コード例 #1
0
class GeneticPDModel(Model):

    description = 'A model which does nothing'

    def __init__(self,
                 numagents=10,
                 verbose=False,
                 Q1_fixed_prob=False,
                 history_len2=False,
                 mutation_switch=False,
                 crossover_switch=False):

        super().__init__()
        # Set parameters
        self.numagents = numagents
        self.verbose = verbose

        self.Q1_fixed_prob = Q1_fixed_prob

        self.history_len2 = history_len2
        self.mutation_switch = mutation_switch

        self.crossover_switch = crossover_switch

        # Build basic objects
        self.schedule = RandomActivation(self)
        self.datacollector = DataCollector(
            {"Agents": lambda m: len(m.schedule.agents)})

        # Create agents:

        for i in range(self.numagents):
            newagent = GeneticPDAgent(unique_id=self.next_id(), model=self)

            self.schedule.add(newagent)

            if self.verbose:
                print("Agent " + str(newagent.unique_id) + " created")

    def step(self):
        if self.verbose:
            print("Tick number:", self.schedule.time)

        self.schedule.step()

        # collect data
        self.datacollector.collect(self)

    def run_model(self, step_count=200):
        if self.verbose:
            print('Initial number agents: ', self.schedule.get_agent_count())

        for i in range(step_count):
            self.step()

        if self.verbose:
            print('')
            print('Final number agents: ', self.schedule.get_agent_count())
コード例 #2
0
class GeneticPDModel(Model):

    description = 'A model which does nothing'

    def __init__(self,
                 numagents=10,
                 verbose=False,
                 rounds_per_play=1,
                 history_length=2):
        super().__init__()
        # Set parameters
        self.numagents = numagents
        self.verbose = verbose
        self.rounds_per_play = rounds_per_play
        self.history_length = history_length

        self.agents = []

        # Build basic objects
        self.schedule = RandomActivation(self)
        self.datacollector = DataCollector(
            model_reporters={"Agents": lambda m: len(m.schedule.agents)},
            agent_reporters={"wealth": lambda a: a.wealth})

        # Create agents:
        for i in range(self.numagents):
            newagent = GeneticPDAgent(unique_id=self.next_id(), model=self)
            self.schedule.add(newagent)
            self.agents.append(newagent)

    def step(self):
        if self.verbose:
            print("Tick number:", self.schedule.time)
        self.schedule.step()
        # collect data
        self.datacollector.collect(self)

    def run_model(self, step_count=200):
        if self.verbose:
            print('Initial number agents: ', self.schedule.get_agent_count())

        for i in range(step_count):
            self.step()

        if self.verbose:
            print('')
            print('Final number agents: ', self.schedule.get_agent_count())

    def PDpayoff(self, my_action, your_action):
        if my_action == "C" and your_action == "C":
            return 3
        if my_action == "C" and your_action == "D":
            return 0
        if my_action == "D" and your_action == "C":
            return 4
        if my_action == "D" and your_action == "D":
            return 1
コード例 #3
0
class CrossingModel(Model):
    def __init__(self, ped_origin, ped_destination, road_length, road_width, vehicle_flow, epsilon, gamma, ped_speed, lam, alpha, a_rate):
        self.schedule = RandomActivation(self)
        self.running = True
        self.nsteps = 0

        # Create two crossing alternatives, one a zebra crossing and one mid block crossing
        zebra_location = road_length * 0.75
        zebra_type = 'zebra'
        mid_block_type = 'unmarked'
        
        zebra = CrossingAlternative(0, self, location = zebra_location, ctype = zebra_type, name = 'z1', vehicle_flow = vehicle_flow)
        unmarked = CrossingAlternative(1, self, ctype = mid_block_type, name = 'mid1', vehicle_flow = vehicle_flow)

        # Crossing alternatives with salience factors
        crossing_altertives = np.array([unmarked,zebra])

        i = 0
        model_type = 'sampling'
        self.ped = Ped(i, self, location = ped_origin, speed = ped_speed, destination = ped_destination, crossing_altertives = crossing_altertives, road_length = road_length, road_width = road_width, epsilon = epsilon, gamma = gamma, lam = lam, alpha = alpha, a_rate = a_rate, model_type = model_type)
        self.schedule.add(self.ped)

        self.datacollector = DataCollector(agent_reporters={"CrossingType": "chosenCAType"})

        self.crossing_choice = None
        self.choice_step = None

    def step(self):
        self.datacollector.collect(self)
        self.schedule.step()
        if self.schedule.get_agent_count() == 0:
            self.running = False
        self.nsteps += 1
コード例 #4
0
ファイル: Schelling.py プロジェクト: DanielWeitzenfeld/mesa
class SchellingModel(Model):
    '''
    Model class for the Schelling segregation model.
    '''

    def __init__(self, height, width, density, minority_pc, homophily):
        '''
        '''

        self.height = height
        self.width = width
        self.density = density
        self.minority_pc = minority_pc
        self.homophily = homophily

        self.schedule = RandomActivation(self)
        self.grid = Grid(height, width, torus=True)

        self.happy = 0
        self.datacollector = DataCollector(
            {"happy": lambda m: m.happy}, # Model-level count of happy agents
            # For testing purposes, agent's individual x and y
            {"x": lambda a: a.x, "y": lambda a: a.y}) 

        self.running = True

        # Set up agents
        for x in range(self.width):
            for y in range(self.height):
                if random.random() < self.density:
                    if random.random() < self.minority_pc:
                        agent_type = 1
                    else:
                        agent_type = 0

                    agent = SchellingAgent((x,y), x, y, agent_type)
                    self.grid[y][x] = agent
                    self.schedule.add(agent)

    def get_empty(self):
        '''
        Get a list of coordinate tuples of currently-empty cells.
        '''
        empty_cells = []
        for x in range(self.width):
            for y in range(self.height):
                if self.grid[y][x] is None:
                    empty_cells.append((x, y))
        return empty_cells

    def step(self):
        '''
        Run one step of the model. If All agents are happy, halt the model.
        '''
        self.happy = 0 # Reset counter of happy agents
        self.schedule.step()
        self.datacollector.collect(self)

        if self.happy == self.schedule.get_agent_count():
            self.running = False
コード例 #5
0
class COVID_model(Model):
    def __init__(self):
        super().__init__(Model)

        self.susceptible = 0
        self.dead = 0
        self.recovered = 0
        self.infected = 0
        interactions = model_params.parameters['interactions']
        self.population = model_params.parameters['population']
        self.SIR_instance = SIR.Infection(
            self,
            ptrans=model_params.parameters['ptrans'],
            reinfection_rate=model_params.parameters['reinfection_rate'],
            I0=model_params.parameters["I0"],
            severe=model_params.parameters["severe"],
            progression_period=model_params.parameters["progression_period"],
            progression_sd=model_params.parameters["progression_sd"],
            death_rate=model_params.parameters["death_rate"],
            recovery_days=model_params.parameters["recovery_days"],
            recovery_sd=model_params.parameters["recovery_sd"])

        G = SIR.build_network(interactions, self.population)
        self.grid = NetworkGrid(G)
        self.schedule = RandomActivation(self)
        self.dead_agents = []
        self.running = True

        for node in range(self.population):
            new_agent = agent.human(node, self)  #what was self.next_id()
            self.grid.place_agent(new_agent, node)
            self.schedule.add(new_agent)

        #self.meme = 0
        self.datacollector = DataCollector(
            model_reporters={
                "infected": lambda m: c_p.compute(m, 'infected'),
                "recovered": lambda m: c_p.compute(m, 'recovered'),
                "susceptible": lambda m: c_p.compute(m, "susceptible"),
                "dead": lambda m: c_p.compute(m, "dead"),
                "R0": lambda m: c_p.compute(m, "R0"),
                "severe_cases": lambda m: c_p.compute(m, "severe")
            })
        self.datacollector.collect(self)

    def step(self):
        self.schedule.step()

        self.datacollector.collect(self)
        '''
        for a in self.schedule.agents:
            if a.alive == False:
                self.schedule.remove(a)
                self.dead_agents.append(a.unique_id)
        '''

        if self.dead == self.schedule.get_agent_count():
            self.running = False
        else:
            self.running = True
コード例 #6
0
ファイル: model.py プロジェクト: fwchj/cursoABMPythonPublic
class miModelo(Model):
    def __init__(self, N, seed=None):
        self.current_id = 0
        self.running = True
        # Definimos el schedule para hacer la ejecucion en orden aleatorio
        self.schedule = RandomActivation(self)

        #Definimos el grid de tamanio 10x10 y sin fronteras flexibles
        self.grid = MultiGrid(10, 10, False)

        for i in range(N):
            a = miAgente(self.next_id(), self, 5)
            self.schedule.add(a)
            pos_x = self.random.randint(0, 9)
            pos_y = self.random.randint(0, 9)

            self.grid.place_agent(a, [pos_x, pos_y])

        self.datacollector = DataCollector(model_reporters={
            "Nagentes": contarAgentes,
            "NumberTicks": getCurrentTick
        })

    def step(self):
        self.schedule.step()
        self.datacollector.collect(self)
        # Paramos la simulacion cuando hay menos de dos agentes
        if self.schedule.get_agent_count() < 2:
            self.running = False
コード例 #7
0
class propagation_model(Model):
    
    def __init__(self):
        super().__init__(Model)
        
        density = model_params.parameters['density']
        nodes = model_params.parameters['network_size']
        neg_bias = model_params.parameters['neg_bias']
        meme_density = model_params.parameters['meme_density']
        self.num_agents = nodes
        self.meme = 0
        
        G = model_functions.build_network(density, nodes)
        self.grid = NetworkGrid(G)
        self.schedule = RandomActivation(self)
        
        self.running = True
    
        for node in range(nodes):
            new_agent = agent.tweeter(self.next_id(), node, self, neg_bias, meme_density)
            self.grid.place_agent(new_agent, node)
            self.schedule.add(new_agent)
    
        #self.meme = 0
        self.datacollector = DataCollector(model_reporters={"meme_density": model_functions.compute_meme_density})
        self.datacollector.collect(self)
    
    def step(self):
        self.schedule.step()
        
        self.datacollector.collect(self)
        
        if self.meme == self.schedule.get_agent_count():
            self.running = False
コード例 #8
0
class SchellingModel(Model):
    '''
    Model class for the Schelling segregation model.
    '''
    def __init__(self, height, width, density, minority_pc, homophily):
        '''
        '''

        self.height = height
        self.width = width
        self.density = density
        self.minority_pc = minority_pc
        self.homophily = homophily

        self.schedule = RandomActivation(self)
        self.grid = SingleGrid(height, width, torus=True)

        self.happy = 0
        self.datacollector = DataCollector(
            {"happy": "happy"},  # Model-level count of happy agents
            # For testing purposes, agent's individual x and y
            {
                "x": lambda a: a.pos[0],
                "y": lambda a: a.pos[1]
            })

        # Set up agents
        # We use a grid iterator that returns
        # the coordinates of a cell as well as
        # its contents. (coord_iter)
        for cell in self.grid.coord_iter():
            x = cell[1]
            y = cell[2]
            if random.random() < self.density:
                if random.random() < self.minority_pc:
                    agent_type = 1
                else:
                    agent_type = 0

                agent = SchellingAgent((x, y), self, agent_type)
                self.grid.position_agent(agent, (x, y))
                self.schedule.add(agent)

        self.running = True
        self.datacollector.collect(self)

    def step(self):
        '''
        Run one step of the model. If All agents are happy, halt the model.
        '''
        self.happy = 0  # Reset counter of happy agents
        self.schedule.step()
        # collect data
        self.datacollector.collect(self)

        if self.happy == self.schedule.get_agent_count():
            self.running = False
コード例 #9
0
ファイル: model.py プロジェクト: bangtree/mesa
class Schelling(Model):
    '''
    Model class for the Schelling segregation model.
    '''

    def __init__(self, height=20, width=20, density=0.8, minority_pc=0.2, homophily=3):
        '''
        '''

        self.height = height
        self.width = width
        self.density = density
        self.minority_pc = minority_pc
        self.homophily = homophily

        self.schedule = RandomActivation(self)
        self.grid = SingleGrid(height, width, torus=True)

        self.happy = 0
        self.datacollector = DataCollector(
            {"happy": "happy"},  # Model-level count of happy agents
            # For testing purposes, agent's individual x and y
            {"x": lambda a: a.pos[0], "y": lambda a: a.pos[1]})

        # Set up agents
        # We use a grid iterator that returns
        # the coordinates of a cell as well as
        # its contents. (coord_iter)
        for cell in self.grid.coord_iter():
            x = cell[1]
            y = cell[2]
            if self.random.random() < self.density:
                if self.random.random() < self.minority_pc:
                    agent_type = 1
                else:
                    agent_type = 0

                agent = SchellingAgent((x, y), self, agent_type)
                self.grid.position_agent(agent, (x, y))
                self.schedule.add(agent)

        self.running = True
        self.datacollector.collect(self)

    def step(self):
        '''
        Run one step of the model. If All agents are happy, halt the model.
        '''
        self.happy = 0  # Reset counter of happy agents
        self.schedule.step()
        # collect data
        self.datacollector.collect(self)

        if self.happy == self.schedule.get_agent_count():
            self.running = False
コード例 #10
0
class Schelling(Model):
    '''
	Model for Schelling segregation agent
	'''
    def __init__(self, height, width, density, minority_pc, homophily):
        self.height = height
        self.width = width
        self.density = density
        self.minority_pc = minority_pc
        self.homophily = homophily

        # grid
        self.grid = SingleGrid(height, width, torus=True)

        # schedule
        self.schedule = RandomActivation(self)

        # datacollector
        self.happy = 0
        self.datacollector = DataCollector({"happy": "happy"}, {
            "x": lambda a: a.position[0],
            "y": lambda a: a.position[1]
        })

        # agent setup
        for cell in self.grid.coord_iter():
            x = cell[1]
            y = cell[2]

            if self.random.random() < self.density:
                if self.random.random() < self.minority_pc:
                    agent_type = 1
                else:
                    agent_type = 0

                agent = SchellingAgent((x, y), self, agent_type)
                self.grid.position_agent(agent, (x, y))
                self.schedule.add(agent)

        self.running = True
        self.datacollector.collect(self)

    def step(self):
        # reset at each step
        self.happy = 0
        self.schedule.step()

        # collect data
        self.datacollector.collect(self)

        # stop if all agents are happy
        if self.happy == self.schedule.get_agent_count():
            self.running = False
コード例 #11
0
class SchellingModel(Model):
    '''
    Model class for the Schelling segregation model.
    '''
    def __init__(self, height, width, density, type_pcs=[.2, .2, .2, .2, .2]):
        '''
        '''

        self.height = height
        self.width = width
        self.density = density
        self.type_pcs = type_pcs

        self.schedule = RandomActivation(self)
        self.grid = SingleGrid(height, width, torus=False)

        self.happy = 0
        self.datacollector = DataCollector(
            {"happy": lambda m: m.happy},  # Model-level count of happy agents
            # For testing purposes, agent's individual x and y
            {
                "x": lambda a: a.pos[0],
                "y": lambda a: a.pos[1]
            })

        self.running = True

        # Set up agents
        # We use a grid iterator that returns
        # the coordinates of a cell as well as
        # its contents. (coord_iter)

        total_agents = self.height * self.width * self.density
        agents_by_type = [total_agents * val for val in self.type_pcs]

        for loc, types in enumerate(agents_by_type):
            for i in range(int(types)):
                pos = self.grid.find_empty()
                agent = SchellingAgent(pos, self, loc)
                self.grid.position_agent(agent, pos)
                self.schedule.add(agent)

    def step(self):
        '''
        Run one step of the model. If All agents are happy, halt the model.
        '''
        self.happy = 0  # Reset counter of happy agents
        self.schedule.step()
        self.datacollector.collect(self)

        if self.happy == self.schedule.get_agent_count():
            self.running = False
コード例 #12
0
ファイル: model.py プロジェクト: bruzen/labwise
class SchellingModel(Model):
    '''
    Schelling model class
    '''
    def __init__(self, width=5, height=5, threshold=0.5, population_density=0.8, population_breakdown=0.5):
        '''
         Initialize the model

         Args:
            width:     Width  of the grid containing agents.
            height:    Height of the grid containing agents.
            threshold: Homophily threshold, the number, from 0-8, of nearest neighbours at which I am so unhappy that I move.
        	population_density:   Proportion of cells occupied, from 0-1.
        	population_breakdown: Proportion of agents of type 1, from 0-1.
        '''        
        self.running   = True

        self.height    = height
        self.width     = width
        self.threshold = threshold
        self.population_density     = population_density
        self.population_breakdown   = population_breakdown
        self.no_happy_this_timestep = 0
        self.schedule  = RandomActivation(self)
        self.grid      = SingleGrid(width, height, torus=True)
        
        self.datacollector = DataCollector(
            {"happy": lambda m: m.no_happy_this_timestep},
            {"x": lambda a: a.pos[0], "y": lambda a: a.pos[1]})
        for cell in self.grid.coord_iter():
            x = cell[1]
            y = cell[2]
            if random.random() < self.population_density:
                if random.random() < self.population_breakdown:
                    agent_type = 1
                else:
                    agent_type = 0
                agent = Agent(self,(x, y), agent_type)
                self.grid.position_agent(agent, (x, y))
                self.schedule.add(agent)

    def step(self):
        '''
        Update model once in each time step
        '''
        self.no_happy_this_timestep = 0
        self.schedule.step()
        self.datacollector.collect(self)

        # End the simulation if all agents are happy since none will move
        if self.no_happy_this_timestep == self.schedule.get_agent_count():
            self.running = False
コード例 #13
0
class SchellingModel(Model):
    '''
    Model class for the Schelling segregation model.
    '''

    def __init__(self, height, width, density, type_pcs=[.2, .2, .2, .2, .2]):
        '''
        '''

        self.height = height
        self.width = width
        self.density = density
        self.type_pcs = type_pcs

        self.schedule = RandomActivation(self)
        self.grid = SingleGrid(height, width, torus=False)

        self.happy = 0
        self.datacollector = DataCollector(
            {"happy": lambda m: m.happy},  # Model-level count of happy agents
            # For testing purposes, agent's individual x and y
            {"x": lambda a: a.pos[0], "y": lambda a: a.pos[1]})

        self.running = True

        # Set up agents
        # We use a grid iterator that returns
        # the coordinates of a cell as well as
        # its contents. (coord_iter)

        total_agents = self.height * self.width * self.density
        agents_by_type = [total_agents*val for val in self.type_pcs]

        for loc, types in enumerate(agents_by_type):
            for i in range(int(types)):
                pos = self.grid.find_empty()
                agent = SchellingAgent(pos, self, loc)
                self.grid.position_agent(agent, pos)
                self.schedule.add(agent)

    def step(self):
        '''
        Run one step of the model. If All agents are happy, halt the model.
        '''
        self.happy = 0  # Reset counter of happy agents
        self.schedule.step()
        self.datacollector.collect(self)

        if self.happy == self.schedule.get_agent_count():
            self.running = False
コード例 #14
0
ファイル: New.py プロジェクト: akonishi2/SOCI-120
class NewModel(Model):
    def __init__(self, width, height, num_agents):
        self.schedule = RandomActivation(self)
        self.grid = SingleGrid(width, height, torus = True)
        self.num_agents = num_agents
        
        # to collect info about how many agents are happy, average similarity of neighbors, length of residence
        self.datacollector = DataCollector(model_reporters = {"Happy": lambda m: m.happy, "Similar": lambda m: m.similar, "Residence": lambda m: m.avg_residence}, agent_reporters = {"x": lambda a: a.pos[0], "y": lambda a: a.pos[1]})
        
        self.avg_residence = 0
        self.happy = 0
        self.similar = 0
        self.running = True
        
        for i in range(self.num_agents):   
            # white
            if random.random() < 0.70:
                agent_type = 1
                income = np.random.normal(54000, 41000)
            
            # black
            else:
                agent_type = 0
                income = np.random.normal(32000, 40000)

            # add new agents
            agent = NewAgent(i, self, agent_type, income)
            self.schedule.add(agent)
            
            # assign the initial coords of the agents
            x = self.random.randrange(self.grid.width)
            y = self.random.randrange(self.grid.height)

            self.grid.position_agent(agent, (x, y))
            
    def step(self):
        '''Advance the model by one step.'''

        self.happy = 0
        self.schedule.step()
        # get the average similarity
        self.similar /= self.num_agents
        # get the average length of residence
        self.avg_residence /= self.num_agents
        self.datacollector.collect(self)
       
        if self.happy == self.schedule.get_agent_count():
            self.running = False
コード例 #15
0
ファイル: model.py プロジェクト: Mazzol/mesa-geo
class SchellingModel(Model):
    """Model class for the Schelling segregation model."""
    def __init__(self, density, minority_pc):
        self.density = density
        self.minority_pc = minority_pc

        self.schedule = RandomActivation(self)
        self.grid = GeoSpace(crs='epsg:4326')

        self.happy = 0
        self.datacollector = DataCollector(
            {"happy": lambda m: m.happy})  # Model-level count of happy agents

        self.running = True

        # Set up the grid with patches for every NUTS region
        regions = geojson.load(open('nuts_rg_60M_2013_lvl_2.geojson'))
        self.grid.create_agents_from_GeoJSON(regions,
                                             SchellingAgent,
                                             model=self,
                                             unique_id='NUTS_ID')

        # Set up agents
        for agent in self.grid.agents:
            if random.random() < self.density:
                if random.random() < self.minority_pc:
                    agent.atype = 1
                else:
                    agent.atype = 0
                self.schedule.add(agent)

        # Update the bounding box of the grid and create a new rtree
        self.grid.update_bbox()
        self.grid.create_rtree()

    def step(self):
        """Run one step of the model.

