Пример #1
0
    def test_compute_best_mode_nothing_below_threshold(self):
        angles = [(90, 0), (80, 1), (70, 2)]
        target = None
        traj = None

        loss = mtp.MTPLoss(3, 0, 5)
        self.assertTrue(loss._compute_best_mode(angles, target, traj) in {0, 1, 2})

        loss = mtp.MTPLoss(3, 0, 65)
        self.assertTrue(loss._compute_best_mode(angles, target, traj) in {0, 1, 2})
Пример #2
0
    def test_loss_many_modes(self):
        targets = torch.zeros((16, 1, 30, 2))
        targets[:, :, :, 1] = torch.arange(start=0, end=3, step=0.1)

        predictions = torch.ones((16, 610))
        predictions[:, 540:600] = targets[0, 0, :, :].reshape(-1, 60)
        predictions[:, -10:] = 1/10

        loss = mtp.MTPLoss(10, 1, angle_threshold_degrees=20)

        # Since one mode exactly matches gt, loss should only be classification error.
        self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()),
                               -math.log(1/10), places=4)

        # Now the best mode differs by 1 from the ground truth.
        # Smooth l1 loss subtracts 0.5 from l1 norm if diff >= 1.
        predictions[:, 540:600] += 1
        self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()),
                               -math.log(1/10) + 0.5,
                               places=4)

        # In this case, one element has perfect regression, the others are off by 1.
        predictions[1, 540:600] -= 1
        self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()),
                               -math.log(1/10) + (15/16)*0.5,
                               places=4)
Пример #3
0
    def test_loss_single_mode(self):
        targets = torch.zeros((16, 1, 30, 2))
        targets[:, :, :, 1] = torch.arange(start=0, end=3, step=0.1)

        predictions = torch.ones((16, 61))
        predictions[:, :60] = targets[0, 0, :, :].reshape(-1, 60)
        predictions[:, 60] = 1/10

        loss = mtp.MTPLoss(1, 1, angle_threshold_degrees=20)

        # Only regression loss in single mode case.
        self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()),
                               0, places=4)

        # Now the best mode differs by 1 from the ground truth.
        # Smooth l1 loss subtracts 0.5 from l1 norm if diff >= 1.
        predictions[:, :60] += 1
        self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), 0.5,
                               places=4)

        # In this case, one element has perfect regression, the others are off by 1.
        predictions[1, :60] -= 1
        self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()),
                               (15/16)*0.5,
                               places=4)
Пример #4
0
    def test_compute_best_mode_multiple_below_threshold(self):
        angles = [(2, 2), (4, 1), (10, 0)]
        target = torch.ones((1, 6, 2))
        trajectory = torch.zeros((3, 6, 2))
        trajectory[1] = 1

        loss = mtp.MTPLoss(3, 0, 5)
        self.assertEqual(loss._compute_best_mode(angles, target, trajectory), 1)
Пример #5
0
    def test_compute_best_mode_only_one_below_threshold(self):
        angles = [(30, 1), (3, 0), (25, 2)]

        target = torch.ones((1, 6, 2))
        trajectory = torch.zeros((3, 6, 2))

        loss = mtp.MTPLoss(3, 0, 5)
        self.assertEqual(loss._compute_best_mode(angles, target, trajectory), 0)
Пример #6
0
    def test_compute_best_mode_only_one_mode(self):
        angles = [(25, 0)]
        target = torch.ones((1, 6, 2))
        trajectory = torch.zeros((1, 6, 2))

        loss = mtp.MTPLoss(1, 0, 5)
        self.assertEqual(loss._compute_best_mode(angles, target, trajectory), 0)

        trajectory[0] = 1
        self.assertEqual(loss._compute_best_mode(angles, target, trajectory), 0)
Пример #7
0
    def test_get_trajectories_and_modes(self):

        loss_n_modes_5 = mtp.MTPLoss(5, 0, 0)
        loss_n_modes_1 = mtp.MTPLoss(1, 0, 0)

        xy_pred = torch.arange(60).view(1, -1).repeat(1, 5).view(-1, 60)
        mode_pred = torch.arange(5).view(1, -1)

        prediction_bs_1 = torch.cat([xy_pred.reshape(1, -1), mode_pred], dim=1)
        prediction_bs_2 = prediction_bs_1.repeat(2, 1)

        # Testing many modes with batch size 1.
        traj, modes = loss_n_modes_5._get_trajectory_and_modes(prediction_bs_1)
        self.assertTrue(torch.allclose(traj, xy_pred.unsqueeze(0).reshape(1, 5, 30, 2)))
        self.assertTrue(torch.allclose(modes, mode_pred))

        # Testing many modes with batch size > 1.
        traj, modes = loss_n_modes_5._get_trajectory_and_modes(prediction_bs_2)
        self.assertTrue(torch.allclose(traj, xy_pred.repeat(1, 2).unsqueeze(0).reshape(2, 5, 30, 2)))
        self.assertTrue(torch.allclose(modes, mode_pred.repeat(2, 1)))

        xy_pred = torch.arange(60).view(1, -1).repeat(1, 1).view(-1, 60)
        mode_pred = torch.arange(1).view(1, -1)

        prediction_bs_1 = torch.cat([xy_pred.reshape(1, -1), mode_pred], dim=1)
        prediction_bs_2 = prediction_bs_1.repeat(2, 1)

        # Testing one mode with batch size 1.
        traj, modes = loss_n_modes_1._get_trajectory_and_modes(prediction_bs_1)
        self.assertTrue(torch.allclose(traj, xy_pred.unsqueeze(0).reshape(1, 1, 30, 2)))
        self.assertTrue(torch.allclose(modes, mode_pred))

        # Testing one mode with batch size > 1.
        traj, modes = loss_n_modes_1._get_trajectory_and_modes(prediction_bs_2)
        self.assertTrue(torch.allclose(traj, xy_pred.repeat(1, 2).unsqueeze(0).reshape(2, 1, 30, 2)))
        self.assertTrue(torch.allclose(modes, mode_pred.repeat(2, 1)))
Пример #8
0
    def test_angle_between_trajectories(self):

        def make_trajectory(last_point):
            traj = torch.zeros((12, 2))
            traj[-1] = torch.Tensor(last_point)
            return traj

        loss = mtp.MTPLoss(0, 0, 0)

        # test angle is 0.
        self.assertEqual(loss._angle_between(make_trajectory([0, 0]), make_trajectory([0, 0])), 0.)
        self.assertEqual(loss._angle_between(make_trajectory([15, 15]), make_trajectory([15, 15])), 0.)

        # test angle is 15.
        self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 1]),
                                                   make_trajectory([math.sqrt(3)/2, 0.5])), 15., places=4)

        # test angle is 30.
        self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 0]),
                                                   make_trajectory([math.sqrt(3)/2, 0.5])), 30., places=4)

        # test angle is 45.
        self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 1]),
                                                   make_trajectory([0, 1])), 45., places=4)

        # test angle is 90.
        self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 1]),
                                                   make_trajectory([-1, 1])), 90., places=4)
        self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 0]),
                                                   make_trajectory([0, 1])), 90., places=4)

        # test angle is 180.
        self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 0]),
                               make_trajectory([-1, 0])), 180., places=4)
        self.assertAlmostEqual(loss._angle_between(make_trajectory([0, 1]),
                                                   make_trajectory([0, -1])), 180., places=4)
        self.assertAlmostEqual(loss._angle_between(make_trajectory([3, 1]),
                                                   make_trajectory([-3, -1])), 180., places=4)