def mpi_pow_int(s, n, prec): sa, sb = s if n < 0: return mpi_div((fone, fone), mpi_pow_int(s, -n, prec + 20), prec) if n == 0: return (fone, fone) if n == 1: return s # Odd -- signs are preserved if n & 1: a = mpf_pow_int(sa, n, prec, round_floor) b = mpf_pow_int(sb, n, prec, round_ceiling) # Even -- important to ensure positivity else: sas = mpf_sign(sa) sbs = mpf_sign(sb) # Nonnegative? if sas >= 0: a = mpf_pow_int(sa, n, prec, round_floor) b = mpf_pow_int(sb, n, prec, round_ceiling) # Nonpositive? elif sbs <= 0: a = mpf_pow_int(sb, n, prec, round_floor) b = mpf_pow_int(sa, n, prec, round_ceiling) # Mixed signs? else: a = fzero # max(-a,b)**n sa = mpf_neg(sa) if mpf_ge(sa, sb): b = mpf_pow_int(sa, n, prec, round_ceiling) else: b = mpf_pow_int(sb, n, prec, round_ceiling) return a, b
def mpi_pow_int(s, n, prec): sa, sb = s if n < 0: return mpi_div((fone, fone), mpi_pow_int(s, -n, prec+20), prec) if n == 0: return (fone, fone) if n == 1: return s # Odd -- signs are preserved if n & 1: a = mpf_pow_int(sa, n, prec, round_floor) b = mpf_pow_int(sb, n, prec, round_ceiling) # Even -- important to ensure positivity else: sas = mpf_sign(sa) sbs = mpf_sign(sb) # Nonnegative? if sas >= 0: a = mpf_pow_int(sa, n, prec, round_floor) b = mpf_pow_int(sb, n, prec, round_ceiling) # Nonpositive? elif sbs <= 0: a = mpf_pow_int(sb, n, prec, round_floor) b = mpf_pow_int(sa, n, prec, round_ceiling) # Mixed signs? else: a = fzero # max(-a,b)**n sa = mpf_neg(sa) if mpf_ge(sa, sb): b = mpf_pow_int(sa, n, prec, round_ceiling) else: b = mpf_pow_int(sb, n, prec, round_ceiling) return a, b
def mpi_from_str_a_b(x, y, percent, prec): wp = prec + 20 xa = from_str(x, wp, round_floor) xb = from_str(x, wp, round_ceiling) #ya = from_str(y, wp, round_floor) y = from_str(y, wp, round_ceiling) assert mpf_ge(y, fzero) if percent: y = mpf_mul(MAX(mpf_abs(xa), mpf_abs(xb)), y, wp, round_ceiling) y = mpf_div(y, from_int(100), wp, round_ceiling) a = mpf_sub(xa, y, prec, round_floor) b = mpf_add(xb, y, prec, round_ceiling) return a, b
def mpi_square(s, prec=0): sa, sb = s if mpf_ge(sa, fzero): a = mpf_mul(sa, sa, prec, round_floor) b = mpf_mul(sb, sb, prec, round_ceiling) elif mpf_le(sb, fzero): a = mpf_mul(sb, sb, prec, round_floor) b = mpf_mul(sa, sa, prec, round_ceiling) else: sa = mpf_neg(sa) sa, sb = mpf_min_max([sa, sb]) a = fzero b = mpf_mul(sb, sb, prec, round_ceiling) return a, b
def mpi_atan2(y, x, prec): ya, yb = y xa, xb = x # Constrained to the real line if ya == yb == fzero: if mpf_ge(xa, fzero): return mpi_zero return mpi_pi(prec) # Right half-plane if mpf_ge(xa, fzero): if mpf_ge(ya, fzero): a = mpf_atan2(ya, xb, prec, round_floor) else: a = mpf_atan2(ya, xa, prec, round_floor) if mpf_ge(yb, fzero): b = mpf_atan2(yb, xa, prec, round_ceiling) else: b = mpf_atan2(yb, xb, prec, round_ceiling) # Upper half-plane elif mpf_ge(ya, fzero): b = mpf_atan2(ya, xa, prec, round_ceiling) if mpf_le(xb, fzero): a = mpf_atan2(yb, xb, prec, round_floor) else: a = mpf_atan2(ya, xb, prec, round_floor) # Lower half-plane elif mpf_le(yb, fzero): a = mpf_atan2(yb, xa, prec, round_floor) if mpf_le(xb, fzero): b = mpf_atan2(ya, xb, prec, round_ceiling) else: b = mpf_atan2(yb, xb, prec, round_ceiling) # Covering the origin else: b = mpf_pi(prec, round_ceiling) a = mpf_neg(b) return a, b
def MAX(x, y): if mpf_ge(x, y): return x return y