        If All agents are happy, halt the model.
        """
        self.happy = 0  # Reset counter of happy agents
        self.schedule.step()
        self.datacollector.collect(self)

        if self.happy == self.schedule.get_agent_count():
            self.running = False

        self.grid.create_rtree()
コード例 #16
0
class COVID_model(Model):
    
    def __init__(self):
        super().__init__(Model)
        
        self.susceptible = 0
        self.dead = 0
        self.recovered = 0
        self.infected = 0
        interactions = model_params.parameters['interactions']
        population = model_params.parameters['population']
        
        self.num_agents = population
        
        G = model_functions.build_network(interactions, population)
        self.grid = NetworkGrid(G)
        self.schedule = RandomActivation(self)
        
        self.running = True
    
        for node in range(population):
            new_agent = agent.human(self.next_id(), node, self)
            self.grid.place_agent(new_agent, node)
            self.schedule.add(new_agent)
    
        #self.meme = 0
        self.datacollector = DataCollector(model_reporters={"infected": model_functions.compute_infected, 
                                                            "recovered": model_functions.compute_recovered, 
                                                            "susceptible": model_functions.compute_susceptible, 
                                                            "dead": model_functions.compute_dead, 
                                                            "R0": model_functions.compute_R0, 
                                                            "severe_cases":model_functions.compute_severe})
        self.datacollector.collect(self)
    
    def step(self):
        self.schedule.step()
        
        self.datacollector.collect(self)
        
        if self.dead == self.schedule.get_agent_count():
            self.running = False
        else:
            self.running = True
コード例 #17
0
class SchellingModel(Model):
    """Model class for the Schelling segregation model."""
    def __init__(self, density, minority_pc):
        self.density = density
        self.minority_pc = minority_pc

        self.schedule = RandomActivation(self)
        self.grid = GeoSpace()

        self.happy = 0
        self.datacollector = DataCollector({"happy": "happy"})

        self.running = True

        # Set up the grid with patches for every NUTS region
        AC = AgentCreator(SchellingAgent, {"model": self})
        agents = AC.from_file("nuts_rg_60M_2013_lvl_2.geojson")
        self.grid.add_agents(agents)

        # Set up agents
        for agent in agents:
            if random.random() < self.density:
                if random.random() < self.minority_pc:
                    agent.atype = 1
                else:
                    agent.atype = 0
                self.schedule.add(agent)

    def step(self):
        """Run one step of the model.

        If All agents are happy, halt the model.
        """
        self.happy = 0  # Reset counter of happy agents
        self.schedule.step()
        # self.datacollector.collect(self)

        if self.happy == self.schedule.get_agent_count():
            self.running = False
コード例 #18
0
class Schelling(Model):
    '''
    Model class for the SM coupled to the Schelling segregation model.
    This class has been modified from the original mesa Schelling model.
    '''

    def __init__(self, height=20, width=20, density=0.8, minority_pc=0.2, homophilyType0=0.5, homophilyType1=0.5, movementQuota=0.30, happyCheckRadius=5, moveCheckRadius=10, last_move_quota=5):
        '''
        '''

        self.height = height
        self.width = width
        self.density = density
        self.minority_pc = minority_pc
        self.homophilyType0 = homophilyType0
        self.homophilyType1 = homophilyType1
        self.movementQuota = movementQuota
        self.happyCheckRadius = happyCheckRadius
        self.moveCheckRadius = moveCheckRadius
        self.last_move_quota = last_move_quota

        self.schedule = RandomActivation(self)
        self.grid = SingleGrid(height, width, torus=True)

        self.happy = 0
        self.happytype0 = 0
        self.happytype1 = 0
        self.stepCount = 0
        self.evenness = 0
        self.empty = 0
        self.type0agents = 0
        self.type1agents = 0
        self.movement = 0
        self.movementtype0 = 0
        self.movementtype1 = 0
        self.movementQuotaCount = 0
        self.numberOfAgents = 0
        self.datacollector = DataCollector(
            # Model-level count of happy agents
            {"step": "stepCount", "happy": "happy", "happytype0": "happytype0", "happytype1": "happytype1", "movement": "movement", "movementtype0": "movementtype0", "movementtype1": "movementtype1","evenness": "evenness", "numberOfAgents": "numberOfAgents", "homophilyType0": "homophilyType0", "homophilyType1": "homophilyType1", "movementQuota": "movementQuota", "happyCheckRadius": "happyCheckRadius", "last_move_quota": "last_move_quota"},
            # For testing purposes, agent's individual x and y
            {"x": lambda a: a.pos[0], "y": lambda a: a.pos[1], "Agent type": lambda a:a.type})

        # , "z": lambda a:a.type

        # Set up agents
        # We use a grid iterator that returns
        # the coordinates of a cell as well as
        # its contents. (coord_iter)
        for cell in self.grid.coord_iter():
            x = cell[1]
            y = cell[2]
            if self.random.random() < self.density:
                if self.random.random() < self.minority_pc:
                    agent_type = 1
                else:
                    agent_type = 0

                last_move = round(self.random.random()*10)  # randomly assign a value from 0 to 10
                agent = SchellingAgent((x, y), self, agent_type, last_move)
                self.grid.position_agent(agent, (x, y))
                self.schedule.add(agent)
        # print("Schedule: ", len(self.schedule.agents))

        self.running = True
        self.numberOfAgents = self.schedule.get_agent_count()
        self.datacollector.collect(self)


    def step(self, policy):
        '''
        Run one step of the model. If All agents are happy, halt the model.
        Note on the eveness paramater calculation:
            It cannot be performed in the step function of the agents as then it would not take consider periods of time during which the agents are still moving, making the parameter calculation inaccurate. 
        '''
        self.happy = 0  # Reset counter of happy agents
        self.happytype0 = 0  # Reset counter of happy type 0 agents
        self.happytype1 = 0  # Reset counter of happy type 1 agents
        self.empty = 0  # Reset counter of empty cells
        self.type0agents = 0  # Reset count of type 0 agents
        self.type1agents = 0  # Reset count of type 1 agents
        self.movementQuotaCount = 0  # Reset count of the movement quota
        self.movement = 0  # Reset counter of movement of agents
        self.movementtype0 = 0  # Reset counter of movement of type 0 agents
        self.movementtype1 = 0  # Reset counter of movement of type 1 agents

        # introduction of the selected policy in the Schelling model
        # happy check vision changes
        if policy[0] != None and self.happyCheckRadius<15 and self.happyCheckRadius>1:
            self.happyCheckRadius += policy[0]
        # movement quota changes
        if policy[1] != None and self.movementQuota<1 and self.movementQuota>0.05:
            self.movementQuota += policy[1]
        # last movement threshold
        if policy[2] != None and self.last_move_quota<50 and self.last_move_quota>0:
            self.last_move_quota += policy[2]
        # type 0 preference
        if policy[3] != None and self.homophilyType0<1 and self.homophilyType0>0:
            self.homophilyType0 += policy[3]
        # type 1 preference
        if policy[4] != None and self.homophilyType1<1 and self.homophilyType1>0:
            self.homophilyType1 += policy[4]

        # run the step for the agents
        self.schedule.step()
        # print(self.movementQuotaCount, " agents moved.")
        # print(round(self.happy/self.schedule.get_agent_count() * 100,2), "percent are happy agents.")

        # calculating empty counter
        self.empty = (self.height*self.width) - self.schedule.get_agent_count()
        # calculating type 0 and type 1 agent numbers
        for agent in self.schedule.agent_buffer(shuffled=True):
            # print(agent.type)
            if agent.type == 0:
                self.type0agents += 1
            if agent.type == 1:
                self.type1agents += 1

        # calculation of evenness (segregation parameter) using Haw (2015).
        self.evenness_calculation()

        # iterate the steps counter
        self.stepCount += 1

        # collect data
        self.datacollector.collect(self)
        

        # checking the datacollector
        # if self.stepCount % 2 == 0:
        #     print(self.datacollector.get_model_vars_dataframe())
        #     print(self.datacollector.get_agent_vars_dataframe())

        if self.happy == self.schedule.get_agent_count():
            self.running = False
            print("All agents are happy, the simulation ends!")

        output_KPIs = [self.evenness, self.movement, self.happy, self.movementtype0, self.movementtype1, self.happytype0, self.happytype1]
        return output_KPIs, self.type0agents, self.type1agents

    def evenness_calculation(self):

        '''
        To calculate the evenness parameter, one needs to first subdivide the grid into areas of more than one square each. The evenness will be then calculated based on the distribution of type 0 and type 1 agents in each of these areas.
        The division into area needs to be done carefully as it depends on the inputs within the model (width and height of the grid).
        '''

        # check for a square grid
        if self.height != self.width:
            self.running = False
            print("WARNING - The grid is not a square, please insert the same width and height")

        # reset the evenness parameter
        self.evenness = 0

        # algorithm to calculate evenness
        n = 4  # number of big areas considered in width and height
        if self.height % n == 0:
            # consider all big areas
            for big_dy in range(n):
                for big_dx in range(n):
                    # looking within one big areas, going through all cells
                    listAgents = []
                    for small_dy in range(int(self.height/n)):
                        for small_dx in range(int(self.height/n)):
                            for agents in self.schedule.agent_buffer(shuffled=True):
                                if agents.pos == (self.height/n * big_dx + small_dx, self.height/n * big_dy + small_dy):
                                    listAgents.append(agents)
                    # calculating evenness for each big area
                    countType0agents = 0  # Reset of the type counter for type 0 agents
                    countType1agents = 0  # Reset of the type counter for type 1 agents
                    # checking the type of agents in the big area
                    for agents in listAgents:
                        if agents.type == 0:
                            countType0agents += 1
                        if agents.type == 1:
                            countType1agents += 1
                    self.evenness += 0.5 * abs((countType0agents/self.type0agents) - (countType1agents/self.type1agents))
        # print("evenness :", round(self.evenness,2))
コード例 #19
0
class OilSpread(Model):
    def __init__(self,
                 height=20,
                 width=20,
                 initial_macchie=1,
                 qnt=10,
                 qnt_prop=50,
                 initial_barche=1,
                 power_boat=3,
                 initial_land=20):

        self.height = height
        self.width = width
        self.initial_macchie = initial_macchie
        self.qnt = qnt
        self.qnt_prop = qnt_prop
        self.initial_barche = initial_barche
        self.power_boat = power_boat
        self.initial_land = initial_land

        self.schedule = RandomActivation(self)
        self.grid = Grid(width, height, torus=True)

        self.datacollector = DataCollector({
            "Oil":
            lambda m: m.schedule.get_agent_count() - self.initial_barche - self
            .initial_land - self.height
            #"Cane": lambda m: self.count_type(self, 0)
        })

        # Create terra
        for i in range(self.initial_land):
            x = 0
            y = i
            terra = Land((x, y), self, 0)
            self.grid.place_agent(terra, (x, y))
            self.schedule.add(terra)

# Create terra
        for i in range(20):
            x = self.width - 1
            y = i
            limite = Bound((x, y), self)
            self.grid.place_agent(limite, (x, y))
            self.schedule.add(limite)

        # Create macchie di petrolio
        for i in range(self.initial_macchie):
            x = self.random.randrange(self.width)
            y = self.random.randrange(self.height)
            if (x == 0):
                x += 1
            if (y == self.width):
                y -= 2
            macchia = Oil((x, y), self, qnt, qnt_prop)
            self.grid.place_agent(macchia, (x, y))
            self.schedule.add(macchia)

        # Create barchette pulisci mondo
        for i in range(self.initial_barche):
            x = self.random.randrange(self.width)
            y = self.random.randrange(self.height)
            if (x == 0):
                x += 1
            if (y == self.width):
                y -= 2
            barca = Boat((x, y), self, power_boat)
            self.grid.place_agent(barca, (x, y))
            self.schedule.add(barca)

        self.running = True
        self.datacollector.collect(self)

    def step(self):
        self.schedule.step()
        # collect data
        self.datacollector.collect(self)

        print("il numero di macchie di petrolio sono in gioco sono " +
              str(self.schedule.get_agent_count() - self.initial_barche -
                  self.initial_land - self.height))

        if self.schedule.get_agent_count(
        ) == self.initial_barche + self.initial_land + self.height:
            self.running = False
コード例 #20
0
ファイル: model_hexogonal.py プロジェクト: AnneHS/CSS15
class EvacuationModel(Model):

    def __init__(self, N=20, height=21, width=21, push_ratio = 0.5):
        super().__init__()
        self.height = height
        self.width = width
        self.num_agents = N

        self.exit_x = self.width - 1
        self.exit_y = round(self.height/2)

        self.push_probs = np.array([[0.,0.],[1.,0.5]])

        self.grid = HexGrid(self.width, self.height, torus=False)
        self.schedule = RandomActivation(self)

        # decide for ID whether it is a pusher
        is_pusher = np.zeros(N, dtype = int)
        idx = self.random.sample([i for i in range(N)], int(push_ratio * N))
        is_pusher[idx] = 1
        
        # Add N pedestrians
        taken_pos = []
        for i in range(self.num_agents):
            # Add the agent to a random grid cell
            while True:
                x = self.random.randrange(1, self.grid.width-1)
                y = self.random.randrange(1, self.grid.height-1)
                pos = (x,y)
                if not pos in taken_pos:
                    break
            a = Pedestrian(i, self, pos, self.exit_x, self.exit_y, is_pusher[i])
            self.schedule.add(a)

            self.grid.place_agent(a, pos)
            taken_pos.append(pos)
        print(len(taken_pos))
        # Place vertical walls
        for i in range(self.height):

             # Left
            x=0
            y=i

            if x == self.exit_x and y == self.exit_y:
                e = Exit(self, (x, y))
                #self.schedule.add(e)
                self.grid.place_agent(e, (x, y))
            else:
                w = Wall(self, (x, y))
                #self.schedule.add(w)
                self.grid.place_agent(w, (x, y))

            # Right
            x=self.width-1
            y=i

            # One exit
            if x == self.exit_x and y == self.exit_y:
                e = Exit(self, (x, y))
                #self.schedule.add(e)
                self.grid.place_agent(e, (x, y))
            else:
                w = Wall(self, (x, y))
                #self.schedule.add(w)
                self.grid.place_agent(w, (x, y))


        # Place horizontal walls
        for i in range(self.width):

            # Up
            x=i
            y=0

            if x == self.exit_x and y == self.exit_y:
                e = Exit(self, (x, y))
                #self.schedule.add(e)
                self.grid.place_agent(e, (x, y))
            else:
                w = Wall(self, (x, y))
                #self.schedule.add(w)
                self.grid.place_agent(w, (x, y))
            # Down
            x=i
            y=self.height-1

            # One exit
            if x == self.exit_x and y == self.exit_y:
                #e = Exit(self, (x, y))
                #self.schedule.add(e)
                #self.grid.place_agent(e, (x, y))
                continue
            else:
                w = Wall(self, (x, y))
                #self.schedule.add(w)
                self.grid.place_agent(w, (x, y))


        self.data_collector = DataCollector({
            "Evacuees": lambda m: self.count_evacuees(),
            "Evacuated": lambda m: self.count_evacuated()
        })

         # this is required for the data_collector to work
        self.running = True
        self.data_collector.collect(self)

    def count_evacuees(self):
        count = self.schedule.get_agent_count()
        print('EVACUEES COUNT')
        print(count)
        print()
        return count

    def count_evacuated(self):
         count = self.num_agents - self.schedule.get_agent_count()
         return count

    def step(self):
        print(self.schedule.get_agent_count())
        if self.schedule.get_agent_count() == 0:
            exit()
        else:
            self.schedule.step()
        print("")
        self.data_collector.collect(self)
コード例 #21
0
class SchellingModel(Model):
    '''Model class for Schelling segregation model'''
    def __init__(self,
                 height=20,
                 width=20,
                 density=.8,
                 group_ratio=.66,
                 minority_ratio=.5,
                 homophily=3):
        self.height = height
        self.width = width
        self.density = density
        self.group_ratio = group_ratio
        self.minority_ratio = minority_ratio
        self.homophily = homophily
        self.happy = 0
        self.segregated = 0

        self.schedule = RandomActivation(self)
        self.grid = SingleGrid(height, width, torus=False)

        self.place_agents()
        self.datacollector = DataCollector({
            'happy': (lambda m: m.happy),
            'segregated': (lambda m: m.segregated)
        })
        self.running = True

    def step(self):
        '''Run one step of model'''
        self.schedule.step()
        self.calculate_stats()
        self.datacollector.collect(self)

        if self.happy == self.schedule.get_agent_count():
            self.running = False

    def place_agents(self):
        for cell in self.grid.coord_iter():
            x, y = cell[1:3]
            if random.random() < self.density:
                if random.random() < self.group_ratio:
                    if random.random() < self.minority_ratio:
                        group = 0
                    else:
                        group = 1
                else:
                    group = 2

                agent = SchellingAgent((x, y), group)
                self.grid.position_agent(agent, (x, y))
                self.schedule.add(agent)

        for agent in self.schedule.agents:
            count = 0
            for neighbour in self.grid.iter_neighbors(agent.pos, moore=False):
                if neighbour.group == agent.group:
                    count += 1
            agent.similar = count

    def calculate_stats(self):
        happy_count = 0
        avg_seg = 0
        for agent in self.schedule.agents:
            avg_seg += agent.similar
            if agent.similar >= self.homophily:
                happy_count += 1

        self.happy = happy_count
        self.segregated = avg_seg / self.schedule.get_agent_count()
コード例 #22
0
class SchoolModel(Model):
    """
    Model class for the Schelling segregation model.

