コード例 #1
0
    def fit(
        self,
        *,
        cov_type: str = "robust",
        debiased: bool = False,
        method: str = "auto",
        absorb_options: Optional[Dict[str, Union[bool, str, ArrayLike, None,
                                                 Dict[str, Any]]]] = None,
        use_cache: bool = True,
        lsmr_options: Optional[Dict[str, Union[float, bool]]] = None,
        **cov_config: Any,
    ) -> AbsorbingLSResults:
        """
        Estimate model parameters

        Parameters
        ----------
        cov_type : str, optional
            Name of covariance estimator to use. Supported covariance
            estimators are:

            * 'unadjusted', 'homoskedastic' - Classic homoskedastic inference
            * 'robust', 'heteroskedastic' - Heteroskedasticity robust inference
            * 'kernel' - Heteroskedasticity and autocorrelation robust
              inference
            * 'cluster' - One-way cluster dependent inference.
              Heteroskedasticity robust

        debiased : bool, optional
            Flag indicating whether to debiased the covariance estimator using
            a degree of freedom adjustment.
        method : str, optional
            One of:

            * "auto" - (Default). Use HDFE when applicable and fallback to LSMR.
            * "lsmr" - Force LSMR.
            * "hdfe" - Force HDFE. Raises RuntimeError if the model contains
              continuous variables or continuous-binary interactions to absorb or
              if the model is weighted.

        absorb_options : dict, optional
            Dictionary of options to pass to the absorber. Passed to either
            scipy.sparse.linalg.lsmr or pyhdfe.create depending on the method used
            to absorb the absorbed regressors.
        use_cache : bool
            Flag indicating whether the variables, once purged from the
            absorbed variables and interactions, should be stored in the cache,
            and retrieved if available. Cache can dramatically speed up
            re-fitting large models when the set of absorbed variables and
            interactions are identical.
        lsmr_options: dict
            Options to ass to scipy.sparse.linalg.lsmr.

            .. deprecated:: 4.17

               Use absorb_options to pass options

        **cov_config
            Additional parameters to pass to covariance estimator. The list
            of optional parameters differ according to ``cov_type``. See
            the documentation of the alternative covariance estimators for
            the complete list of available commands.


        Returns
        -------
        AbsorbingLSResults
            Results container

        Notes
        -----
        Additional covariance parameters depend on specific covariance used.
        The see the docstring of specific covariance estimator for a list of
        supported options. Defaults are used if no covariance configuration
        is provided.

        If use_cache is True, then variables are hashed based on their
        contents using either a 64 bit value (if xxhash is installed) or
        a 256 bit value. This allows variables to be reused in different
        models if the set of absorbing variables and interactions is held
        constant.

        See also
        --------
        linearmodels.iv.covariance.HomoskedasticCovariance
        linearmodels.iv.covariance.HeteroskedasticCovariance
        linearmodels.iv.covariance.KernelCovariance
        linearmodels.iv.covariance.ClusteredCovariance
        """
        if lsmr_options is not None:
            if absorb_options is not None:
                raise ValueError(
                    "absorb_options cannot be used with lsmr_options")
            warnings.warn("lsmr_options is deprecated.  Use absorb_options.",
                          FutureWarning)
            absorb_options = {k: v for k, v in lsmr_options.items()}
        if self._absorbed_dependent is None:
            self._first_time_fit(use_cache, absorb_options, method)

        exog_resid = self.absorbed_exog.to_numpy()
        dep_resid = self.absorbed_dependent.to_numpy()
        if self._exog.shape[1] == 0:
            params = empty((0, 1))
        else:
            params = lstsq(exog_resid, dep_resid, rcond=None)[0]
            self._num_params += exog_resid.shape[1]

