def test_compute_best_mode_nothing_below_threshold(self): angles = [(90, 0), (80, 1), (70, 2)] target = None traj = None loss = mtp.MTPLoss(3, 0, 5) self.assertTrue(loss._compute_best_mode(angles, target, traj) in {0, 1, 2}) loss = mtp.MTPLoss(3, 0, 65) self.assertTrue(loss._compute_best_mode(angles, target, traj) in {0, 1, 2})
def test_loss_many_modes(self): targets = torch.zeros((16, 1, 30, 2)) targets[:, :, :, 1] = torch.arange(start=0, end=3, step=0.1) predictions = torch.ones((16, 610)) predictions[:, 540:600] = targets[0, 0, :, :].reshape(-1, 60) predictions[:, -10:] = 1/10 loss = mtp.MTPLoss(10, 1, angle_threshold_degrees=20) # Since one mode exactly matches gt, loss should only be classification error. self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), -math.log(1/10), places=4) # Now the best mode differs by 1 from the ground truth. # Smooth l1 loss subtracts 0.5 from l1 norm if diff >= 1. predictions[:, 540:600] += 1 self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), -math.log(1/10) + 0.5, places=4) # In this case, one element has perfect regression, the others are off by 1. predictions[1, 540:600] -= 1 self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), -math.log(1/10) + (15/16)*0.5, places=4)
def test_loss_single_mode(self): targets = torch.zeros((16, 1, 30, 2)) targets[:, :, :, 1] = torch.arange(start=0, end=3, step=0.1) predictions = torch.ones((16, 61)) predictions[:, :60] = targets[0, 0, :, :].reshape(-1, 60) predictions[:, 60] = 1/10 loss = mtp.MTPLoss(1, 1, angle_threshold_degrees=20) # Only regression loss in single mode case. self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), 0, places=4) # Now the best mode differs by 1 from the ground truth. # Smooth l1 loss subtracts 0.5 from l1 norm if diff >= 1. predictions[:, :60] += 1 self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), 0.5, places=4) # In this case, one element has perfect regression, the others are off by 1. predictions[1, :60] -= 1 self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), (15/16)*0.5, places=4)
def test_compute_best_mode_multiple_below_threshold(self): angles = [(2, 2), (4, 1), (10, 0)] target = torch.ones((1, 6, 2)) trajectory = torch.zeros((3, 6, 2)) trajectory[1] = 1 loss = mtp.MTPLoss(3, 0, 5) self.assertEqual(loss._compute_best_mode(angles, target, trajectory), 1)
def test_compute_best_mode_only_one_below_threshold(self): angles = [(30, 1), (3, 0), (25, 2)] target = torch.ones((1, 6, 2)) trajectory = torch.zeros((3, 6, 2)) loss = mtp.MTPLoss(3, 0, 5) self.assertEqual(loss._compute_best_mode(angles, target, trajectory), 0)
def test_compute_best_mode_only_one_mode(self): angles = [(25, 0)] target = torch.ones((1, 6, 2)) trajectory = torch.zeros((1, 6, 2)) loss = mtp.MTPLoss(1, 0, 5) self.assertEqual(loss._compute_best_mode(angles, target, trajectory), 0) trajectory[0] = 1 self.assertEqual(loss._compute_best_mode(angles, target, trajectory), 0)
def test_get_trajectories_and_modes(self): loss_n_modes_5 = mtp.MTPLoss(5, 0, 0) loss_n_modes_1 = mtp.MTPLoss(1, 0, 0) xy_pred = torch.arange(60).view(1, -1).repeat(1, 5).view(-1, 60) mode_pred = torch.arange(5).view(1, -1) prediction_bs_1 = torch.cat([xy_pred.reshape(1, -1), mode_pred], dim=1) prediction_bs_2 = prediction_bs_1.repeat(2, 1) # Testing many modes with batch size 1. traj, modes = loss_n_modes_5._get_trajectory_and_modes(prediction_bs_1) self.assertTrue(torch.allclose(traj, xy_pred.unsqueeze(0).reshape(1, 5, 30, 2))) self.assertTrue(torch.allclose(modes, mode_pred)) # Testing many modes with batch size > 1. traj, modes = loss_n_modes_5._get_trajectory_and_modes(prediction_bs_2) self.assertTrue(torch.allclose(traj, xy_pred.repeat(1, 2).unsqueeze(0).reshape(2, 5, 30, 2))) self.assertTrue(torch.allclose(modes, mode_pred.repeat(2, 1))) xy_pred = torch.arange(60).view(1, -1).repeat(1, 1).view(-1, 60) mode_pred = torch.arange(1).view(1, -1) prediction_bs_1 = torch.cat([xy_pred.reshape(1, -1), mode_pred], dim=1) prediction_bs_2 = prediction_bs_1.repeat(2, 1) # Testing one mode with batch size 1. traj, modes = loss_n_modes_1._get_trajectory_and_modes(prediction_bs_1) self.assertTrue(torch.allclose(traj, xy_pred.unsqueeze(0).reshape(1, 1, 30, 2))) self.assertTrue(torch.allclose(modes, mode_pred)) # Testing one mode with batch size > 1. traj, modes = loss_n_modes_1._get_trajectory_and_modes(prediction_bs_2) self.assertTrue(torch.allclose(traj, xy_pred.repeat(1, 2).unsqueeze(0).reshape(2, 1, 30, 2))) self.assertTrue(torch.allclose(modes, mode_pred.repeat(2, 1)))
def test_angle_between_trajectories(self): def make_trajectory(last_point): traj = torch.zeros((12, 2)) traj[-1] = torch.Tensor(last_point) return traj loss = mtp.MTPLoss(0, 0, 0) # test angle is 0. self.assertEqual(loss._angle_between(make_trajectory([0, 0]), make_trajectory([0, 0])), 0.) self.assertEqual(loss._angle_between(make_trajectory([15, 15]), make_trajectory([15, 15])), 0.) # test angle is 15. self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 1]), make_trajectory([math.sqrt(3)/2, 0.5])), 15., places=4) # test angle is 30. self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 0]), make_trajectory([math.sqrt(3)/2, 0.5])), 30., places=4) # test angle is 45. self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 1]), make_trajectory([0, 1])), 45., places=4) # test angle is 90. self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 1]), make_trajectory([-1, 1])), 90., places=4) self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 0]), make_trajectory([0, 1])), 90., places=4) # test angle is 180. self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 0]), make_trajectory([-1, 0])), 180., places=4) self.assertAlmostEqual(loss._angle_between(make_trajectory([0, 1]), make_trajectory([0, -1])), 180., places=4) self.assertAlmostEqual(loss._angle_between(make_trajectory([3, 1]), make_trajectory([-3, -1])), 180., places=4)