    ...

    Attributes
    ----------

    height: int
        grid height
    width: int
        grid width
    num_schools:  int
        number of schools
    f : float
        fraction preference of agents for like
    M : float
        utility penalty for homogeneous neighbourhood
    residential_steps :
        number of steps for the residential model
    minority_pc :
        minority fraction
    bounded : boolean
        If True use bounded (predefined neighbourhood) for agents residential choice
    cap_max : float
        school capacity TODO: explain
    radius : int
        neighbourhood radius for agents calculation of residential choice (only used if not bounded)
    household_types :
        labels for different ethnic types of households
    symmetric_positions :
        use symmetric positions for the schools along the grid, or random
    schelling :
        if True use schelling utility function otherwise use assymetric
    school_pos :
        if supplied place schools in the supplied positions - also update school_num
    extended_data :
        if True collect extra data for agents (utility distribution and satisfaction)
        takes up a lot of space
    sample : int
        subsample the empty residential sites to be evaluated to speed up computation
    variable_f : variable_f
        draw values of the ethnic preference, f from a normal distribution
    sigma : float
        The standard deviation of the normal distribution used for f
    alpha : float
        ratio of ethnic to distance to school preference for school utility
    temp : float
        temperature for the behavioural logit rule for agents moving
    households : list
        all household objects
    schools : list
        all school objects
    residential_moves_per_step : int
        number of agents to move residence at every step
    school_moves_per_step : int
        number of agents to move school at every step
    num_households : int
        total number of household agents
    pm : list [ , ]
        number of majority households, number of minority households
    schedule : mesa schedule type
    grid : mesa grid type
    total_moves :
        number of school moves made in particular step
    res_moves :
        number of residential site moves made in particular step
    move :
        type of move recipe - 'random' 'boltzmann' or 'deterministic'
    school_locations : list
       list of locations of all schools (x,y)
    household_locations :
       list of locations of all households (x,y)
    closer_school_from_position : numpy array shape : (width x height)
        map of every grid position to the closest school

    """


    def __init__(self, height=100, width=100, density=0.9, num_neighbourhoods=16, schools_per_neighbourhood=2,minority_pc=0.5, homophily=3, f0=0.6,f1=0.6,\
                 M0=0.8,M1=0.8,T=0.75,
                 alpha=0.5, temp=1, cap_max=1.01, move="boltzmann", symmetric_positions=True,
                 residential_steps=70,schelling=False,bounded=True,
                 residential_moves_per_step=2000, school_moves_per_step =2000,radius=6,proportional = False,
                 torus=False,fs="eq", extended_data = False, school_pos=None, agents=None, sample=4, variable_f=True, sigma=0.35, displacement=8 ):

        # Options  for the model
        self.height = height
        self.width = width
        print("h x w", height, width)
        self.density = density
        #self.num_schools= num_schools
        self.f = [f0, f1]
        self.M = [M0, M1]
        self.residential_steps = residential_steps
        self.minority_pc = minority_pc
        self.bounded = bounded
        self.cap_max = cap_max
        self.T = T
        self.radius = radius
        self.household_types = [0, 1]  # majority, minority !!
        self.symmetric_positions = symmetric_positions
        self.schelling = schelling
        self.school_pos = school_pos
        self.extended_data = extended_data
        self.sample = sample
        self.variable_f = variable_f
        self.sigma = sigma
        self.fs = fs

        # choice parameters
        self.alpha = alpha
        self.temp = temp

        self.households = []
        self.schools = []
        self.neighbourhoods = []
        self.residential_moves_per_step = residential_moves_per_step
        self.school_moves_per_step = school_moves_per_step

        self.num_households = int(width * height * density)
        num_min_households = int(self.minority_pc * self.num_households)
        self.num_neighbourhoods = num_neighbourhoods
        self.schools_per_neigh = schools_per_neighbourhood
        self.num_schools = int(num_neighbourhoods * self.schools_per_neigh)
        self.pm = [
            self.num_households - num_min_households, num_min_households
        ]

        self.schedule = RandomActivation(self)
        self.grid = SingleGrid(height, width, torus=torus)
        self.total_moves = 0
        self.res_moves = 0

        self.move = move

        self.school_locations = []
        self.household_locations = []
        self.neighbourhood_locations = []
        self.closer_school_from_position = np.empty(
            [self.grid.width, self.grid.height])
        self.closer_neighbourhood_from_position = np.empty(
            [self.grid.width, self.grid.height])

        self.happy = 0
        self.res_happy = 0
        self.percent_happy = 0
        self.seg_index = 0
        self.res_seg_index = 0
        self.residential_segregation = 0
        self.collective_utility = 0
        self.comp0,self.comp1,self.comp2,self.comp3,self.comp4,self.comp5,self.comp6,self.comp7, \
        self.comp8, self.comp9, self.comp10, self.comp11, self.comp12, self.comp13, self.comp14, self.comp15 = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
        self.satisfaction = []
        self.pi_jm = []
        self.pi_jm_fixed = []
        self.compositions = []
        self.average_like_fixed = 0
        self.average_like_variable = 0

        self.my_collector = []
        if torus:
            self.max_dist = self.height / np.sqrt(2)
        else:
            self.max_dist = self.height * np.sqrt(2)

        # Set up agents
        # We use a grid iterator that returns
        # the coordinates of a cell as well as
        # its contents. (coord_iter)
        # Set up schools in symmetric positions along the grid

        # if schools already supplied place them where they should be
        # TODO: fix
        if self.school_pos:
            school_positions = self.school_pos
            self.school_locations = school_pos
            self.num_schools = len(school_pos)
            print("Option not working")
            sys.exit()

        # otherwise calculate the positions
        else:
            if self.num_neighbourhoods == 4:
                neighbourhood_positions = [(width / 4, height / 4),
                                           (width * 3 / 4, height / 4),
                                           (width / 4, height * 3 / 4),
                                           (width * 3 / 4, height * 3 / 4)]
            elif self.num_neighbourhoods == 9:
                n = 6
                neighbourhood_positions = [(width/n,height/n),(width*3/n,height*1/n),(width*5/n,height*1/n),(width/n,height*3/n),\
                                    (width*3/n,height*3/n),(width*5/n,height*3/n),(width*1/n,height*5/n),(width*3/n,height*5/n),\
                                    (width*5/n,height*5/n)]

            elif self.num_neighbourhoods in [25, 64, 16]:
                neighbourhood_positions = []
                n = int(np.sqrt(self.num_neighbourhoods) * 2)
                print(n)
                x1 = range(1, int(n + 1), 2)

                xloc = np.repeat(x1, int(n / 2))
                yloc = np.tile(x1, int(n / 2))

                for i in range(self.num_neighbourhoods):
                    neighbourhood_positions.append(
                        (xloc[i] * height / n, yloc[i] * width / n))

        print(neighbourhood_positions)
        #for i in range(self.num_schools):i
        i = 0
        while len(self.neighbourhoods) < self.num_neighbourhoods:

            if self.symmetric_positions or self.school_pos:
                x = int(neighbourhood_positions[i][0])
                y = int(neighbourhood_positions[i][1])

                #print(x,y)

            else:
                x = random.randrange(start=2, stop=self.grid.width - 2)
                y = random.randrange(start=2, stop=self.grid.height - 2)

            pos = (x, y)
            pos2 = (x + 1, y + 1)
            if schools_per_neighbourhood == 2:
                pos3 = (x - displacement, y - displacement)
                pos2 = (x + displacement, y + displacement)

            do_not_use = self.school_locations + self.neighbourhood_locations
            #if (pos not in do_not_use) and (pos2 not in do_not_use ) and (pos3 not in do_not_use ):
            if (pos not in do_not_use) and (pos2 not in do_not_use):

                #print('pos',pos,pos2,pos3)
                self.school_locations.append(pos2)
                school = SchoolAgent(pos2, self)
                self.grid.place_agent(school, school.unique_id)
                self.schools.append(school)
                self.schedule.add(school)

                if self.schools_per_neigh == 2:
                    # Add another school
                    self.school_locations.append(pos3)
                    school = SchoolAgent(pos3, self)
                    self.grid.place_agent(school, school.unique_id)
                    self.schools.append(school)
                    self.schedule.add(school)

                self.neighbourhood_locations.append(pos)
                neighbourhood = NeighbourhoodAgent(pos, self)
                self.grid.place_agent(neighbourhood, neighbourhood.unique_id)
                self.neighbourhoods.append(neighbourhood)
                self.schedule.add(neighbourhood)

            else:
                print(pos, pos2, pos3, "is found in", do_not_use)
            i += 1
        print("num_schools", len(self.school_locations))

        print("schools completed")

        #print(self.neighbourhood_locations)
        #print("schools",self.school_locations, len(self.school_locations))
        # Set up households

        # If agents are supplied place them where they need to be
        if agents:

            for cell in agents:
                [agent_type, x, y] = cell
                if agent_type in [0, 1]:

                    pos = (x, y)
                    if self.grid.is_cell_empty(pos):
                        agent = HouseholdAgent(pos, self, agent_type)
                        self.grid.place_agent(agent, agent.unique_id)

                        self.household_locations.append(pos)
                        self.households.append(agent)
                        self.schedule.add(agent)

        # otherwise produce them
        else:

            # create household locations but dont create agents yet

            while len(self.household_locations) < self.num_households:

                #Add the agent to a random grid cell
                x = random.randrange(self.grid.width)
                y = random.randrange(self.grid.height)
                pos = (x, y)

                if (pos not in (self.school_locations +
                                self.household_locations +
                                self.neighbourhood_locations)):
                    self.household_locations.append(pos)

            #print(Dij)

            for ind, pos in enumerate(self.household_locations):

                # create a school or create a household

                if ind < int(self.minority_pc * self.num_households):
                    agent_type = self.household_types[1]
                else:
                    agent_type = self.household_types[0]

                household_index = ind
                agent = HouseholdAgent(pos, self, agent_type, household_index)
                #decorator_agent = HouseholdAgent(pos, self, agent_type)

                self.grid.place_agent(agent, agent.unique_id)

                #self.grid.place_agent(decorator_agent, pos)

                self.households.append(agent)
                self.schedule.add(agent)

        self.set_positions_to_school()
        self.set_positions_to_neighbourhood()
        self.calculate_all_distances()
        self.calculate_all_distances_to_neighbourhoods()

        for agent in self.households:

            random_school_index = random.randint(0, len(self.schools) - 1)
            #print("school_index", random_school_index, agent.Dj, len(agent.Dj))

            candidate_school = self.schools[random_school_index]
            agent.allocate(candidate_school, agent.Dj[random_school_index])

            #closer_school = self.schools[p.argmin(Dj)]
            #closer_school.students.append(agent)
        # agent.allocate(closer_school, np.min(Dj))
        #print(agent.school.unique_id)

        self.pi_jm = np.zeros(shape=(len(self.school_locations),
                                     len(self.household_types)))
        self.local_compositions = np.zeros(shape=(len(self.school_locations),
                                                  len(self.household_types)))
        self.avg_school_size = round(density * width * height /
                                     (len(self.schools)))

        if self.extended_data:
            self.datacollector = DataCollector(
                model_reporters={
                    "agent_count": lambda m: m.schedule.get_agent_count(),
                    "seg_index": "seg_index",
                    "residential_segregation": "residential_segregation",
                    "res_seg_index": "res_seg_index",
                    "fixed_res_seg_index": "fixed_res_seg_index",
                    "happy": "happy",
                    "percent_happy": "percent_happy",
                    "total_moves": "total_moves",
                    "compositions0": "compositions0",
                    "compositions1": "compositions1",
                    "comp0": "comp0",
                    "comp1": "comp1",
                    "comp2": "comp2",
                    "comp3": "comp3",
                    "comp4": "comp4",
                    "comp5": "comp5",
                    "comp6": "comp6",
                    "comp7": "comp7",
                    "compositions": "compositions",
                    "collective_utility": "collective_utility"
                },
                agent_reporters={
                    "local_composition": "local_composition",
                    "type": lambda a: a.type,
                    "id": lambda a: a.unique_id,
                    #"fixed_local_composition": "fixed_local_composition",
                    #"variable_local_composition": "variable_local_composition",
                    "school_utilities": "school_utilities",
                    "residential_utilities": "residential_utilities",
                    "pos": "pos"
                })

        else:
            self.datacollector = DataCollector(
                model_reporters={
                    "agent_count": lambda m: m.schedule.get_agent_count(),
                    "seg_index": "seg_index",
                    "residential_segregation": "residential_segregation",
                    "res_seg_index": "res_seg_index",
                    "fixed_res_seg_index": "fixed_res_seg_index",
                    "happy": "happy",
                    "percent_happy": "percent_happy",
                    "total_moves": "total_moves",
                    "compositions0": "compositions0",
                    "compositions1": "compositions1",
                    "comp0": "comp0",
                    "comp1": "comp1",
                    "comp2": "comp2",
                    "comp3": "comp3",
                    "comp4": "comp4",
                    "comp5": "comp5",
                    "comp6": "comp6",
                    "comp7": "comp7",
                    "compositions": "compositions",
                    "collective_utility": "collective_utility"
                },
                agent_reporters={
                    "local_composition": "local_composition",
                    "type": lambda a: a.type,
                    "id": lambda a: a.unique_id,
                    # "fixed_local_composition": "fixed_local_composition",
                    # "variable_local_composition": "variable_local_composition",
                    "pos": "pos"
                })

        # Calculate local composition
        # set size
        for school in self.schools:
            #school.get_local_school_composition()
            #cap = round(np.random.normal(loc=cap_max * self.avg_school_size, scale=self.avg_school_size * 0.05))
            cap = self.avg_school_size * self.cap_max
            school.capacity = cap
            print("cap", self.avg_school_size, cap)
            segregation_index(self)
        #

        print(
            "height = %d; width = %d; density = %.2f; num_schools = %d; minority_pc =  %.2f; "
            "f0 =  %.2f; f1 =  %.2f; M0 =  %.2f; M1 =  %.2f;\
        alpha =  %.2f; temp =  %.2f; cap_max =  %.2f; move = %s; symmetric_positions = %s"
            % (height, width, density, self.num_schools, minority_pc, f0, f1,
               M0, M1, alpha, temp, cap_max, move, symmetric_positions))

        self.total_considered = 0
        self.running = True
        self.datacollector.collect(self)

    def calculate_all_distances(self):
        """

        calculate distance between school and household
        Euclidean or gis shortest road route
        :return: dist

        """

        Dij = distance.cdist(np.array(self.household_locations),
                             np.array(self.school_locations), 'euclidean')

        for household_index, household in enumerate(self.households):
            Dj = Dij[household_index, :]
            household.Dj = Dj

            # Calculate distances of the schools - define the school-neighbourhood and compare
            # closer_school = household.schools[np.argmin(household.)]
            closer_school_index = np.argmin(household.Dj)
            household.closer_school = self.schools[closer_school_index]
            household.closer_school.neighbourhood_students.append(household)

        return (Dij)

    def calculate_all_distances_to_neighbourhoods(self):
        """

        calculate distance between school and household
        Euclidean or gis shortest road route
        :return: dist

        """
        for household_index, household in enumerate(self.households):

            # Calculate distances of the schools - define the school-neighbourhood and compare
            # closer_school = household.schools[np.argmin(household.)]
            household.closer_neighbourhood = self.get_closer_neighbourhood_from_position(
                household.pos)
            household.closer_neighbourhood.neighbourhood_students_indexes.append(
                household_index)

        # just sanity check
        # for i, neighbourhood in enumerate(self.neighbourhoods):
        #     students = neighbourhood.neighbourhood_students_indexes
        #     print("students,",i, len(students))

    def set_positions_to_school(self):
        '''
        calculate closer school from every position on the grid
        Euclidean or gis shortest road route
        :return: dist
        '''
        distance_dict = {}
        # Add the agent to a random grid cell

        all_grid_locations = []

        for x in range(self.grid.width):
            for y in range(self.grid.height):
                all_grid_locations.append((x, y))

        Dij = distance.cdist(np.array(all_grid_locations),
                             np.array(self.school_locations), 'euclidean')

        for i, pos in enumerate(all_grid_locations):
            Dj = Dij[i, :]
            (x, y) = pos
            # Calculate distances of the schools - define the school-neighbourhood and compare
            # closer_school = household.schools[np.argmin(household.)]
            closer_school_index = np.argmin(Dj)
            self.closer_school_from_position[x][y] = closer_school_index

        #print("closer_school_by_position",self.closer_school_from_position)

    def set_positions_to_neighbourhood(self):
        '''
        calculate closer neighbourhood centre from every position on the grid
        Euclidean or gis shortest road route
        :return: dist
        '''
        distance_dict = {}
        # Add the agent to a random grid cell

        all_grid_locations = []

        for x in range(self.grid.width):
            for y in range(self.grid.height):
                all_grid_locations.append((x, y))

        Dij = distance.cdist(np.array(all_grid_locations),
                             np.array(self.neighbourhood_locations),
                             'euclidean')

        for i, pos in enumerate(all_grid_locations):
            Dj = Dij[i, :]
            (x, y) = pos
            # Calculate distances of the schools - define the school-neighbourhood and compare
            # closer_school = household.schools[np.argmin(household.)]
            closer_neighbourhood_index = np.argmin(Dj)
            self.closer_neighbourhood_from_position[x][
                y] = closer_neighbourhood_index

