineages: genomeIds = img.genomeIdsByTaxonomy(lineage) trusted = img.trustedGenomes() genomeIds = list(genomeIds.intersection(trusted)) print('') print('Lineage ' + lineage + ' contains ' + str(len(genomeIds)) + ' genomes.') # get table of PFAMs and do some initial filtering to remove PFAMs that are # clearly not going to pass the ubiquity and single-copy thresholds pfamTable = img.pfamTable(genomeIds) pfamTable = img.filterPfamTable(genomeIds, pfamTable, ubiquityThreshold * 0.9, singleCopyThreshold * 0.9) markerSet = img.markerGenes( genomeIds, pfamTable, ubiquityThreshold * (len(genomeIds) - 1), singleCopyThreshold * (len(genomeIds) - 1)) fullMarkerSetSize = len(markerSet) if fullMarkerSetSize < minMarkers: continue boxPlotLabels.append( lineage.split(';')[-1].strip() + ' (' + str(len(genomeIds)) + ', ' + str(fullMarkerSetSize) + ')') deltaMarkerSetSize = [] numGenomes = len(genomeIds) - 1 for loo in range(0, len(genomeIds)): if loo != len(genomeIds) - 1: genomeIdSubset = genomeIds[0:loo] + genomeIds[loo + 1:] else: genomeIdSubset = genomeIds[0:loo] markerSet = img.markerGenes( genomeIdSubset, pfamTable, ubiquityThreshold * len(genomeIdSubset), singleCopyThreshold * len(genomeIdSubset)) deltaMarkerSetSize.append(fullMarkerSetSize - len(markerSet)) if fullMarkerSetSize < len(markerSet): print('[Warning] Unexpected!') deltaMarkerSetSizes.append(deltaMarkerSetSize) m = mean(deltaMarkerSetSize) s = std(deltaMarkerSetSize) print(' LOO Ubiquity >= ' + str(int(ubiquityThreshold * numGenomes)) + ', LOO Single-copy >= ' + str(int(singleCopyThreshold * numGenomes))) print(' Delta Mean: %.2f +/- %.2f' % (m, s)) print(' Delta Min: %d, Delta Max: %d' % (min(deltaMarkerSetSize), max(deltaMarkerSetSize))) # plot data boxPlot = BoxPlot() plotFilename = './images/LOO.' + str(ubiquityThreshold) + '-' + str( singleCopyThreshold) + '.boxplot.png' title = 'Ubiquity = %.2f' % ubiquityThreshold + ', Single-copy = %.2f' % singleCopyThreshold boxPlot.plot(plotFilename, deltaMarkerSetSizes, boxPlotLabels, r'$\Delta$' + ' Marker Set Size', '', False, title)
def run(self, ubiquityThreshold, singleCopyThreshold, minGenomes, mostSpecificRank, minMarkers): print 'Ubiquity threshold: ' + str(ubiquityThreshold) print 'Single-copy threshold: ' + str(singleCopyThreshold) print 'Min. genomes: ' + str(minGenomes) print 'Most specific taxonomic rank: ' + str(mostSpecificRank) img = IMG() deltaMarkerSetSizes = [] lineages = img.lineagesByCriteria(minGenomes, mostSpecificRank) lineages = ['prokaryotes'] + lineages boxPlotLabels = [] for lineage in lineages: genomeIds = img.genomeIdsByTaxonomy(lineage) trusted = img.trustedGenomes() genomeIds = list(genomeIds.intersection(trusted)) print '' print 'Lineage ' + lineage + ' contains ' + str(len(genomeIds)) + ' genomes.' # get table of PFAMs and do some initial filtering to remove PFAMs that are # clearly not going to pass the ubiquity and single-copy thresholds pfamTable = img.pfamTable(genomeIds) pfamTable = img.filterPfamTable(genomeIds, pfamTable, ubiquityThreshold*0.9, singleCopyThreshold*0.9) markerSet = img.markerGenes(genomeIds, pfamTable, ubiquityThreshold*(len(genomeIds)-1), singleCopyThreshold*(len(genomeIds)-1)) fullMarkerSetSize = len(markerSet) if fullMarkerSetSize < minMarkers: continue boxPlotLabels.append(lineage.split(';')[-1].strip() + ' (' + str(len(genomeIds)) + ', ' + str(fullMarkerSetSize) + ')') deltaMarkerSetSize = [] numGenomes = len(genomeIds)-1 for loo in xrange(0, len(genomeIds)): if loo != len(genomeIds) - 1: genomeIdSubset = genomeIds[0:loo] + genomeIds[loo+1:] else: genomeIdSubset = genomeIds[0:loo] markerSet = img.markerGenes(genomeIdSubset, pfamTable, ubiquityThreshold*len(genomeIdSubset), singleCopyThreshold*len(genomeIdSubset)) deltaMarkerSetSize.append(fullMarkerSetSize - len(markerSet)) if fullMarkerSetSize < len(markerSet): print '[Warning] Unexpected!' deltaMarkerSetSizes.append(deltaMarkerSetSize) m = mean(deltaMarkerSetSize) s = std(deltaMarkerSetSize) print ' LOO Ubiquity >= ' + str(int(ubiquityThreshold*numGenomes)) + ', LOO Single-copy >= ' + str(int(singleCopyThreshold*numGenomes)) print ' Delta Mean: %.2f +/- %.2f' % (m, s) print ' Delta Min: %d, Delta Max: %d' % (min(deltaMarkerSetSize), max(deltaMarkerSetSize)) # plot data boxPlot = BoxPlot() plotFilename = './images/LOO.' + str(ubiquityThreshold) + '-' + str(singleCopyThreshold) + '.boxplot.png' title = 'Ubiquity = %.2f' % ubiquityThreshold + ', Single-copy = %.2f' % singleCopyThreshold boxPlot.plot(plotFilename, deltaMarkerSetSizes, boxPlotLabels, r'$\Delta$' + ' Marker Set Size', '', False, title)