def mpci_gamma(z, prec, type=0): (a1, a2), (b1, b2) = z # Real case if b1 == b2 == fzero and (type != 3 or mpf_gt(a1, fzero)): return mpi_gamma(z, prec, type), mpi_zero # Estimate precision wp = prec + 20 if type != 3: amag = a2[2] + a2[3] bmag = b2[2] + b2[3] if a2 != fzero: mag = max(amag, bmag) else: mag = bmag an = abs(to_int(a2)) bn = abs(to_int(b2)) absn = max(an, bn) gamma_size = max(0, absn * mag) wp += bitcount(gamma_size) # Assume type != 1 if type == 1: (a1, a2) = mpi_add((a1, a2), mpi_one, wp) z = (a1, a2), (b1, b2) type = 0 # Avoid non-monotonic region near the negative real axis if mpf_lt(a1, gamma_min_b): if mpi_overlap((b1, b2), (gamma_mono_imag_a, gamma_mono_imag_b)): # TODO: reflection formula #if mpf_lt(a2, mpf_shift(fone,-1)): # znew = mpci_sub((mpi_one,mpi_zero),z,wp) # ... # Recurrence: # gamma(z) = gamma(z+1)/z znew = mpi_add((a1, a2), mpi_one, wp), (b1, b2) if type == 0: return mpci_div(mpci_gamma(znew, prec + 2, 0), z, prec) if type == 2: return mpci_mul(mpci_gamma(znew, prec + 2, 2), z, prec) if type == 3: return mpci_sub(mpci_gamma(znew, prec + 2, 3), mpci_log(z, prec + 2), prec) # Use monotonicity (except for a small region close to the # origin and near poles) # upper half-plane if mpf_ge(b1, fzero): minre = mpc_loggamma((a1, b2), wp, round_floor) maxre = mpc_loggamma((a2, b1), wp, round_ceiling) minim = mpc_loggamma((a1, b1), wp, round_floor) maxim = mpc_loggamma((a2, b2), wp, round_ceiling) # lower half-plane elif mpf_le(b2, fzero): minre = mpc_loggamma((a1, b1), wp, round_floor) maxre = mpc_loggamma((a2, b2), wp, round_ceiling) minim = mpc_loggamma((a2, b1), wp, round_floor) maxim = mpc_loggamma((a1, b2), wp, round_ceiling) # crosses real axis else: maxre = mpc_loggamma((a2, fzero), wp, round_ceiling) # stretches more into the lower half-plane if mpf_gt(mpf_neg(b1), b2): minre = mpc_loggamma((a1, b1), wp, round_ceiling) else: minre = mpc_loggamma((a1, b2), wp, round_ceiling) minim = mpc_loggamma((a2, b1), wp, round_floor) maxim = mpc_loggamma((a2, b2), wp, round_floor) w = (minre[0], maxre[0]), (minim[1], maxim[1]) if type == 3: return mpi_pos(w[0], prec), mpi_pos(w[1], prec) if type == 2: w = mpci_neg(w) return mpci_exp(w, prec)
def mpi_lt(s, t): sa, sb = s ta, tb = t if mpf_lt(sb, ta): return True if mpf_ge(sa, tb): return False return None
def mpci_gamma(z, prec, type=0): (a1,a2), (b1,b2) = z # Real case if b1 == b2 == fzero and (type != 3 or mpf_gt(a1,fzero)): return mpi_gamma(z, prec, type), mpi_zero # Estimate precision wp = prec+20 if type != 3: amag = a2[2]+a2[3] bmag = b2[2]+b2[3] if a2 != fzero: mag = max(amag, bmag) else: mag = bmag an = abs(to_int(a2)) bn = abs(to_int(b2)) absn = max(an, bn) gamma_size = max(0,absn*mag) wp += bitcount(gamma_size) # Assume type != 1 if type == 1: (a1,a2) = mpi_add((a1,a2), mpi_one, wp); z = (a1,a2), (b1,b2) type = 0 # Avoid non-monotonic region near the negative real axis if mpf_lt(a1, gamma_min_b): if mpi_overlap((b1,b2), (gamma_mono_imag_a, gamma_mono_imag_b)): # TODO: reflection formula #if mpf_lt(a2, mpf_shift(fone,-1)): # znew = mpci_sub((mpi_one,mpi_zero),z,wp) # ... # Recurrence: # gamma(z) = gamma(z+1)/z znew = mpi_add((a1,a2), mpi_one, wp), (b1,b2) if type == 0: return mpci_div(mpci_gamma(znew, prec+2, 0), z, prec) if type == 2: return mpci_mul(mpci_gamma(znew, prec+2, 2), z, prec) if type == 3: return mpci_sub(mpci_gamma(znew, prec+2, 3), mpci_log(z,prec+2), prec) # Use monotonicity (except for a small region close to the # origin and near poles) # upper half-plane if mpf_ge(b1, fzero): minre = mpc_loggamma((a1,b2), wp, round_floor) maxre = mpc_loggamma((a2,b1), wp, round_ceiling) minim = mpc_loggamma((a1,b1), wp, round_floor) maxim = mpc_loggamma((a2,b2), wp, round_ceiling) # lower half-plane elif mpf_le(b2, fzero): minre = mpc_loggamma((a1,b1), wp, round_floor) maxre = mpc_loggamma((a2,b2), wp, round_ceiling) minim = mpc_loggamma((a2,b1), wp, round_floor) maxim = mpc_loggamma((a1,b2), wp, round_ceiling) # crosses real axis else: maxre = mpc_loggamma((a2,fzero), wp, round_ceiling) # stretches more into the lower half-plane if mpf_gt(mpf_neg(b1), b2): minre = mpc_loggamma((a1,b1), wp, round_ceiling) else: minre = mpc_loggamma((a1,b2), wp, round_ceiling) minim = mpc_loggamma((a2,b1), wp, round_floor) maxim = mpc_loggamma((a2,b2), wp, round_floor) w = (minre[0], maxre[0]), (minim[1], maxim[1]) if type == 3: return mpi_pos(w[0], prec), mpi_pos(w[1], prec) if type == 2: w = mpci_neg(w) return mpci_exp(w, prec)