        #print("closer_school_by_position", self.closer_school_from_position)

    def get_closer_school_from_position(self, pos):
        """
        :param pos: (x,y) position
        :return school: school object closest to this position
        """
        (x, y) = pos
        school_index = self.closer_school_from_position[x][y]
        school = self.get_school_from_index(school_index)

        return (school)

    def get_closer_neighbourhood_from_position(self, pos):
        """
        :param pos: (x,y) position
        :return school: school object closest to this position
        """
        (x, y) = pos
        neighbourhood_index = self.closer_neighbourhood_from_position[x][y]
        neighbourhood = self.get_neighbourhood_from_index(neighbourhood_index)

        return (neighbourhood)

    def get_school_from_index(self, school_index):
        """
        :param self: obtain the school object using the index
        :param school_index:
        :return: school object
        """

        return (self.schools[int(school_index)])

    def get_neighbourhood_from_index(self, neighbourhood_index):
        """
        :param self: obtain the school object using the index
        :param school_index:
        :return: school object
        """

        return (self.neighbourhoods[int(neighbourhood_index)])

    def get_households_from_index(self, household_indexes):
        """
        Retrieve household objects from their indexes
        :param household_indexes: list of indexes to retrieve household objects
        :return: households: household objects
        """
        households = []
        for household_index in household_indexes:
            households.append(self.households[household_index])
        return (households)

    def step(self):
        '''
        Run one step of the model. If All agents are happy, halt the model.
        '''
        self.happy = 0  # Reset counter of happy agents
        self.res_happy = 0
        self.total_moves = 0
        self.total_considered = 0
        self.res_moves = 0
        self.satisfaction = []
        self.res_satisfaction = []

        self.schedule.step()

        satisfaction = 0
        res_satisfaction = 0
        print("happy", self.happy)
        print("total_considered", self.total_considered)

        # Once residential steps are done calculate school distances

        if self.schedule.steps <= self.residential_steps or self.schedule.steps == 1:
            # during the residential steps keep recalculating the school neighbourhood compositions
            # this is required for the neighbourhoods metric

            #print("recalculating neighbourhoods")
            # TODO: check this, not sure if this and the recalculation below is needed
            for school in self.schools:
                school.neighbourhood_students = []
            for neighbourhood in self.neighbourhoods:
                neighbourhood.neighbourhood_students_indexes = []

            # update the household locations after a move
            self.household_locations = []
            for i, household in enumerate(self.households):
                self.household_locations.append(household.pos)

            self.calculate_all_distances()
            self.calculate_all_distances_to_neighbourhoods()
            #print("all", self.calculate_all_distances()[i, :])

            # for i, household in enumerate(self.households):
            #     print(household.calculate_distances())
            #     # Calculate distances of the schools - define the school-neighbourhood and compare
            #     # closer_school = household.schools[np.argmin(household.)]
            #     closer_school_index = np.argmin(household.Dj)
            #     household.closer_school = self.schools[closer_school_index]
            #     household.closer_school.neighbourhood_students.append(household)
            #
            #     # Initialize house allocation to school
            #     #household.move_school(closer_school_index, self.schools[closer_school_index])
            #

            self.residential_segregation = segregation_index(
                self, unit="neighbourhood")
            self.res_seg_index = segregation_index(self,
                                                   unit="agents_neighbourhood")
            self.fixed_res_seg_index = segregation_index(
                self, unit="fixed_agents_neighbourhood", radius=1)
            res_satisfaction = np.mean(self.res_satisfaction)

        satisfaction = 0
        # calculate these after residential_model
        if self.schedule.steps > self.residential_steps:
            self.collective_utility = calculate_collective_utility(self)
            print(self.collective_utility)
            self.seg_index = segregation_index(self)
            satisfaction = np.mean(self.satisfaction)



        print("seg_index", "%.2f"%(self.seg_index), "var_res_seg", "%.2f"%(self.res_seg_index), "neighbourhood",
              "%.2f"%(self.residential_segregation), "fixed_res_seg_index","%.2f"%(self.fixed_res_seg_index), \
              "res_satisfaction %.2f" %res_satisfaction,"satisfaction %.2f" %satisfaction,\
              "average_like_fixed %.2f"%self.average_like_fixed,"average_like_var %.2f"%self.average_like_variable  )

        if self.happy == self.schedule.get_agent_count():
            self.running = False

        compositions = []

        # remove this?
        for school in self.schools:
            self.my_collector.append([
                self.schedule.steps, school.unique_id,
                school.get_local_school_composition()
            ])
            self.compositions = school.get_local_school_composition()
            compositions.append(school.get_local_school_composition()[0])
            compositions.append(school.get_local_school_composition()[1])

            self.compositions1 = int(school.get_local_school_composition()[1])
            self.compositions0 = int(school.get_local_school_composition()[0])
            #print("school_students",school.neighbourhood_students)

        #print("comps",compositions,np.sum(compositions) )
        [
            self.comp0, self.comp1, self.comp2, self.comp3, self.comp4,
            self.comp5, self.comp6, self.comp7
        ] = compositions[0:8]
        # collect data
        #
        self.datacollector.collect(self)
        print("moves", self.total_moves, "res_moves", self.res_moves,
              "percent_happy", self.percent_happy)

        for i, household in enumerate(self.households):
            household.school_utilities = []
            household.residential_utilities = []
コード例 #23
0
ファイル: model.py プロジェクト: TomBener/abm-mesa
class Schelling(Model):
    '''
    Define the Model
    The other core class
    '''
    '''
    mesa/space.py/Grid has 3 properties:
        - width
        - height
        - torus
    So `minority_pc` and `homophily` are customized properties here.
    '''
    def __init__(self,
                 height=20,
                 width=20,
                 density=0.8,
                 minority_pc=0.2,
                 homophily=3):
        self.height = height
        self.width = width
        self.density = density
        self.minority_pc = minority_pc
        self.homophily = homophily

        # Scheduler is used `RandomActivation`, which is defined in mesa/time.py/RandomActivation.
        # Specify *time* of the model.
        self.schedule = RandomActivation(self)
        # `SingleGrid` is defined in mesa/space.py/SingleGrid.
        # Grid which strictly enforces one object per cell.
        # Specify *space* of the model.
        # width, height, torus are the native properties.
        self.grid = SingleGrid(width, height, torus=True)

        # Without happy agents initially
        self.happy = 0
        # DataCollector collects 3 types of data:
        # model-level data, agent-level data, and tables
        # A DataCollector is instantiated with 2 dictionaries of reporter names and associated variable names or functions for each, one for model-level data and one for agent-level data; a third dictionary provides table names and columns. Variable names are converted into functions which retrieve attributes of that name.
        self.datacollector = DataCollector(
            {
                'happy': 'happy'
            },  # Model-level count of happy agents, only one agent-level reporter
            # For testing purposes, agent’s individual x and y
            # lambda function, it is like:
            # lambda x, y: x ** y
            {
                'x': lambda a: a.pos[0],
                'y': lambda a: a.pos[1]
            },
        )

        # Set up agents
        # We use grid iterator that returns
        # the coordinates of a cell as well
        # as its contents. (coord_iter)
        # coord_iter is defined in mesa/space.py, which, which returns coordinates as well as cell contents.
        for cell in self.grid.coord_iter():
            # Grid cells are indexed by [x][y] (tuple), where [0][0] is assumed to be the bottom-left and [width-1][height-1] is the top-right. If a grid is toroidal, the top and bottom, and left and right, edges wrap to each other.
            x = cell[1]
            y = cell[2]
            if self.random.random() < self.density:
                if self.random.random() < self.minority_pc:
                    agent_type = 1
                else:
                    agent_type = 0

                agent = SchellingAgent((x, y), self, agent_type)
                # position_agent is defined in mesa/space.py. Position an agent on the grid. This is used when first placing agents!
                self.grid.position_agent(agent, (x, y))
                # schedule.add() method is defined in mesa/time.py.
                # Add an Agent object to the schedule.
                #
                # Aggs:
                #   agent: An Agent to be added to the schedule. Note: the agent must have a step() method.
                self.schedule.add(agent)

        self.running = True
        # datacollector.collect() method is defined in mesa/datacollection.py. When the collect(…) method is called, it collects these attributes and executes these functions one by one and store the results.
        self.datacollector.collect(self)

    # Oh, I did’t understand step(…) method previously. Now I know as a consequential method, it executes all stages for all agents.
    def step(self):
        '''
        Run one step of the model. If all agents are happy, halt the model.
        '''
        self.happy = 0  # Reset counter of happy agents
        self.schedule.step()
        # collect data
        self.datacollector.collect(self)

        # Method get_agent_count is defined in mesa/time.py. It returns the current number agents in the queue.
        if self.happy == self.schedule.get_agent_count():
            self.running = False
コード例 #24
0
class PolicyEmergenceSM(Model):

	'''
	Simplest Model for the policy emergence model.
	'''

	def __init__(self, SM_inputs, height=20, width=20):

		self.height = height
		self.width = width

		self.SM_inputs = SM_inputs

		self.stepCount = 0
		self.agenda_PC = None
		self.agenda_PF = None
		self.policy_implemented = None
		self.policy_implemented_number = None
		self.policy_formulation_run = False  # True if an agenda is found

		self.schedule = RandomActivation(self)
		self.grid = SingleGrid(height, width, torus=True)

		# creation of the datacollector vector
		self.datacollector = DataCollector(
			# Model-level variables
			model_reporters =  {
				"step": "stepCount",
				"AS_PF": get_problem_policy_chosen,
				"agent_attributes": get_agents_attributes},
			# Agent-level variables
			agent_reporters = {
				"x": lambda a: a.pos[0],
				"y": lambda a: a.pos[1],
				"Agent type": lambda a:type(a), 
				"Issuetree": lambda a: getattr(a, 'issuetree', [None])[a.unique_id if isinstance(a, ActiveAgent) else 0]}
			)

		# , "agenda_PC":"agenda_PC", "agenda_PF":"agenda_PF", "policy_implemented": "policy_implemented"

		# "x": lambda a: a.pos[0], "y": lambda a: a.pos[1]
		# "z": lambda a:a.issuetree

		# belief tree properties
		self.len_S, self.len_PC, self.len_DC, self.len_CR = issue_tree_input(self)
		# print(self.len_S, self.len_PC, self.len_DC, self.len_CR)

		# issue tree properties
		self.policy_instruments, self.len_ins_1, self.len_ins_2, self.len_ins_all, self.PF_indices = policy_instrument_input(self, self.len_PC)

		# Set up active agents
		init_active_agents(self, self.len_S, self.len_PC, self.len_DC, self.len_CR, self.len_PC, self.len_ins_1, self.len_ins_2, self.len_ins_all, self.SM_inputs)

		# Set up passive agents
		init_electorate_agents(self, self.len_S, self.len_PC, self.len_DC, self.SM_inputs)

		# Set up truth agent
		init_truth_agent(self, self.len_S, self.len_PC, self.len_DC, self.len_ins_1, self.len_ins_2, self.len_ins_all)
		# the issue tree will need to be updated at a later stage witht he values from the system/policy context

		# print("Schedule has : ", len(self.schedule.agents), " agents.")
		# print(self.schedule.agents)
		# print(" ")

		# for agent in self.schedule.agent_buffer(shuffled=False):
		# 	print(' ')
		# 	print(agent)
		# 	print(type(agent))
		# 	if isinstance(agent, ActiveAgent):
		# 		print(agent.unique_id, " ", agent.pos, " ", agent.agent_type, " ", agent.resources, " ", agent.affiliation, " ", agent.issuetree[agent.unique_id], " ", agent.policytree[agent.unique_id][0])
		# 	if isinstance(agent, ElectorateAgent):
		# 		print(agent.unique_id, " ", agent.pos, " ", agent.affiliation, " ", agent.issuetree)
		# 	if isinstance(agent, TruthAgent):
		# 		print(agent.pos, " ", agent.issuetree)

		self.running = True
		self.numberOfAgents = self.schedule.get_agent_count()
		self.datacollector.collect(self)

	def step(self, KPIs):
		print(" ")
		print("Step +1 - Policy emergence model")
		print("Step count: ", self.stepCount)

		'''
		Main steps of the Simplest Model for policy emergence:
		0. Module interface - Input
			Obtention of the beliefs from the system/policy context
			!! This is to be implemented at a later stage
		1. Agenda setting step
		2. Policy formulation step
		3. Module interface - Output
			Implementation of the policy instrument selected
		'''

		# saving the attributes
		self.KPIs = KPIs

		# 0.
		self.module_interface_input(self.KPIs)

		'''
		TO DO:
		- Introduce the transfer of information between the external parties and the truth agent relates to the policy impacts
		'''

		# 1.
		self.agenda_setting()

		# 2.
		if self.policy_formulation_run:
			self.policy_formulation()
		else:
			self.policy_implemented = self.policy_instruments[-1]

		# 3.
		# self.module_interface_output()

		# end of step actions:
		# iterate the steps counter
		self.stepCount += 1

		# collect data
		self.datacollector.collect(self)

		print("step ends")
		print(" ")

		# print(self.datacollector.get_agent_vars_dataframe())
		print(self.datacollector.get_model_vars_dataframe())

		return self.policy_implemented

	def module_interface_input(self, KPIs):

		'''
		The module interface input step consists of actions related to the module interface and the policy emergence model

		Missing:
		- Electorate actions
		'''

		# selection of the Truth agent policy tree and issue tree
		for agent in self.schedule.agent_buffer(shuffled=True):
			if isinstance(agent, TruthAgent):
				truth_policytree = agent.policytree_truth
				for issue in range(self.len_DC+self.len_PC+self.len_S):
					agent.issuetree_truth[issue] = KPIs[issue]
				truth_issuetree = agent.issuetree_truth

		# Transferring policy impact to active agents
		for agent in self.schedule.agent_buffer(shuffled=True):
			if isinstance(agent, ActiveAgent):
				# replacing the policy family likelihoods
				for PFj in range(self.len_PC):
					for PFij in range(self.len_PC):
						agent.policytree[agent.unique_id][PFj][PFij] = truth_policytree[PFj][PFij]

				# replacing the policy instruments impacts
				for insj in range(self.len_ins_1 + self.len_ins_2 + self.len_ins_all):
					agent.policytree[agent.unique_id][self.len_PC+insj][0:self.len_S] = truth_policytree[self.len_PC+insj]

				# replacing the issue beliefs from the KPIs
				for issue in range(self.len_DC+self.len_PC+self.len_S):
					agent.issuetree[agent.unique_id][issue][0] = truth_issuetree[issue]
				self.preference_update(agent, agent.unique_id)

	def agenda_setting(self):

		'''
		The agenda setting step is the first step in the policy process conceptualised in this model. The steps are given as follows:
		1. Active agents policy core issue selection
		2. Active agents policy family selection
		3. Active agents actions [to be detailed later]
		4. Active agents policy core issue selection update
		5. Active agents policy family selection update
		6. Agenda selection
		'''

		# 1. & 2.
		for agent in self.schedule.agent_buffer(shuffled=False):
			if isinstance(agent, ActiveAgent):  # considering only active agents
				agent.selection_PC()
				agent.selection_PF()
				# print("PC and PF selected for  agent", agent.unique_id, ": ", agent.selected_PC, agent.selected_PF)

		# 3.

		# 4. & 5.
		for agent in self.schedule.agent_buffer(shuffled=False):
			if isinstance(agent, ActiveAgent):  # considering only active agents
				agent.selection_PC()
				agent.selection_PF()

		# 6. 
		# All active agents considered
		selected_PC_list = []
		selected_PF_list = []
		number_ActiveAgents = 0
		for agent in self.schedule.agent_buffer(shuffled=False):
			if isinstance(agent, ActiveAgent):  # considering only policy makers
				selected_PC_list.append(agent.selected_PC)
				selected_PF_list.append(agent.selected_PF)
				number_ActiveAgents += 1

		# finding the most common policy core issue and its frequency
		d = defaultdict(int)
		for i in selected_PC_list:
			d[i] += 1
		result = max(d.items(), key=lambda x: x[1])
		agenda_PC_temp = result[0]
		agenda_PC_temp_frequency = result[1]

		# finding the most common policy family issue and its frequency
		d = defaultdict(int)
		for i in selected_PF_list:
			d[i] += 1
		result = max(d.items(), key=lambda x: x[1])
		agenda_PF_temp = result[0]
		agenda_PF_temp_frequency = result[1]

		# checking for majority
		if agenda_PC_temp_frequency > int(number_ActiveAgents/2) and agenda_PF_temp_frequency > int(number_ActiveAgents/2):
			self.agenda_PC = agenda_PC_temp
			self.agenda_PF = agenda_PF_temp
			self.policy_formulation_run = True
			print("The agenda consists of PC", self.agenda_PC, " and PF", self.agenda_PF, ".")
		else:
			self.policy_formulation_run = False
			print("No agenda was formed, moving to the next step.")

	def policy_formulation(self):

		'''
		The policy formulation step is the second step in the policy process conceptualised in this model. The steps are given as follows:
		0. Detailing of policy instruments that can be considered
		1. Active agents deep core issue selection
		2. Active agents policy instrument selection
		3. Active agents actions [to be detailed later]
		4. Active agents policy instrument selection update
		5. Policy instrument selection

		NOTE: THIS CODE DOESNT CONSIDER MAJORITY WHEN MORE THAN THREE POLICY MAKERS ARE INCLUDED, IT CONSIDERS THE MAXIMUM. THIS NEEDS TO BE ADAPTED TO CONSIDER 50% OR MORE!
		'''

		print("Policy formulation being introduced")

		# 0.
		possible_PI = self.PF_indices[self.agenda_PF]

		# 1. & 2.
		for agent in self.schedule.agent_buffer(shuffled=False):
			if isinstance(agent, ActiveAgent):  # considering only active agents
				agent.selection_S()
				agent.selection_PI()

		# 3.

		# 4. & 5.
		for agent in self.schedule.agent_buffer(shuffled=False):
			if isinstance(agent, ActiveAgent):  # considering only active agents
				agent.selection_PI()

		# 6. 
		# Only policy makers considered
		selected_PI_list = []
		number_PMs = 0
		for agent in self.schedule.agent_buffer(shuffled=False):
			if isinstance(agent, ActiveAgent) and agent.agent_type == 'policymaker':  # considering only policy makers
				selected_PI_list.append(agent.selected_PI)
				number_PMs += 1

		# finding the most common secondary issue and its frequency
		d = defaultdict(int)
		for i in selected_PI_list:
			d[i] += 1
		result = max(d.items(), key=lambda x: x[1])
		self.policy_implemented_number = result[0]
		policy_implemented_number_frequency = result[1]

		# check for the majority and implemented if satisfied
		if policy_implemented_number_frequency > int(number_PMs/2):
			print("The policy instrument selected is policy instrument ", self.policy_implemented_number, ".")
			self.policy_implemented = self.policy_instruments[self.policy_implemented_number]
		else:
			print("No consensus on a policy instrument.")
			self.policy_implemented = self.policy_instruments[-1] # selecting last policy instrument which is the no instrument policy instrument

	def module_interface_output(self):

		print("Module interface output not introduced yet")

	def preference_update(self, agent, who):

		self.preference_update_DC(agent, who)

		self.preference_update_PC(agent, who)

		self.preference_update_S(agent, who)

	def preference_update_DC(self, agent, who):

		"""
		The preference update function (DC)
		===========================

		This function is used to update the preferences of the deep core issues of agents in their
		respective belief trees.

		agent - this is the owner of the belief tree
		who - this is the part of the belieftree that is considered - agent.unique_id should be used for this - this is done to also include partial knowledge preference calculation