        cov_estimator = COVARIANCE_ESTIMATORS[cov_type]
        cov_config["debiased"] = debiased
        cov_config["kappa"] = 0.0
        cov_config_copy = {k: v for k, v in cov_config.items()}
        if "center" in cov_config_copy:
            del cov_config_copy["center"]
        cov_estimator_inst = cov_estimator(exog_resid, dep_resid, exog_resid,
                                           params, **cov_config_copy)

        results = {"kappa": 0.0, "liml_kappa": 0.0}
        pe = self._post_estimation(params, cov_estimator_inst, cov_type)
        results.update(pe)
        results["df_model"] = self._num_params

        return AbsorbingLSResults(results, self)
コード例 #2
0
    def fit(
        self,
        *,
        cov_type: str = "robust",
        debiased: bool = False,
        lsmr_options: Optional[Dict[str, Union[float, bool]]] = None,
        use_cache: bool = True,
        **cov_config: Any,
    ) -> AbsorbingLSResults:
        """
        Estimate model parameters

        Parameters
        ----------
        cov_type : str, optional
            Name of covariance estimator to use. Supported covariance
            estimators are:

            * 'unadjusted', 'homoskedastic' - Classic homoskedastic inference
            * 'robust', 'heteroskedastic' - Heteroskedasticity robust inference
            * 'kernel' - Heteroskedasticity and autocorrelation robust
              inference
            * 'cluster' - One-way cluster dependent inference.
              Heteroskedasticity robust

        debiased : bool, optional
            Flag indicating whether to debiased the covariance estimator using
            a degree of freedom adjustment.
        **cov_config
            Additional parameters to pass to covariance estimator. The list
            of optional parameters differ according to ``cov_type``. See
            the documentation of the alternative covariance estimators for
            the complete list of available commands.
        lsmr_options : dict
            Dictionary of options to pass to scipy.sparse.linalg.lsmr
        use_cache : bool
            Flag indicating whether the variables, once purged from the
            absorbed variables and interactions, should be stored in the cache,
            and retrieved if available. Cache can dramatically speed up
            re-fitting large models when the set of absorbed variables and
            interactions are identical.

        Returns
        -------
        AbsorbingLSResults
            Results container

        Notes
        -----
        Additional covariance parameters depend on specific covariance used.
        The see the docstring of specific covariance estimator for a list of
        supported options. Defaults are used if no covariance configuration
        is provided.

        If use_cache is True, then variables are hashed based on their
        contents using either a 64 bit value (if xxhash is installed) or
        a 256 bit value. This allows variables to be reused in different
        models if the set of absorbing variables and interactions is held
        constant.

        See also
        --------
        linearmodels.iv.covariance.HomoskedasticCovariance
        linearmodels.iv.covariance.HeteroskedasticCovariance
        linearmodels.iv.covariance.KernelCovariance
        linearmodels.iv.covariance.ClusteredCovariance
        """

        if self._absorbed_dependent is None:
            self._first_time_fit(use_cache, lsmr_options)

        self._x = exog_resid = to_numpy(self.absorbed_exog)
        dep_resid = to_numpy(self.absorbed_dependent)
        if self._exog.shape[1] == 0:
            params = empty((0, 1))
        else:
            if exog_resid.shape[1]:
                check_absorbed(exog_resid, self.exog.cols)
            params = lstsq(exog_resid, dep_resid, rcond=None)[0]
            self._num_params += exog_resid.shape[1]

        cov_estimator = COVARIANCE_ESTIMATORS[cov_type]
        cov_config["debiased"] = debiased
        cov_config["kappa"] = 0.0
        cov_config_copy = {k: v for k, v in cov_config.items()}
        if "center" in cov_config_copy:
            del cov_config_copy["center"]
        cov_estimator_inst = cov_estimator(exog_resid, dep_resid, exog_resid,
                                           params, **cov_config_copy)

        results = {"kappa": 0.0, "liml_kappa": 0.0}
        pe = self._post_estimation(params, cov_estimator_inst, cov_type)
        results.update(pe)
        results["df_model"] = self._num_params

        return AbsorbingLSResults(results, self)