		"""	

		len_DC = self.len_DC
		len_PC = self.len_PC
		len_S = self.len_S

		#####
		# 1.5.1. Preference calculation for the deep core issues

		# 1.5.1.1. Calculation of the denominator
		PC_denominator = 0
		for h in range(len_DC):
			if agent.issuetree[who][h][1] == None or agent.issuetree[who][h][0] == None:
				PC_denominator = 0
			else:
				PC_denominator = PC_denominator + abs(agent.issuetree[who][h][1] - agent.issuetree[who][h][0])
		# print('The denominator is given by: ' + str(PC_denominator))

		# 1.5.1.2. Selection of the numerator and calculation of the preference
		for i in range(len_DC):
			# There are rare occasions where the denominator could be 0
			if PC_denominator != 0:
				agent.issuetree[who][i][2] = abs(agent.issuetree[who][i][1] - agent.issuetree[who][i][0]) / PC_denominator
			else:
				agent.issuetree[who][i][2] = 0

	def preference_update_PC(self, agent, who):

		"""
		The preference update function (PC)
		===========================

		This function is used to update the preferences of the policy core issues of agents in their
		respective belief trees.

		agent - this is the owner of the belief tree
		who - this is the part of the belieftree that is considered - agent.unique_id should be used for this - this is done to also include partial knowledge preference calculation

		"""	

		len_DC = self.len_DC
		len_PC = self.len_PC
		len_S = self.len_S

		#####	
		# 1.5.2 Preference calculation for the policy core issues
		PC_denominator = 0
		# 1.5.2.1. Calculation of the denominator
		for j in range(len_PC):
			# print('Selection PC' + str(j+1))
			# print('State of the PC' + str(j+1) + ': ' + str(agent.issuetree[0][len_DC + j][0])) # the state printed
			# Selecting the causal relations starting from PC
			for k in range(len_DC):
				# Contingency for partial knowledge issues
				if agent.issuetree[who][k][1] == None or agent.issuetree[who][k][0] == None or agent.issuetree[who][len_DC+len_PC+len_S+j+(k*len_PC)][0] == None:
					PC_denominator += 0
				else:
					# print('Causal Relation PC' + str(j+1) + ' - PC' + str(k+1) + ': ' + str(agent.issuetree[0][len_DC+len_PC+len_S+j+(k*len_PC)][1]))
					# print('Gap of PC' + str(k+1) + ': ' + str((agent.issuetree[0][k][1] - agent.issuetree[0][k][0])))
					# Check if causal relation and gap are both positive of both negative
					# print('agent.issuetree[' + str(who) + '][' + str(len_DC+len_PC+len_S+j+(k*len_PC)) + '][0]: ' + str(agent.issuetree[who][len_DC+len_PC+len_S+j+(k*len_PC)][0]))
					if (agent.issuetree[who][len_DC+len_PC+len_S+j+(k*len_PC)][0] < 0 and (agent.issuetree[who][k][1] - agent.issuetree[who][k][0]) < 0) or (agent.issuetree[who][len_DC+len_PC+len_S+j+(k*len_PC)][0] > 0 and (agent.issuetree[who][k][1] - agent.issuetree[who][k][0]) > 0):
						PC_denominator = PC_denominator + abs(agent.issuetree[who][len_DC+len_PC+len_S+j+(k*len_PC)][0]*(agent.issuetree[who][k][1] - agent.issuetree[who][k][0]))
						# print('This is the PC numerator: ' + str(PC_denominator))
					else:
						PC_denominator = PC_denominator	

		# 1.5.2.2. Addition of the gaps of the associated mid-level issues
		for i in range(len_PC):
			# Contingency for partial knowledge issues
			if agent.issuetree[who][len_DC + i][1] == None or agent.issuetree[who][len_DC + i][0] == None:
				PC_denominator = PC_denominator
			else:
				# print('This is the gap for the PC' + str(i+1) + ': ' + str(agent.issuetree[0][len_DC + i][1] - agent.issuetree[0][len_DC + i][0]))
				PC_denominator += abs(agent.issuetree[who][len_DC + i][1] - agent.issuetree[who][len_DC + i][0])
		# print('This is the S denominator: ' + str(PC_denominator))
		
		# 1.5.2.3 Calculation the numerator and the preference
		# Select one by one the PC
		for j in range(len_PC):

			# 1.5.2.3.1. Calculation of the right side of the numerator
			PC_numerator = 0
			# print('Selection PC' + str(j+1))
			# print('State of the PC' + str(j+1) + ': ' + str(agent.issuetree[0][len_DC + j][0])) # the state printed
			# Selecting the causal relations starting from DC
			for k in range(len_DC):
				# Contingency for partial knowledge issues
				if agent.issuetree[who][k][1] == None or agent.issuetree[who][k][0] == None or agent.issuetree[who][len_DC+len_PC+len_S+j+(k*len_PC)][0] == None:
					PC_numerator += 0
				else:
					# print('Causal Relation PC' + str(j+1) + ' - DC' + str(k+1) + ': ' + str(agent.issuetree[0][len_DC+len_PC+len_S+j+(k*len_PC)][1]))
					# print('Gap of DC' + str(k+1) + ': ' + str((agent.issuetree[0][k][1] - agent.issuetree[0][k][0])))
					# Check if causal relation and gap are both positive of both negative
					if (agent.issuetree[who][len_DC+len_PC+len_S+j+(k*len_PC)][0] < 0 and (agent.issuetree[who][k][1] - agent.issuetree[who][k][0]) < 0) or (agent.issuetree[who][len_DC+len_PC+len_S+j+(k*len_PC)][0] > 0 and (agent.issuetree[who][k][1] - agent.issuetree[who][k][0]) > 0):
						PC_numerator = PC_numerator + abs(agent.issuetree[who][len_DC+len_PC+len_S+j+(k*len_PC)][0]*(agent.issuetree[who][k][1] - agent.issuetree[who][k][0]))
						# print('This is the PC numerator: ' + str(PC_numerator))
					else:
						PC_numerator = PC_numerator	

			# 1.5.2.3.2. Addition of the gap to the numerator
			# Contingency for partial knowledge issues
			if agent.issuetree[who][len_DC + j][1] == None or agent.issuetree[who][len_DC + j][0] == None:
				PC_numerator += 0
			else:
				# print('This is the gap for the PC' + str(j+1) + ': ' + str(agent.issuetree[0][len_DC + j][1] - agent.issuetree[0][len_DC + j][0]))
				PC_numerator += abs(agent.issuetree[who][len_DC + j][1] - agent.issuetree[who][len_DC + j][0])
			# print('The numerator is equal to: ' + str(PC_numerator))
			# print('The denominator is equal to: ' + str(PC_denominator))

			# 1.5.2.3.3. Calculation of the preference
			if PC_denominator != 0:
				agent.issuetree[who][len_DC+j][2] = round(PC_numerator/PC_denominator,3) 
			# print('The new preference of the policy core PC' + str(j+1) + ' is: ' + str(agent.issuetree[0][len_DC+j][2]))
			else:
				agent.issuetree[who][len_DC+j][2] = 0

	def preference_update_S(self, agent, who):

		"""
		The preference update function (S)
		===========================

		This function is used to update the preferences of secondary issues the agents in their
		respective belief trees.

		agent - this is the owner of the belief tree
		who - this is the part of the belieftree that is considered - agent.unique_id should be used for this - this is done to also include partial knowledge preference calculation

		"""	

		len_DC = self.len_DC
		len_PC = self.len_PC
		len_S = self.len_S

		#####	
		# 1.5.3 Preference calculation for the secondary issues
		S_denominator = 0
		# 1.5.2.1. Calculation of the denominator
		for j in range(len_S):
			# print('Selection S' + str(j+1))
			# print('State of the S' + str(j+1) + ': ' + str(agent.issuetree[0][len_DC + len_PC + j][0])) # the state printed
			# Selecting the causal relations starting from S
			for k in range(len_PC):
				# Contingency for partial knowledge issues
				if agent.issuetree[who][len_DC + k][1] == None or agent.issuetree[who][len_DC + k][0] == None or agent.issuetree[who][len_DC+len_PC+len_S+len_DC*len_PC+j+(k*len_S)][0] == None:
					S_denominator += 0
				else:
					# print('Causal Relation S' + str(j+1) + ' - PC' + str(k+1) + ': ' + str(agent.issuetree[who][len_DC+len_PC+len_S+len_DC*len_PC+j+(k*len_S)][0]))
					# print('Gap of PC' + str(k+1) + ': ' + str((agent.issuetree[who][len_DC+k][1] - agent.issuetree[who][len_DC+k][0])))
					# Check if causal relation and gap are both positive of both negative
					# print('agent.issuetree[' + str(who) + '][' + str(len_DC+len_PC+len_S+len_DC*len_PC+j+(k*len_S)) + '][0]: ' + str(agent.issuetree[who][len_DC+len_PC+len_S+len_DC*len_PC+j+(k*len_S)][0]))
					if (agent.issuetree[who][len_DC+len_PC+len_S+len_DC*len_PC+j+(k*len_S)][0] < 0 and (agent.issuetree[who][len_DC+k][1] - agent.issuetree[who][len_DC+k][0]) < 0) or (agent.issuetree[who][len_DC+len_PC+len_S+len_DC*len_PC+j+(k*len_S)][0] > 0 and (agent.issuetree[who][len_DC+k][1] - agent.issuetree[who][len_DC+k][0]) > 0):
						S_denominator += abs(agent.issuetree[who][len_DC+len_PC+len_S+len_DC*len_PC+j+(k*len_S)][0]*(agent.issuetree[who][len_DC+k][1] - agent.issuetree[who][len_DC+k][0]))
						# print('This is the PC numerator: ' + str(S_denominator))
					else:
						S_denominator = S_denominator	

		# 1.5.2.2. Addition of the gaps of the associated secondary issues
		for j in range(len_S):
			# Contingency for partial knowledge issues
			if agent.issuetree[who][len_DC+len_PC+j][1] == None or agent.issuetree[who][len_DC+len_PC+j][0] == None:
				S_denominator = S_denominator
			else:
				# print('This is the gap for the PC' + str(i+1) + ': ' + str(agent.issuetree[0][len_DC + len_PC + i][1] - agent.issuetree[0][len_DC + len_PC + i][0]))
				S_denominator += abs(agent.issuetree[who][len_DC+len_PC+j][1] - agent.issuetree[who][len_DC+len_PC+j][0])
		# print('This is the PC denominator: ' + str(S_denominator))
		
		# 1.5.2.3 Calculation the numerator and the preference
		# Select one by one the S
		for j in range(len_S):

			# 1.5.2.3.1. Calculation of the right side of the numerator
			S_numerator = 0
			# print('Selection S' + str(j+1))
			# print('State of the S' + str(j+1) + ': ' + str(agent.issuetree[who][len_DC + len_PC + j][0])) # the state printed
			# Selecting the causal relations starting from PC
			for k in range(len_PC):
				# Contingency for partial knowledge issues
				if agent.issuetree[who][len_DC + k][1] == None or agent.issuetree[who][len_DC + k][0] == None or agent.issuetree[who][len_DC+len_PC+len_S+len_DC*len_PC+j+(k*len_S)][0] == None:
					S_numerator = 0
				else:
					# print('Causal Relation S' + str(j+1) + ' - PC' + str(k+1) + ': ' + str(agent.issuetree[who][len_DC+len_PC+len_S+len_DC*len_PC+j+(k*len_S)][0]))
					# print('Gap of PC' + str(k+1) + ': ' + str((agent.issuetree[who][len_DC + k][1] - agent.issuetree[who][len_DC + k][0])))
					# Check if causal relation and gap are both positive of both negative
					if (agent.issuetree[who][len_DC+len_PC+len_S+len_DC*len_PC+j+(k*len_S)][0] < 0 and (agent.issuetree[who][len_DC+k][1] - agent.issuetree[who][len_DC+k][0]) < 0) or (agent.issuetree[who][len_DC+len_PC+len_S+len_DC*len_PC+j+(k*len_S)][0] > 0 and (agent.issuetree[who][len_DC+k][1] - agent.issuetree[who][len_DC+k][0]) > 0):
						S_numerator += abs(agent.issuetree[who][len_DC+len_PC+len_S+len_DC*len_PC+j+(k*len_S)][0]*(agent.issuetree[who][len_DC+k][1] - agent.issuetree[who][len_DC+k][0]))
						# print('This is the PC numerator: ' + str(S_numerator))
					else:
						S_numerator = S_numerator

			# 1.5.2.3.2. Addition of the gap to the numerator
			# Contingency for partial knowledge issues
			if agent.issuetree[who][len_DC+len_PC+j][1] == None or agent.issuetree[who][len_DC+len_PC+j][0] == None:
				S_numerator += 0
			else:
				# print('This is the gap for the PC' + str(j+1) + ': ' + str(agent.issuetree[who][len_DC+len_PC+j][1] - agent.issuetree[who][len_DC+len_PC+j][0]))
				S_numerator += abs(agent.issuetree[who][len_DC+len_PC+j][1] - agent.issuetree[who][len_DC+len_PC+j][0])
			# print('The numerator is equal to: ' + str(S_numerator))
			# print('The denominator is equal to: ' + str(S_denominator))

			# 1.5.2.3.3. Calculation of the preference
			if S_denominator != 0:
				agent.issuetree[who][len_DC+len_PC+j][2] = round(S_numerator/S_denominator,3) 
			# print('The new preference of the policy core PC' + str(j+1) + ' is: ' + str(agent.issuetree[0][len_DC+j][2]))
			else:
				agent.issuetree[who][len_DC+len_PC+j][2] = 0
コード例 #25
0
class PolicyEmergenceSM(Model):
    '''
	Simplest Model for the policy emergence model.
	'''
    def __init__(self, SM_inputs, height=20, width=20):

        self.height = height  # height of the canvas
        self.width = width  # width of the canvas

        self.SM_inputs = SM_inputs  # inputs for the entire model

        self.stepCount = 0  # int - [-] - initialisation of step counter
        self.agenda_PC = None  # initialisation of agenda policy core issue tracker
        self.policy_implemented_number = None  # initialisation of policy number tracker
        self.policy_formulation_run = False  # check value for running policy formulation

        self.w_el_influence = self.SM_inputs[
            9]  # float - [-] - electorate influence weight constant
        # todo - consider also saving the electorate influence parameter

        self.schedule = RandomActivation(self)  # mesa random activation method
        self.grid = SingleGrid(height, width,
                               torus=True)  # mesa grid creation method

        # creation of the datacollector vector
        self.datacollector = DataCollector(
            # Model-level variables
            model_reporters={
                "step": "stepCount",
                "AS_PF": get_problem_policy_chosen,
                "agent_attributes": get_agents_attributes,
                "electorate_attributes": get_electorate_attributes
            },
            # Agent-level variables
            agent_reporters={
                "x":
                lambda a: a.pos[0],
                "y":
                lambda a: a.pos[1],
                "Agent type":
                lambda a: type(a),
                "Issuetree":
                lambda a: getattr(a, 'issuetree', [None])[
                    a.unique_id if isinstance(a, ActiveAgent) else 0]
            })

        self.len_S, self.len_PC, self.len_DC, self.len_CR = belief_tree_input(
        )  # setting up belief tree
        self.policy_instruments, self.len_ins, self.PF_indices = policy_instrument_input(
        )  # setting up policy instruments
        init_active_agents(self, self.len_S, self.len_PC, self.len_DC,
                           self.len_CR, self.len_PC, self.len_ins,
                           self.SM_inputs)  # setting up active agents
        init_electorate_agents(self, self.len_S, self.len_PC, self.len_DC,
                               self.SM_inputs)  # setting up passive agents
        init_truth_agent(self, self.len_S, self.len_PC, self.len_DC,
                         self.len_ins)  # setting up truth agent

        self.running = True
        self.numberOfAgents = self.schedule.get_agent_count()
        self.datacollector.collect(self)

    def step(self, KPIs):
        '''
		Main steps of the Simplest Model for policy emergence:
		0. Module interface - Input
		1. Agenda setting step
		2. Policy formulation step
		3. Data collection
		'''

        self.KPIs = KPIs  # saving the indicators

        # 0. initialisation
        self.module_interface_input(
            self.KPIs)  # communicating the beliefs (indicators)
        self.electorate_influence(
            self.w_el_influence)  # electorate influence actions

        # 1. agenda setting
        self.agenda_setting()

        # 2. policy formulation
        if self.policy_formulation_run:
            policy_implemented = self.policy_formulation()
        else:
            policy_implemented = self.policy_instruments[-1]

        # 3. data collection
        self.stepCount += 1  # iterate the steps counter
        self.datacollector.collect(self)  # collect data

        print("Step ends", "\n")

        return policy_implemented

    def module_interface_input(self, KPIs):
        '''
		The module interface input step consists of actions related to the module interface and the policy emergence model
		'''

        len_DC = self.len_DC
        len_PC = self.len_PC
        len_S = self.len_S
        len_ins = self.len_ins

        # saving the issue tree of the truth agent
        for agent in self.schedule.agent_buffer(shuffled=True):
            if isinstance(agent, TruthAgent):
                agent.issuetree_truth = KPIs
                truth_issuetree = agent.issuetree_truth
                truth_policytree = agent.policytree_truth

        # Transferring policy impact to active agents
        for agent in self.schedule.agent_buffer(shuffled=True):
            if isinstance(agent, ActiveAgent):  # selecting only active agents
                # for PFj in range(len_PC): # communicating the policy family likelihoods
                # 	for PFij in range(len_PC):
                # 		agent.policytree[agent.unique_id][PFj][PFij] = truth_policytree[PFj][PFij]

                for insj in range(
                        len_ins
                ):  # communicating the policy instruments impacts
                    agent.policytree[agent.unique_id][
                        len_PC + insj][0:len_S] = truth_policytree[len_PC +
                                                                   insj]

                for issue in range(
                        len_DC + len_PC + len_S
                ):  # communicating the issue beliefs from the KPIs
                    agent.issuetree[
                        agent.unique_id][issue][0] = truth_issuetree[issue]
                self.preference_update(
                    agent, agent.unique_id)  # updating the preferences

    def agenda_setting(self):
        '''
		In the agenda setting step, the active agents first select their policy core issue of preference and then select
		the agenda.
		'''

        # active agent policy core selection
        for agent in self.schedule.agent_buffer(shuffled=False):
            if isinstance(agent, ActiveAgent):  # selecting only active agents
                agent.selection_PC()

        # for each agent, selection of their preferred policy core issue
        selected_PC_list = []
        number_ActiveAgents = 0
        for agent in self.schedule.agent_buffer(shuffled=False):
            if isinstance(agent,
                          ActiveAgent):  # considering only policy makers
                selected_PC_list.append(agent.selected_PC)
                number_ActiveAgents += 1

        # finding the most common policy core issue and its frequency
        d = defaultdict(int)
        for i in selected_PC_list:
            d[i] += 1
        result = max(d.items(), key=lambda x: x[1])
        agenda_PC_temp = result[0]
        agenda_PC_temp_frequency = result[1]

        # checking for majority
        if agenda_PC_temp_frequency > int(number_ActiveAgents / 2):
            self.agenda_PC = agenda_PC_temp
            self.policy_formulation_run = True  # allowing for policy formulation to happen
            print("The agenda consists of PC", self.agenda_PC, ".")
        else:  # if no majority
            self.policy_formulation_run = False
            print("No agenda was formed, moving to the next step.")

        # for purposes of not changing the entire code - the policy family selected is set at 0 so all policy instruments
        # are always considered in the rest of the model
        self.agenda_PF = 0

    def policy_formulation(self):
        '''
		In the policy formulation step, the policy maker agents first select their policy core issue of preference and then
		they select the policy that is to be implemented if there is a majority of them.
		'''

        # calculation of policy instruments preferences
        selected_PI_list = []
        number_PMs = 0
        for agent in self.schedule.agent_buffer(shuffled=False):
            if isinstance(
                    agent, ActiveAgent
            ) and agent.agent_type == 'policymaker':  # considering only policy makers
                agent.selection_S()
                agent.selection_PI(
                )  # individual agent policy instrument selection
                selected_PI_list.append(
                    agent.selected_PI
                )  # appending the policy instruments selected to a list for all PMs
                number_PMs += 1

        # finding the most common policy instrument and its frequency
        d = defaultdict(int)
        for i in selected_PI_list:
            d[i] += 1
        result = max(d.items(), key=lambda x: x[1])
        self.policy_implemented_number = result[0]
        policy_implemented_number_frequency = result[1]

        # check for the majority and implemented if satisfied
        if policy_implemented_number_frequency > int(number_PMs / 2):
            print("The policy selected is policy instrument ",
                  self.policy_implemented_number, ".")
            policy_implemented = self.policy_instruments[
                self.policy_implemented_number]
        else:  # if no majority
            print("No consensus on a policy instrument.")
            policy_implemented = self.policy_instruments[
                -1]  # selecting status quo policy instrument

        return policy_implemented

    def preference_update(self, agent, who):
        '''
		This function is used to call the preference update functions of the issues of the active agents.
		'''

        self.preference_update_DC(agent,
                                  who)  # deep core issue preference update
        self.preference_update_PC(agent,
                                  who)  # policy core issue preference update
        self.preference_update_S(agent, who)  #

    def preference_update_DC(self, agent, who):
        """
		This function is used to update the preferences of the deep core issues of agents in their
		respective issue trees.

		agent - this is the owner of the issue tree
		who - this is the part of the issuetree that is considered - agent.unique_id should be used for this -
		this is done to also include partial knowledge preference calculation
		"""

        len_DC = self.len_DC

        # calculation of the denominator
        PC_denominator = 0
        for h in range(len_DC):
            issue_belief = agent.issuetree[who][h][0]
            issue_goal = agent.issuetree[who][h][1]
            gap = issue_goal - issue_belief
            if issue_goal is not None and issue_belief is not None:
                PC_denominator += abs(gap)

        # selection of the numerator and calculation of the preference
        for i in range(len_DC):
            issue_belief = agent.issuetree[who][i][0]
            issue_goal = agent.issuetree[who][i][1]
            gap = issue_goal - issue_belief
            if PC_denominator != 0:  # make sure the denominator is not 0
                agent.issuetree[who][i][2] = abs(gap) / PC_denominator
            else:
                agent.issuetree[who][i][2] = 0

    def preference_update_PC(self, agent, who):
        """
		This function is used to update the preferences of the policy core issues of agents in their
		respective issue trees.

		agent - this is the owner of the belief tree
		who - this is the part of the issuetree that is considered - agent.unique_id should be used for this -
		this is done to also include partial knowledge preference calculation
		"""

        len_DC = self.len_DC
        len_PC = self.len_PC
        len_S = self.len_S

        PC_denominator = 0
        # calculation of the denominator
        for j in range(
                len_PC):  # selecting the causal relations starting from PC

            for k in range(len_DC):
                cr = agent.issuetree[who][len_DC + len_PC + len_S + j +
                                          (k * len_PC)][0]
                issue_belief = agent.issuetree[who][k][0]
                issue_goal = agent.issuetree[who][k][1]
                gap = issue_goal - issue_belief
                if issue_goal is not None and issue_belief is not None and cr is not None \
                  and ((cr < 0 and gap < 0) or (cr > 0 and gap > 0)):
                    # contingency for partial knowledge issues and check if cr and belief-goal are same sign
                    PC_denominator = PC_denominator + abs(cr * gap)

        # addition of the gaps of the associated mid-level issues
        for i in range(len_PC):
            issue_belief = agent.issuetree[who][len_DC + i][0]
            issue_goal = agent.issuetree[who][len_DC + i][1]
            gap = issue_goal - issue_belief
            if issue_goal is not None and issue_belief is not None:  # contingency for partial knowledge issues
                PC_denominator += abs(gap)

        # calculation the numerator and the preference
        for j in range(len_PC):  # select one by one the PC

            # calculation of the right side of the numerator
            PC_numerator = 0
            for k in range(
                    len_DC):  # selecting the causal relations starting from DC
                issue_belief = agent.issuetree[who][k][0]
                issue_goal = agent.issuetree[who][k][1]
                cr = agent.issuetree[who][len_DC + len_PC + len_S + j +
                                          (k * len_PC)][0]
                gap = issue_goal - issue_belief
                if issue_goal is not None and issue_belief is not None and cr is not None \
                  and ((cr < 0 and gap < 0) or (cr > 0 and gap > 0)):
                    # contingency for partial knowledge issues and check if cr and belief-goal are same sign
                    PC_numerator += abs(cr * gap)

            # addition of the gap to the numerator
            issue_belief = agent.issuetree[who][len_DC + j][0]
            issue_goal = agent.issuetree[who][len_DC + j][1]
            gap = issue_goal - issue_belief
            if issue_goal is not None and issue_belief is not None:  # contingency for partial knowledge issues
                PC_numerator += abs(gap)

            # calculation of the preferences
            if PC_denominator != 0:
                agent.issuetree[who][len_DC + j][2] = round(
                    PC_numerator / PC_denominator, 3)
            else:
                agent.issuetree[who][len_DC + j][2] = 0

    def preference_update_S(self, agent, who):
        """
		This function is used to update the preferences of secondary issues the agents in their
		respective issue trees.

		agent - this is the owner of the belief tree
		who - this is the part of the issuetree that is considered - agent.unique_id should be used for this -
		this is done to also include partial knowledge preference calculation
		"""

        len_DC = self.len_DC
        len_PC = self.len_PC
        len_S = self.len_S

        S_denominator = 0
        # calculation of the denominator
        for j in range(len_S):

            for k in range(
                    len_PC):  # selecting the causal relations starting from S
                issue_belief = agent.issuetree[who][len_DC + k][0]
                issue_goal = agent.issuetree[who][len_DC + k][1]
                cr = agent.issuetree[who][len_DC + len_PC + len_S +
                                          len_DC * len_PC + j + (k * len_S)][0]
                gap = issue_goal - issue_belief
                if issue_goal is not None and issue_belief is not None and cr is not None \
                  and ((cr < 0 and gap < 0) or (cr > 0 and gap > 0)):
                    # contingency for partial knowledge issues and check if cr and belief-goal are same sign
                    S_denominator += abs(cr * gap)

        # addition of the gaps of the associated secondary issues
        for j in range(len_S):
            issue_belief = agent.issuetree[who][len_DC + len_PC + j][0]
            issue_goal = agent.issuetree[who][len_DC + len_PC + j][1]
            gap = issue_goal - issue_belief
            if issue_goal is not None and issue_belief is not None:  # contingency for partial knowledge issues
                S_denominator += abs(gap)

        # calculation the numerator and the preference
        for j in range(len_S):  # select one by one the S

            # calculation of the right side of the numerator
            S_numerator = 0
            for k in range(
                    len_PC):  # selecting the causal relations starting from PC
                # Contingency for partial knowledge issues
                cr = agent.issuetree[who][len_DC + len_PC + len_S +
                                          len_DC * len_PC + j + (k * len_S)][0]
                issue_belief = agent.issuetree[who][len_DC + k][0]
                issue_goal = agent.issuetree[who][len_DC + k][1]
                gap = issue_goal - issue_belief
                if issue_goal is not None and issue_belief is not None and cr is not None \
                  and ((cr < 0 and gap < 0) or (cr > 0 and gap > 0)):
                    # contingency for partial knowledge issues and check if cr and gap are same sign
                    S_numerator += abs(cr * gap)

            # addition of the gap to the numerator
            issue_belief = agent.issuetree[who][len_DC + len_PC + j][0]
            issue_goal = agent.issuetree[who][len_DC + len_PC + j][1]
            gap = issue_goal - issue_belief
            if issue_goal is not None and issue_belief is not None:  # contingency for partial knowledge issues
                S_numerator += abs(gap)

            # calculation of the preferences
            if S_denominator != 0:
                agent.issuetree[who][len_DC + len_PC + j][2] = round(
                    S_numerator / S_denominator, 3)
            else:
                agent.issuetree[who][len_DC + len_PC + j][2] = 0

    def electorate_influence(self, w_el_influence):
        '''
		This function calls the influence actions in the electorate agent class.
		'''

        for agent in self.schedule.agent_buffer(shuffled=True):
            if isinstance(agent, ElectorateAgent):
                agent.electorate_influence(w_el_influence)
コード例 #26
0
class PolicyEmergenceSM(Model):
    '''
	Simplest Model for the policy emergence model.
	'''
    def __init__(self,
                 PE_type,
                 SM_inputs,
                 AplusPL_inputs,
                 AplusCo_inputs,
                 AplusPK_inputs,
                 height=20,
                 width=20,
                 input_LHS=False):

        self.height = height  # height of the canvas
        self.width = width  # width of the canvas

        self.SM_inputs = SM_inputs  # inputs for the entire model
        self.PE_type = PE_type  # model type (SM, A+PL, A+Co, A+PK, A+PI)

        self.resources_aff = SM_inputs[2]  # resources per affiliation agent

        self.stepCount = 0  # int - [-] - initialisation of step counter
        self.agenda_PC = None  # initialisation of agenda policy core issue tracker
        self.policy_implemented_number = None  # initialisation of policy number tracker
        self.policy_formulation_run = False  # check value for running policy formulation

        self.w_el_influence = self.SM_inputs[
            5]  # float - [-] - electorate influence weight constant

        # batchrunner inputs
        self.input_LHS = input_LHS

        # ACF+PL parameters
        if 'A+PL' in self.PE_type or 'A+Co' in self.PE_type:
            self.conflict_level = AplusPL_inputs[0]
            self.resources_spend_incr_agents = AplusPL_inputs[1]

        # ACF+Co parameters
        if 'A+Co' in self.PE_type:
            self.PC_interest = AplusCo_inputs[0]
            if self.input_LHS:
                self.coa_creation_thresh = self.input_LHS[1]  # LHS inputs
                self.coa_resources_share = self.input_LHS[0]  # LHS inputs
            else:
                self.coa_creation_thresh = AplusCo_inputs[1]
                self.coa_resources_share = AplusCo_inputs[3]
            self.coa_coherence_thresh = AplusCo_inputs[2]
            self.resources_spend_incr_coal = AplusCo_inputs[4]
            print('res. share:', round(self.coa_resources_share, 3),
                  ', coa. threshold:', round(self.coa_creation_thresh, 3))

            self.coalition_list = []

        # +PK parameters
        self.PK = False
        if '+PK' in self.PE_type:
            self.PK = True
        self.PK_catchup = AplusPK_inputs[0]

        self.schedule = RandomActivation(self)  # mesa random activation method
        self.grid = SingleGrid(height, width,
                               torus=True)  # mesa grid creation method

        # creation of the datacollector vector

        if 'A+Co' in self.PE_type:
            self.datacollector = DataCollector(
                # Model-level variables
                model_reporters={
                    "step": "stepCount",
                    "AS_PF": get_problem_policy_chosen,
                    "agent_attributes": get_agents_attributes,
                    "coalitions_attributes": get_coalitions_attributes,
                    "electorate_attributes": get_electorate_attributes
                },
                # Agent-level variables
                agent_reporters={
                    "x":
                    lambda a: a.pos[0],
                    "y":
                    lambda a: a.pos[1],
                    "Agent type":
                    lambda a: type(a),
                    "Issuetree":
                    lambda a: getattr(a, 'issuetree', [None])[
                        a.unique_id
                        if isinstance(a, ActiveAgent) and not isinstance(
                            a, Coalition) else 0]
                })
        else:
            self.datacollector = DataCollector(
                # Model-level variables
                model_reporters={
                    "step": "stepCount",
                    "AS_PF": get_problem_policy_chosen,
                    "agent_attributes": get_agents_attributes,
                    "electorate_attributes": get_electorate_attributes
                },
                # Agent-level variables
                agent_reporters={
                    "x":
                    lambda a: a.pos[0],
                    "y":
                    lambda a: a.pos[1],
                    "Agent type":
                    lambda a: type(a),
                    "Issuetree":
                    lambda a: getattr(a, 'issuetree', [None])[
                        a.unique_id if isinstance(a, ActiveAgent) else 0]
                })

        self.len_S, self.len_PC, self.len_DC, self.len_CR = belief_tree_input(
        )  # setting up belief tree
        self.policy_instruments, self.len_ins, self.PF_indices = policy_instrument_input(
        )  # setting up policy instruments
        init_active_agents(self, self.len_S, self.len_PC, self.len_DC,
                           self.len_CR, self.len_PC, self.len_ins,
                           self.SM_inputs)  # setting up active agents
        init_electorate_agents(self, self.len_S, self.len_PC, self.len_DC,
                               self.SM_inputs)  # setting up passive agents
        init_truth_agent(self, self.len_S, self.len_PC, self.len_DC,
                         self.len_ins)  # setting up truth agent

        self.running = True
        self.numberOfAgents = self.schedule.get_agent_count()
        self.datacollector.collect(self)

    def step(self, KPIs):
        '''
		Main steps of the Simplest Model for policy emergence:
		0. Module interface - Input
		1. Agenda setting step
		2. Policy formulation step
		3. Data collection
		'''

        self.KPIs = KPIs  # saving the indicators

        # 0. initialisation
        self.module_interface_input(
            self.KPIs)  # communicating the beliefs (indicators)
        self.electorate_influence(
            self.w_el_influence)  # electorate influence actions
        if 'A+Co' in self.PE_type:
            self.coalition_creation_algorithm()

        # 1. agenda setting
        self.agenda_setting()

        # 2. policy formulation
        if self.policy_formulation_run:
            policy_implemented = self.policy_formulation()
        else:
            policy_implemented = self.policy_instruments[-1]

        # 3. data collection
        self.stepCount += 1  # iterate the steps counter
        self.datacollector.collect(self)  # collect data

        print("Step ends", "\n")

        return policy_implemented

    def module_interface_input(self, KPIs):
        '''
		The module interface input step consists of actions related to the module interface and the policy emergence model
		'''

        len_DC = self.len_DC
        len_PC = self.len_PC
        len_S = self.len_S
        len_ins = self.len_ins

        # saving the issue tree of the truth agent
        for agent in self.schedule.agent_buffer(shuffled=True):
            if isinstance(agent, TruthAgent):
                agent.issuetree_truth = KPIs
                truth_issuetree = agent.issuetree_truth
                truth_policytree = agent.policytree_truth

        # Transferring policy impact to active agents
        for agent in self.schedule.agent_buffer(shuffled=True):
            if isinstance(agent, ActiveAgent) and not isinstance(
                    agent, Coalition):  # selecting only active agents
                # for PFj in range(len_PC): # communicating the policy family likelihoods
                # 	for PFij in range(len_PC):
                # 		agent.policytree[agent.unique_id][PFj][PFij] = truth_policytree[PFj][PFij]

                for insj in range(
                        len_ins
                ):  # communicating the policy instruments impacts
                    agent.policytree[agent.unique_id][
                        len_PC + insj][0:len_S] = truth_policytree[len_PC +
                                                                   insj]

                for issue in range(
                        len_DC + len_PC + len_S
                ):  # communicating the issue beliefs from the KPIs
                    agent.issuetree[
                        agent.unique_id][issue][0] = truth_issuetree[issue]
                self.preference_update(
                    agent, agent.unique_id)  # updating the preferences

    def resources_distribution(self):

        if 'A+PL' in self.PE_type or 'A+Co' in self.PE_type:
            for agent in self.schedule.agent_buffer(shuffled=False):
                if isinstance(agent,
                              ActiveAgent):  # selecting only active agents
                    if agent.affiliation == 0:  # affiliation 0
                        agent.resources = 0.01 * self.number_activeagents * self.resources_aff[
                            0] / 100
                    if agent.affiliation == 1:  # affiliation 1
                        agent.resources = 0.01 * self.number_activeagents * self.resources_aff[
                            1] / 100
                    agent.resources_action = agent.resources  # assigning resources for the actions for both
        if 'A+Co' in self.PE_type:  # attribution of the resources to coalitions
            for coalition in self.schedule.agent_buffer(shuffled=False):
                if isinstance(coalition, Coalition):
                    resources = 0
                    for agent_mem in coalition.members:
                        resources += agent_mem.resources * self.coa_resources_share
                        agent_mem.resources -= self.coa_resources_share * agent_mem.resources
                        agent.resources_action = agent.resources  # assigning resources for the actions for both
                    coalition.resources = resources
                    coalition.resources_action = coalition.resources  # assigning resources for the actions for both

    def agenda_setting(self):
        '''
		In the agenda setting step, the active agents first select their policy core issue of preference and then select
		the agenda.
		'''

        # resources distribution
        self.resources_distribution()

        # active agent policy core selection
        for agent in self.schedule.agent_buffer(shuffled=False):
            if isinstance(agent, ActiveAgent):  # selecting only active agents
                agent.selection_PC()

        if 'A+Co' in self.PE_type:
            for coalition in self.schedule.agent_buffer(shuffled=True):
                if isinstance(coalition,
                              Coalition):  # selecting only coalitions
                    coalition.interactions_intra_coalition(
                        'AS')  # intra-coalition interactions

        # active agent interactions (including coalitions)
        if 'A+PL' in self.PE_type or 'A+Co' in self.PE_type:
            for agent in self.schedule.agent_buffer(shuffled=True):
                if isinstance(agent,
                              ActiveAgent):  # selecting only active agents
                    agent.interactions('AS', self.PK)

        # active agent policy core selection (after agent interactions)
        if 'A+PL' in self.PE_type or 'A+Co' in self.PE_type:
            # active agent policy core selection
            for agent in self.schedule.agent_buffer(shuffled=False):
                if isinstance(agent,
                              ActiveAgent):  # selecting only active agents
                    agent.selection_PC()

        # for each agent, selection of their preferred policy core issue
        selected_PC_list = []
        number_ActiveAgents = 0
        for agent in self.schedule.agent_buffer(shuffled=False):
            if isinstance(agent,
                          ActiveAgent):  # considering only policy makers
                selected_PC_list.append(agent.selected_PC)
                number_ActiveAgents += 1

        # finding the most common policy core issue and its frequency
        d = defaultdict(int)
        for i in selected_PC_list:
            d[i] += 1
        result = max(d.items(), key=lambda x: x[1])
        agenda_PC_temp = result[0]
        agenda_PC_temp_frequency = result[1]

        # checking for majority
        if agenda_PC_temp_frequency > int(number_ActiveAgents / 2):
            self.agenda_PC = agenda_PC_temp
            self.policy_formulation_run = True  # allowing for policy formulation to happen
            print("The agenda consists of PC", self.agenda_PC, ".")
        else:  # if no majority
            self.policy_formulation_run = False
            print("No agenda was formed, moving to the next step.")

        # for purposes of not changing the entire code - the policy family selected is set at 0 so all policy instruments
        # are always considered in the rest of the model
        self.agenda_PF = 0

    def policy_formulation(self):
        '''
		In the policy formulation step, the policy maker agents first select their policy core issue of preference and then
		they select the policy that is to be implemented if there is a majority of them.
		'''

        # resources distribution
        self.resources_distribution()

        # calculation of policy instruments preferences
        if 'A+PL' in self.PE_type or 'A+Co' in self.PE_type:
            for agent in self.schedule.agent_buffer(shuffled=False):
                if isinstance(agent, ActiveAgent):
                    agent.selection_S()
                    agent.selection_PI(
                    )  # individual agent policy instrument selection

        if 'A+Co' in self.PE_type:
            for coalition in self.schedule.agent_buffer(shuffled=True):
                if isinstance(coalition,
                              Coalition):  # selecting only active agents
                    # print('selected_PC', agent.selected_PC)
                    coalition.interactions_intra_coalition('PF')
                    # coalition.interactions('PF')

        # active agent interactions
        if 'A+PL' in self.PE_type or 'A+Co' in self.PE_type:
            for agent in self.schedule.agent_buffer(shuffled=True):
                if isinstance(agent,
                              ActiveAgent):  # selecting only active agents
                    agent.interactions('PF', self.PK)

        # calculation of policy instruments preferences
        selected_PI_list = []
        number_PMs = 0
        for agent in self.schedule.agent_buffer(shuffled=False):
            if isinstance(
                    agent, ActiveAgent
            ) and agent.agent_type == 'policymaker':  # considering only policy makers
                agent.selection_S()
                agent.selection_PI(
                )  # individual agent policy instrument selection
                selected_PI_list.append(
                    agent.selected_PI
                )  # appending the policy instruments selected to a list for all PMs
                number_PMs += 1

        # finding the most common policy instrument and its frequency
        d = defaultdict(int)
        print(selected_PI_list)
        for i in selected_PI_list:
            d[i] += 1
        result = max(d.items(), key=lambda x: x[1])
        self.policy_implemented_number = result[0]
        policy_implemented_number_frequency = result[1]

        # check for the majority and implemented if satisfied
        if policy_implemented_number_frequency > int(number_PMs / 2):
            print("The policy selected is policy instrument ",
                  self.policy_implemented_number, ".")
            policy_implemented = self.policy_instruments[
                self.policy_implemented_number]
        else:  # if no majority
            print("No consensus on a policy instrument.")
            policy_implemented = self.policy_instruments[
                -1]  # selecting status quo policy instrument

        return policy_implemented

    def preference_update(self, agent, who, coalition_check=False):
        '''
		This function is used to call the preference update functions of the issues of the active agents.
		'''

        if coalition_check:
            who = self.number_activeagents

        self.preference_update_DC(agent,
                                  who)  # deep core issue preference update
        self.preference_update_PC(agent,
                                  who)  # policy core issue preference update
        self.preference_update_S(agent, who)  #

    def preference_update_DC(self, agent, who):
        """
		This function is used to update the preferences of the deep core issues of agents in their
		respective issue trees.

		agent - this is the owner of the issue tree
		who - this is the part of the issuetree that is considered - agent.unique_id should be used for this -
		this is done to also include partial knowledge preference calculation
		"""

        len_DC = self.len_DC

        # calculation of the denominator
        PC_denominator = 0
        for h in range(len_DC):
            issue_belief = agent.issuetree[who][h][0]
            issue_goal = agent.issuetree[who][h][1]
            gap = issue_goal - issue_belief
            if issue_goal is not None and issue_belief is not None:
                PC_denominator += abs(gap)

        # selection of the numerator and calculation of the preference
        for i in range(len_DC):
            issue_belief = agent.issuetree[who][i][0]
            issue_goal = agent.issuetree[who][i][1]
            gap = issue_goal - issue_belief
            if PC_denominator != 0:  # make sure the denominator is not 0
                agent.issuetree[who][i][2] = abs(gap) / PC_denominator
            else:
                agent.issuetree[who][i][2] = 0

    def preference_update_PC(self, agent, who):
        """
		This function is used to update the preferences of the policy core issues of agents in their
		respective issue trees.

		agent - this is the owner of the belief tree
		who - this is the part of the issuetree that is considered - agent.unique_id should be used for this -
		this is done to also include partial knowledge preference calculation
		"""

        len_DC = self.len_DC
        len_PC = self.len_PC
        len_S = self.len_S

        PC_denominator = 0
        # calculation of the denominator
        for j in range(
                len_PC):  # selecting the causal relations starting from PC

            for k in range(len_DC):
                cr = agent.issuetree[who][len_DC + len_PC + len_S + j +
                                          (k * len_PC)][0]
                issue_belief = agent.issuetree[who][k][0]
                issue_goal = agent.issuetree[who][k][1]
                gap = issue_goal - issue_belief
                if issue_goal is not None and issue_belief is not None and cr is not None \
                  and ((cr < 0 and gap < 0) or (cr > 0 and gap > 0)):
                    # contingency for partial knowledge issues and check if cr and belief-goal are same sign
                    PC_denominator = PC_denominator + abs(cr * gap)

        # addition of the gaps of the associated mid-level issues
        for i in range(len_PC):
            issue_belief = agent.issuetree[who][len_DC + i][0]
            issue_goal = agent.issuetree[who][len_DC + i][1]
            gap = issue_goal - issue_belief
            if issue_goal is not None and issue_belief is not None:  # contingency for partial knowledge issues
                PC_denominator += abs(gap)

        # calculation the numerator and the preference
        for j in range(len_PC):  # select one by one the PC

            # calculation of the right side of the numerator
            PC_numerator = 0
            for k in range(
                    len_DC):  # selecting the causal relations starting from DC
                issue_belief = agent.issuetree[who][k][0]
                issue_goal = agent.issuetree[who][k][1]
                cr = agent.issuetree[who][len_DC + len_PC + len_S + j +
                                          (k * len_PC)][0]
                gap = issue_goal - issue_belief
                if issue_goal is not None and issue_belief is not None and cr is not None \
                  and ((cr < 0 and gap < 0) or (cr > 0 and gap > 0)):
                    # contingency for partial knowledge issues and check if cr and belief-goal are same sign
                    PC_numerator += abs(cr * gap)

            # addition of the gap to the numerator
            issue_belief = agent.issuetree[who][len_DC + j][0]
            issue_goal = agent.issuetree[who][len_DC + j][1]
            gap = issue_goal - issue_belief
            if issue_goal is not None and issue_belief is not None:  # contingency for partial knowledge issues
                PC_numerator += abs(gap)

            # calculation of the preferences
            if PC_denominator != 0:
                agent.issuetree[who][len_DC + j][2] = round(
                    PC_numerator / PC_denominator, 3)
            else:
                agent.issuetree[who][len_DC + j][2] = 0

    def preference_update_S(self, agent, who):
        """
		This function is used to update the preferences of secondary issues the agents in their
		respective issue trees.

		agent - this is the owner of the belief tree
		who - this is the part of the issuetree that is considered - agent.unique_id should be used for this -
		this is done to also include partial knowledge preference calculation
		"""

        len_DC = self.len_DC
        len_PC = self.len_PC
        len_S = self.len_S

        S_denominator = 0
        # calculation of the denominator
        for j in range(len_S):

            for k in range(
                    len_PC):  # selecting the causal relations starting from S
                issue_belief = agent.issuetree[who][len_DC + k][0]
                issue_goal = agent.issuetree[who][len_DC + k][1]
                cr = agent.issuetree[who][len_DC + len_PC + len_S +
                                          len_DC * len_PC + j + (k * len_S)][0]
                gap = issue_goal - issue_belief
                if issue_goal is not None and issue_belief is not None and cr is not None \
                  and ((cr < 0 and gap < 0) or (cr > 0 and gap > 0)):
                    # contingency for partial knowledge issues and check if cr and belief-goal are same sign
                    S_denominator += abs(cr * gap)

        # addition of the gaps of the associated secondary issues
        for j in range(len_S):
            issue_belief = agent.issuetree[who][len_DC + len_PC + j][0]
            issue_goal = agent.issuetree[who][len_DC + len_PC + j][1]
            # print(issue_goal, type(issue_goal), type(issue_belief))
            gap = issue_goal - issue_belief
            if issue_goal is not None and issue_belief is not None:  # contingency for partial knowledge issues
                S_denominator += abs(gap)

        # calculation the numerator and the preference
        for j in range(len_S):  # select one by one the S

            # calculation of the right side of the numerator
            S_numerator = 0
            for k in range(
                    len_PC):  # selecting the causal relations starting from PC
                # Contingency for partial knowledge issues
                cr = agent.issuetree[who][len_DC + len_PC + len_S +
                                          len_DC * len_PC + j + (k * len_S)][0]
                issue_belief = agent.issuetree[who][len_DC + k][0]
                issue_goal = agent.issuetree[who][len_DC + k][1]
                gap = issue_goal - issue_belief
                if issue_goal is not None and issue_belief is not None and cr is not None \
                  and ((cr < 0 and gap < 0) or (cr > 0 and gap > 0)):
                    # contingency for partial knowledge issues and check if cr and gap are same sign
                    S_numerator += abs(cr * gap)

            # addition of the gap to the numerator
            issue_belief = agent.issuetree[who][len_DC + len_PC + j][0]
            issue_goal = agent.issuetree[who][len_DC + len_PC + j][1]
            gap = issue_goal - issue_belief
            if issue_goal is not None and issue_belief is not None:  # contingency for partial knowledge issues
                S_numerator += abs(gap)

            # calculation of the preferences
            if S_denominator != 0:
                agent.issuetree[who][len_DC + len_PC + j][2] = round(
                    S_numerator / S_denominator, 3)
            else:
                agent.issuetree[who][len_DC + len_PC + j][2] = 0

    def electorate_influence(self, w_el_influence):
        '''
		This function calls the influence actions in the electorate agent class.
		'''

        for agent in self.schedule.agent_buffer(shuffled=True):
            if isinstance(agent, ElectorateAgent):
                agent.electorate_influence(w_el_influence)

    def coalition_creation_algorithm(self):
        '''
		Function that is used to reset the coalitions at the beginning of each round
		A maximum of two coalitions are allowed. The agents have to be within a certain threshold of their goals to be
		assembled together.
		Note that the preferred states only are considered and not the actual beliefs of the actors - this could be a
		problem when considering the partial information case.

		:return:
		'''

        # resetting the coalitions before the creation of new ones
        for coalition in self.schedule.agent_buffer(shuffled=False):
            if isinstance(coalition, Coalition):
                self.schedule.remove(coalition)

        # saving the agents in a list with their belief values
        list_agents_1 = []  # active agent list
        for agent in self.schedule.agent_buffer(shuffled=False):
            if isinstance(agent, ActiveAgent):
                list_agents_1.append(
                    (agent,
                     agent.issuetree[agent.unique_id][self.len_DC +
                                                      self.PC_interest][1]))
        list_agents_1.sort(
            key=lambda x: x[1])  # sorting the list based on the goals

        # checking for groups for first coalition
        list_coalition_number = []
        for i in range(len(list_agents_1)):
            count = 0
            for j in range(len(list_agents_1)):
                if list_agents_1[i][
                        1] - self.coa_creation_thresh <= list_agents_1[j][
                            1] <= list_agents_1[i][
                                1] + self.coa_creation_thresh:
                    count += 1
            list_coalition_number.append(count)

        index = list_coalition_number.index(
            max(list_coalition_number
                ))  # finding the grouping with the most member index

        list_coalition_members = []
        list_agents_2 = copy.copy(list_agents_1)
        for i in range(len(list_agents_1)):
            if list_agents_1[index][
                    1] - self.coa_creation_thresh <= list_agents_1[i][
                        1] <= list_agents_1[index][
                            1] + self.coa_creation_thresh:
                list_coalition_members.append(list_agents_1[i][0])
                list_agents_2.remove(list_agents_1[i])

        self.coalition_creation(
            1001, list_coalition_members
        )  # creating the coalition with the selected members

        if len(list_agents_2) > 2:  #check if there are enough agents left:

            # checking for groups for second coalition
            list_coalition_number = []
            for i in range(len(list_agents_2)):
                count = 0
                for j in range(len(list_agents_2)):
                    if list_agents_2[i][
                            1] - self.coa_creation_thresh <= list_agents_2[j][
                                1] <= list_agents_2[i][
                                    1] + self.coa_creation_thresh:
                        count += 1
                list_coalition_number.append(count)
            index = list_coalition_number.index(
                max(list_coalition_number
                    ))  # finding the grouping with the most member index

            list_coalition_members = []
            for i in range(len(list_agents_2)):
                if list_agents_2[index][
                        1] - self.coa_creation_thresh <= list_agents_2[i][
                            1] <= list_agents_2[index][
                                1] + self.coa_creation_thresh:
                    list_coalition_members.append(list_agents_2[i][0])

            self.coalition_creation(
                1002, list_coalition_members
            )  # creating the coalition with selected members

    def coalition_creation(self, unique_id, members):
        '''
		Function that is used to create the object Coalition which is a sub-agent of the ActiveAgent class
		:param unique_id:
		:param members:
		:return:
		'''

        x = 0
        y = 0
        resources = 0  # resources are reset to 0
        len_DC = self.len_DC
        len_PC = self.len_PC
        len_S = self.len_S
        len_CR = self.len_CR
        len_PF = self.len_PC
        len_ins = self.len_ins

        issuetree_coal = [None]  # creation of the issue tree
        issuetree_coal[0] = issuetree_creation(
            len_DC, len_PC, len_S, len_CR)  # using the newly made function
        for r in range(
                self.number_activeagents
        ):  # last spot is where the coalition beliefs are stored
            issuetree_coal.append(
                issuetree_creation(len_DC, len_PC, len_S, len_CR))

        policytree_coal = [None]  # creation of the policy tree
        policytree_coal[0] = members[0].policytree[members[0].unique_id]
        for r in range(self.number_activeagents):
            policytree_coal.append(members[0].policytree[members[0].unique_id])
        # note that the policy tree is simply copied ... this will not work in the case of partial information where a different
        # algorithm will need to be found for this part of the model

        # creation of the coalition agent
        agent = Coalition((x, y), unique_id, self, 'coalition', resources, 'X',
                          issuetree_coal, policytree_coal, members)
        self.coalition_belief_update(agent, members)
        self.preference_update(agent, unique_id,
                               True)  # updating the issue tree preferences
        self.grid.position_agent(agent, (x, y))
        self.schedule.add(agent)

    def coalition_belief_update(self, coalition, members):
        '''
		Function that is used to update the beliefs of the coalition to an average of the agents members of this said
		coalition.
		:param coalition:
		:param members:
		:return:
		'''

        len_DC = self.len_DC
        len_PC = self.len_PC
        len_S = self.len_S
        len_CR = self.len_CR

        for k in range(
                len_DC + len_PC +
                len_S):  # updating the preferred states and actual beliefs
            belief = 0
            goal = 0
            for agent_mem in members:
                id = agent_mem.unique_id
                belief += agent_mem.issuetree[id][k][0]
                goal += agent_mem.issuetree[id][k][1]
            coalition.issuetree[
                self.number_activeagents][k][0] = belief / len(members)
            coalition.issuetree[
                self.number_activeagents][k][1] = goal / len(members)

        for k in range(len_CR):  # updating the causal relations
            CR = 0
            for agent_mem in members:
                id = agent_mem.unique_id
                CR += agent_mem.issuetree[id][len_DC + len_PC + len_S + k][0]
            coalition.issuetree[self.number_activeagents][
                len_DC + len_PC + len_S + k][0] = CR / len(members)

        if self.PK:  # for the partial knowledge
            for agent in self.schedule.agent_buffer(shuffled=False):
                if agent not in members and isinstance(
                        agent,
                        ActiveAgent) and not isinstance(agent, Coalition):
                    id = agent.unique_id
                    for k in range(len_DC + len_PC +
                                   len_S):  # updating the preferred states
                        goal = 0
                        for agent_mem in members:
                            goal += agent_mem.issuetree[id][k][1]
                        coalition.issuetree[id][k][1] = goal / len(members)

                    for k in range(len_CR):  # updating the causal relations
                        CR = 0
                        for agent_mem in members:
                            CR += agent_mem.issuetree[id][len_DC + len_PC +
                                                          len_S + k][0]
                        coalition.issuetree[id][len_DC + len_PC + len_S +
                                                k][0] = CR / len(members)
コード例 #27
0
class WolfSheep(Model):
    '''
    Wolf-Sheep Predation Model
    '''
    
    def __init__(self, height=20, width=20,
                 initial_sheep=100, initial_wolves=30,
                 sheep_reproduction_chance=0.05, wolf_death_chance=0.05):

        super().__init__()

        self.height = height
        self.width = width
        self.initial_sheep = initial_sheep
        self.initial_wolves = initial_wolves
        self.sheep_reproduction_chance = sheep_reproduction_chance
        self.wolf_death_chance = wolf_death_chance

        # Add a schedule for sheep and wolves seperately to prevent 
        # race-conditions
        self.schedule_Sheep = RandomActivation(self)
        self.schedule_Wolf = RandomActivation(self)

        self.grid = MultiGrid(self.width, self.height, torus=True)
        self.datacollector = DataCollector(
             {"Sheep": lambda m: self.schedule_Sheep.get_agent_count(),
              "Wolves": lambda m: self.schedule_Wolf.get_agent_count(),
              "Mean": mean_wolf})

        # Create sheep and wolves
        self.init_population(Sheep, self.initial_sheep)
        self.init_population(Wolf, self.initial_wolves)

        # This is required for the datacollector to work
        self.running = True
        self.datacollector.collect(self)

    def init_population(self, agent_type, n):
        '''
        Method that provides an easy way of making a bunch of agents at once.
        '''
        for _ in range(n):
            x = random.randrange(self.width)
            y = random.randrange(self.height)

            self.new_agent(agent_type, (x, y))

    def new_agent(self, agent_type, pos):
        '''
        Method that creates a new agent, and adds it to the correct scheduler.
        '''
        agent = agent_type(self.next_id(), self, pos)

        self.grid.place_agent(agent, pos)
        getattr(self, f'schedule_{agent_type.__name__}').add(agent)

    def remove_agent(self, agent):
        '''
        Method that removes an agent from the grid and the correct scheduler.
        '''
        self.grid.remove_agent(agent)
        getattr(self, f'schedule_{type(agent).__name__}').remove(agent)

    def step(self):
        '''
        Method that calls the step method for each of the sheep, and then for 
        each of the wolves.
        '''
        self.schedule_Sheep.step()
        self.schedule_Wolf.step()

        # Save the statistics
        self.datacollector.collect(self)

    def run_model(self, step_count=200):
        '''
        Method that runs the model for a specific amount of steps.
        '''
        for _ in range(step_count):
            self.step()
コード例 #28
0
class Schelling(Model):
    """
    Model class for the Schelling segregation model.
    """

    def __init__(self, height=30, width=30, density=0.9, minority_pc=0.5, homophily=3):
        """
        """
        # Height and width of the Grid; 
        # Height and width also defines the maximum number of agents that could be in the environment
        self.height = height
        self.width = width
        
        # Define the population density; Float between 0 and 1
        self.density = density
        
        # Ratio between blue and red. 
        # Blue is minority, red is majority; Float between 0 and 1; if > 0.5, blue becomes majority
        # 1 에 가까워 질수록 파란색이 많아지고,
        # 0 에 가까워 질수록 빨간색이 많아진다.
        self.minority_pc = minority_pc
        
        # number of similar neighbors required for the agents to be happy
        # Takes integer value between 0 and 8 since you can only be surrounded by 8 neighbors
        self.homophily = homophily

        # Scheduler controls the order in which agents are activated
        self.schedule = RandomActivation(self)
        self.grid = SingleGrid(width, height, torus=True)

        self.happy = 0
        # Obtain data after each step
        self.datacollector = DataCollector(
            {"happy": "happy"},  # Model-level count of happy agents
            # For testing purposes, agent's individual x and y
            {"x": lambda a: a.pos[0], "y": lambda a: a.pos[1]},
        )

        # Set up agents
        # We use a grid iterator that returns
        # the coordinates of a cell as well as
        # its contents. (coord_iter)
        for cell in self.grid.coord_iter():
            x = cell[1]
            y = cell[2]
            if self.random.random() < self.density:
                if self.random.random() < self.minority_pc:
                    agent_type = 1
                else:
                    agent_type = 0

                agent = SchellingAgent((x, y), self, agent_type)
                self.grid.position_agent(agent, (x, y))
                self.schedule.add(agent)

        self.running = True
        self.datacollector.collect(self)

    # The class requires a step function that represent each run
    def step(self):
        """
        Run one step of the model. If All agents are happy, halt the model.
        """
        self.happy = 0  # Reset counter of happy agents
        self.schedule.step()
        # collect data
        self.datacollector.collect(self)

        # 여기서 terminate 하는 것을 manage 한다.
        if self.happy == self.schedule.get_agent_count():
            self.running = False
コード例 #29
0
ファイル: NySchelling2.py プロジェクト: axpur/Test-session
class SchellingModel(Model):
    '''
    Model class for the Schelling segregation model.
    '''

    def __init__(self, height, width, density, minority_pc, homophily):
        '''
        '''
        # Setting up the Model
        self.height = height
        self.width = width
        self.density = density #percentage (empty houses)
        self.minority_pc = minority_pc #percentage minority in the city
        self.homophily = homophily #number of similar minded person that you want around you

        # Setting up the AGM simulation
        self.schedule = RandomActivation(self)

        # Setting up the grid, using inputs in the function, the torus function
        # seems to be related to how we treat edges, but not sure
        self.grid = SingleGrid(height, width, torus=True)

        # Setting the number of happy people to zero
        self.happy = 0

        self.datacollector = DataCollector(
            {"happy": lambda m: m.happy},  # Model-level count of happy agents
            # For testing purposes, agent's individual x and y
            {"x": lambda a: a.pos[0], "y": lambda a: a.pos[1]})

        self.running = True

        # Set up agents
        # We use a grid iterator that returns
        # the coordinates of a cell as well as
        # its contents. (coord_iter)
        for cell in self.grid.coord_iter():
            # For each cell coordinate apply if statements
            x = cell[1]
            y = cell[2]

            # First if statement: take a random number between 0 and 1
            # (random.random command) and check whether that value is
            # below the assigned density.

            # Second if statement: take a random number between 0 and 1
            # and assign the agent type based on the condition
            if random.random() < self.density:
                if random.random() < self.minority_pc:
                    agent_type = 1
                else:
                    agent_type = 0

                # Refer to the above function related to Agent attributes
                agent = SchellingAgent((x, y), self, agent_type)
                self.grid.position_agent(agent, (x, y))
                self.schedule.add(agent)

    def step(self):
        '''
        Run one step of the model. If All agents are happy, halt the model.
        '''
        self.happy = 0  # Reset counter of happy agents
        self.schedule.step()
        self.datacollector.collect(self)

        if self.happy == self.schedule.get_agent_count():
            self.running = False
コード例 #30
0
class LoveMatch(Model):
    '''
    Love-match market Model: 
    
    En este modelo, cada individuo recorre de manera aleatoria el lugar, al encontrarse con un match (agente del sexo opuesto con parámetros de belleza y riqueza coincidentes con lo deseado) desaparece del modelo. 
    El objetivo es observar la distribución de perfiles de belleza y riqueza a lo largo del tiempo hasta ver quienes no logran encontrar pareja. 
    '''
    def __init__(
        self,
        height=50,
        width=50,
        density=0.8,
        HM_pc=0.2,
        entry_rate=1,
        max_agents=750
    ):  # Aquí establecemos el tamaño del Grid donde se desarrolla el modelo, además de los parámetros iniciales.
        self.height = height
        self.width = width
        self.density = density
        self.HM_pc = HM_pc

        self.entry_rate = 5

        self.schedule = RandomActivation(self)
        self.grid = MultiGrid(height, width, torus=False)
        self.max_agents = max_agents
        self.parejas = 0
        self.hombres = 0
        self.mujeres = 0
        self.unhappy = 0
        self.idcounter = 0

        # En esta sección, etiquetamos a cada agente según su tipo

        for cell in self.grid.coord_iter():
            x = cell[1]
            y = cell[2]
            if self.random.random() < self.density:
                if self.random.random() < self.HM_pc:
                    gender = 1
                    self.hombres += 1
                else:
                    gender = 0
                    self.mujeres += 1
                #Creamos a cada agente y asignamos su ID, cad vez que se crea un agente, se agrega uno al contador de ID's
                #Nota: La distribución de las características las modelamos con una distribución log-normal. Esto nos permite tener solo valores positivos y este ranking de belleza/riqueza se concentra de 0 a 1
                self.idcounter += 1
                agent = miAgente((x, y),
                                 self,
                                 gender,
                                 beauty=np.random.lognormal(0.5, 0.30),
                                 wealth=np.random.lognormal(0.5, 0.30),
                                 desired_beauty=np.random.lognormal(0.5, 0.3),
                                 desired_wealth=np.random.lognormal(0.5, 0.3),
                                 time_to_critical=random.randint(10, 30),
                                 sojourn=-1,
                                 is_critical=0,
                                 myid=self.idcounter)
                #coloca a los agentes en el modelo
                self.schedule.add(agent)
                self.grid.place_agent(agent, (x, y))
        #Corre el modelo
        self.running = True
        #Colecciona los datos relevantes para el agente y para el modelo
        self.datacollector = DataCollector(model_reporters={
            'density': 'density',
            'parejas': 'parejas',
            'unhappy': 'unhappy',
            'hombres': 'hombres',
            'mujeres': 'mujeres'
        },
                                           agent_reporters={
                                               'myid': 'myid',
                                               'wealth': 'wealth',
                                               'gender': 'gender',
                                               'beauty': 'beauty',
                                               'desired_beauty':
                                               'desired_beauty',
                                               'desired_wealth':
                                               'desired_wealth',
                                               'time_to_critical':
                                               'time_to_critical',
                                               'is_critical': 'is_critical',
                                               'sojourn': 'sojourn'
                                           })
        self.datacollector.collect(self)

    def update(self):
        if self.schedule.get_agent_count() < self.max_agents:
            for i in range(self.entry_rate):
                x = self.random.randrange(self.grid.width)
                y = self.random.randrange(self.grid.height)
                if self.random.random() < self.HM_pc:
                    gender = 1
                    self.hombres += 1
                else:
                    gender = 0
                    self.mujeres += 1

                agent = miAgente(i,
                                 self,
                                 gender,
                                 beauty=random.g(4, 2),
                                 wealth=random.gauss(4, 3),
                                 desired_beauty=random.gauss(4, 3),
                                 desired_wealth=random.gauss(3, 2),
                                 time_to_critical=random.gauss(20, 5),
                                 sojourn=-1,
                                 is_critical=0)
                self.schedule.add(agent)
                self.grid.place_agent(agent, (x, y))

    def step(
        self
    ):  # Este step permite que el modelo siga corriendo hasta que todos los agentes tengan pareja
        self.schedule.step()
        # Por fines gráficos, recolectamos la información sobre la cantidad de parejas
        self.datacollector.collect(self)

        ### Guarda la información relevante dentro de tablas en csv's.
        self.datacollector.get_agent_vars_dataframe().to_csv("test_me_a.csv")
        self.datacollector.get_model_vars_dataframe().to_csv("test_me_m.csv")

        ### Finalmente, el modelo se detiene si el número de agentes es cero
        if self.schedule.get_agent_count() == 0:
            self.running = False
コード例 #31
0
ファイル: model.py プロジェクト: AnneHS/CSS15
class EvacuationModel(Model):
    def __init__(self, N=20, height=21, width=21, push_ratio=0.5):
        super().__init__()
        self.height = height
        self.width = width
        self.num_agents = N

        self.exit_x = round(self.width / 2)
        self.exit_y = self.height - 1

        self.push_probs = np.array([[0., 0.], [1., 0.5]])

        self.grid = MultiGrid(self.width, self.height, torus=False)
        self.schedule = RandomActivation(self)

        self.exit_times = []

        # decide for ID whether it is a pusher
        is_pusher = np.zeros(N, dtype=int)
        idx = self.random.sample([i for i in range(N)], int(push_ratio * N))
        is_pusher[idx] = 1

        # Add N pedestrians
        taken_pos = []
        for i in range(self.num_agents):
            # Add the agent to a random grid cell
            while True:
                x = self.random.randrange(1, self.grid.width - 1)
                y = self.random.randrange(1, self.grid.height - 1)
                pos = (x, y)
                if not pos in taken_pos:
                    break

            a = Pedestrian(i, self, pos, self.exit_x, self.exit_y,
                           is_pusher[i])
            self.schedule.add(a)

            self.grid.place_agent(a, pos)
            taken_pos.append(pos)
        # Place vertical walls
        for i in range(self.height):

            # Left
            x = 0
            y = i
            w = Wall(self, (x, y))
            self.grid.place_agent(w, (x, y))

            # Right
            x = self.width - 1
            y = i
            w = Wall(self, (x, y))
            self.grid.place_agent(w, (x, y))

        # Place horizontal walls
        for i in range(self.width):

            # Up
            x = i
            y = 0
            w = Wall(self, (x, y))
            self.grid.place_agent(w, (x, y))

            # Down
            x = i
            y = self.height - 1

            # One exit
            if x == self.exit_x and y == self.exit_y:
                e = Exit(self, (x, y))
                self.grid.place_agent(e, (x, y))
            else:
                w = Wall(self, (x, y))
                self.grid.place_agent(w, (x, y))

        self.data_collector = DataCollector({
            "Evacuees":
            lambda m: self.count_evacuees(),
            "Evacuated":
            lambda m: self.count_evacuated()
        })

        # this is required for the data_collector to work
        self.running = True
        self.data_collector.collect(self)

    def count_evacuees(self):
        count = self.schedule.get_agent_count()
        return count

    def count_evacuated(self):
        count = self.num_agents - self.schedule.get_agent_count()
        return count

    def plot(self):

        # Average exit time
        sum = 0
        for time in self.exit_times:
            sum += time
        avg = sum / len(self.exit_times)

        # Exit times bins
        L = self.exit_times[-1] - 0
        bin_size = 5
        min_edge = 0
        max_edge = math.ceil(L / bin_size) * bin_size
        N = int((max_edge - min_edge) / bin_size)
        Nplus1 = N + 1
        bin_list = np.linspace(min_edge, max_edge, Nplus1)

        print()
        print(self.exit_times)
        print(L)
        print(max_edge)
        print()
        # Exit times histogram
        plt.hist(self.exit_times, bin_list, edgecolor="k")
        plt.title("Average = " + str(avg))
        plt.xlabel("Exit time")
        plt.ylabel("Frequence")
        plt.show()

        return

    def step(self):

        # Stop run if all Pedestrians have exited
        if self.schedule.get_agent_count() == 0:
            self.plot()
            self.running = False

        self.schedule.step()
        self.data_collector.collect(self)
コード例 #32
0
ファイル: model.py プロジェクト: SelenB/ABM-Dance-Party
class PartyModel(Model):
    def __init__(self,
                 height=20,
                 width=20,
                 number_introvert=30,
                 number_ambivert=40,
                 number_extrovert=30):
        '''
        '''

        self.height = height
        self.width = width

        self.number_attendees = 1.0 * \
            (number_introvert + number_ambivert + number_extrovert)

        self.number_introvert = number_introvert
        self.number_ambivert = number_ambivert
        self.number_extrovert = number_extrovert

        self.percent_introvert = number_introvert / self.number_attendees
        self.percent_ambivert = number_ambivert / self.number_attendees
        self.percent_extrovert = number_extrovert / self.number_attendees

        self.introvert_cutoff = self.percent_introvert
        self.ambivert_cutoff = self.percent_introvert + self.percent_ambivert

        self.schedule = RandomActivation(self)
        self.grid = SingleGrid(width, height, torus=True)

        self.happy = 0
        self.happy_introverts = 0
        self.happy_ambiverts = 0
        self.happy_extroverts = 0
        self.datacollector = DataCollector(
            {"happy": "happy"},  # Model-level count of happy agents
            # For testing purposes, agent's individual x and y
            {
                "x": lambda a: a.pos[0],
                "y": lambda a: a.pos[1]
            })

        count = 0

        # Set up agents
        # We use a grid iterator that returns
        # the coordinates of a cell as well as
        # its contents. (coord_iter)
        for cell in self.grid.coord_iter():
            x = cell[1]
            y = cell[2]
            if count < self.number_attendees:
                extroversion = self.random.random()
                if extroversion < self.introvert_cutoff:
                    agent_type = "introvert"
                else:
                    if extroversion < self.ambivert_cutoff:
                        agent_type = "ambivert"
                    else:
                        agent_type = "extrovert"

                agent = PartyAgent((x, y), self, agent_type)
                self.grid.position_agent(agent, (x, y))
                self.schedule.add(agent)
                count = count + 1
        self.running = True
        self.datacollector.collect(self)

    '''
    Run one step of the model. If all agents are happy, halt the model.
    '''

    def step(self):

        # Reset counters of happy agents
        self.happy = 0
        self.schedule.step()
        # collect data
        self.datacollector.collect(self)

        if self.happy > self.schedule.get_agent_count() * 0.95:
            self.running = False
コード例 #33
0
class Schelling(Model):
    """
    Model class for the Schelling segregation model.
    """

    # ANSWER --- cooperativeness = 10 in the init definition
    def __init__(self,
                 height=30,
                 width=30,
                 density=0.9,
                 homophily=3,
                 cooperativeness=0.0):
        """
        """
        # Height and width of the Grid;
        # Height and width also defines the maximum number of agents that could be in the environment
        self.height = height
        self.width = width

        # Define the population density; Float between 0 and 1
        self.density = density

        # number of similar neighbors required for the agents to be happy
        # Takes integer value between 0 and 8 since you can only be surrounded by 8 neighbors
        # homophily == wanted similarity
        self.homophily = homophily

        # ANSWER
        # 얼마만큼의 agent 를 cooperativeness 한 agent 로 정의 할 것인가
        self.cooperativeness = cooperativeness
        # ANSWER

        # Scheduler controls the order in which agents are activated
        self.schedule = RandomActivation(self)
        self.grid = SingleGrid(width, height, torus=True)

        self.happy = 0
        self.segregation = 0
        # Obtain data after each step
        self.datacollector = DataCollector(
            {
                "happy": "happy",
                "segregation": "segregation"
            },  # Model-level count of happy agents
            # For testing purposes, agent's individual x and y
            {
                "x": lambda a: a.pos[0],
                "y": lambda a: a.pos[1]
            },
        )

        # Set up agents
        # We use a grid iterator that returns
        # the coordinates of a cell as well as
        # its contents. (coord_iter)
        for cell in self.grid.coord_iter():
            x = cell[1]
            y = cell[2]
            if self.random.random() < self.density:
                if self.random.random() < 0.33:
                    agent_type = 2
                elif self.random.random() > 0.66:
                    agent_type = 1
                else:
                    agent_type = 0

                # ANSWER
                is_cooperative = False
                if self.random.random() < cooperativeness:
                    is_cooperative = True

                happiness_extent = 0
                # ANSWER

                # ANSWER --- Updated initialization to use new init definition
                agent = SchellingAgent((x, y), self, agent_type,
                                       is_cooperative, happiness_extent)
                self.grid.position_agent(agent, (x, y))
                self.schedule.add(agent)

        self.running = True
        self.datacollector.collect(self)

    # The class requires a step function that represent each run
    def step(self):
        """
        Run one step of the model. If All agents are happy, halt the model.
        """
        self.happy = 0  # Reset counter of happy agents
        self.segregation = 0  # Reset counter of segregated agents
        self.schedule.step()
        # collect data
        self.datacollector.collect(self)

        # 여기서 terminate 하는거 manage
        if self.happy == self.schedule.get_agent_count():
            self.running = False
コード例 #34
0
class SchellingModel(Model):
    '''Model class for Schelling segregation model'''

    def __init__(self, height=20, width=20, density=.8, group_ratio=.66, minority_ratio=.5, homophily=3):
        self.height = height
        self.width = width
        self.density = density
        self.group_ratio = group_ratio
        self.minority_ratio = minority_ratio
        self.homophily = homophily
        self.happy = 0
        self.segregated = 0

        self.schedule = RandomActivation(self)
        self.grid = SingleGrid(height, width, torus=False)

        self.place_agents()
        self.datacollector = DataCollector( {'happy': (lambda m: m.happy), 'segregated': (lambda m: m.segregated)})
        self.running = True


    def step(self):
        '''Run one step of model'''
        self.schedule.step()
        self.calculate_stats()
        self.datacollector.collect(self)

        if self.happy == self.schedule.get_agent_count():
            self.running = False


    def place_agents(self):
        for cell in self.grid.coord_iter():
            x, y = cell[1:3]
            if random.random() < self.density:
                if random.random() < self.group_ratio:
                    if random.random() < self.minority_ratio:
                        group = 0
                    else:
                        group = 1
                else:
                    group = 2

                agent = SchellingAgent((x,y), group)
                self.grid.position_agent(agent, (x,y))
                self.schedule.add(agent)

        for agent in self.schedule.agents:
            count = 0
            for neighbour in self.grid.iter_neighbors(agent.pos, moore=False):
                if neighbour.group == agent.group:
                    count += 1
            agent.similar = count


    def calculate_stats(self):
        happy_count = 0
        avg_seg = 0
        for agent in self.schedule.agents:
            avg_seg += agent.similar
            if agent.similar >= self.homophily:
                happy_count += 1

        self.happy = happy_count
        self.segregated = avg_seg/self.schedule.get_agent_count()