コード例 #1
0
def init_model(transform):
    # set torch options
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True

    model_path = "../MiDaS/model-f46da743.pt"

    print("initialize")

    # select device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("device: %s" % device)

    # load network
    model = MidasNet(model_path, non_negative=True)

    transform = Compose(
        [
            Resize(
                384,
                384,
                resize_target=None,
                keep_aspect_ratio=True,
                ensure_multiple_of=32,
                resize_method="upper_bound",
                image_interpolation_method=cv2.INTER_CUBIC,
            ),
            NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
            PrepareForNet(),
        ]
    )

    model.to(device)
    model.eval()
    return (model, transform, device), None
コード例 #2
0
def init_model(transform):
    parser = argparse.ArgumentParser()
    parser.add_argument('-mw', '--model_weights', 
        default='model-f6b98070.pt',
        help='path to the trained weights of model'
    )

    parser.add_argument('-mt', '--model_type', 
        default='large',
        help='model type: large or small'
    )

    parser.add_argument('--optimize', dest='optimize', action='store_true')
    parser.add_argument('--no-optimize', dest='optimize', action='store_false')
    parser.set_defaults(optimize=True)

    args, unknown = parser.parse_known_args()    
    
    # set torch options
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True

    print("initialize")

    # select device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("device: %s" % device)

    # load network
    if args.model_type == "large":
        model_path = "../MiDaS/"+args.model_weights
        model = MidasNet(model_path, non_negative=True)
        net_w, net_h = 384, 384
    elif args.model_type == "small":
        if "small" not in args.model_weights:
            args.model_weights = "model-small-70d6b9c8.pt"
        model_path = "../MiDaS/"+args.model_weights
        model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True, non_negative=True, blocks={'expand': True})
        net_w, net_h = 256, 256
    else:
        print(f"model_type '{model_type}' not implemented, use: --model_type large")
        assert False

    transform = Compose(
        [
            Resize(
                net_w,
                net_h,
                resize_target=None,
                keep_aspect_ratio=True,
                ensure_multiple_of=32,
                resize_method="upper_bound",
                image_interpolation_method=cv2.INTER_CUBIC,
            ),
            NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
            PrepareForNet(),
        ]
    )

    model.eval()
    
    if args.optimize==True:
        rand_example = torch.rand(1, 3, net_h, net_w)
        model(rand_example)
        traced_script_module = torch.jit.trace(model, rand_example)
        model = traced_script_module
    
        if device == torch.device("cuda"):
            model = model.to(memory_format=torch.channels_last)  
            model = model.half()

    model.to(device)    
    
    return (model, transform, device, args.optimize), args
コード例 #3
0
ファイル: run.py プロジェクト: p-ranav/merged_depth
def run(input_path,
        output_path,
        model_path,
        model_type="large",
        optimize=True):
    """Run MonoDepthNN to compute depth maps.

    Args:
        input_path (str): path to input folder
        output_path (str): path to output folder
        model_path (str): path to saved model
    """
    print("initialize")

    # select device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("device: %s" % device)

    # load network
    if model_type == "large":
        model = MidasNet(model_path, non_negative=True)
        net_w, net_h = 384, 384
    elif model_type == "small":
        model = MidasNet_small(model_path,
                               features=64,
                               backbone="efficientnet_lite3",
                               exportable=True,
                               non_negative=True,
                               blocks={'expand': True})
        net_w, net_h = 256, 256
    else:
        print(
            f"model_type '{model_type}' not implemented, use: --model_type large"
        )
        assert False

    transform = Compose([
        Resize(
            net_w,
            net_h,
            resize_target=None,
            keep_aspect_ratio=True,
            ensure_multiple_of=32,
            resize_method="upper_bound",
            image_interpolation_method=cv2.INTER_CUBIC,
        ),
        NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        PrepareForNet(),
    ])

    model.eval()

    if optimize == True:
        rand_example = torch.rand(1, 3, net_h, net_w)
        model(rand_example)
        traced_script_module = torch.jit.trace(model, rand_example)
        model = traced_script_module

        if device == torch.device("cuda"):
            model = model.to(memory_format=torch.channels_last)
            model = model.half()

    model.to(device)

    # get input
    img_names = glob.glob(os.path.join(input_path, "*"))
    num_images = len(img_names)

    # create output folder
    os.makedirs(output_path, exist_ok=True)

    print("start processing")

    for ind, img_name in enumerate(img_names):

        print("  processing {} ({}/{})".format(img_name, ind + 1, num_images))

        # input

        img = utils.read_image(img_name)
        img_input = transform({"image": img})["image"]

        # compute
        with torch.no_grad():
            sample = torch.from_numpy(img_input).to(device).unsqueeze(0)
            if optimize == True and device == torch.device("cuda"):
                sample = sample.to(memory_format=torch.channels_last)
                sample = sample.half()
            prediction = model.forward(sample)
            prediction = (torch.nn.functional.interpolate(
                prediction.unsqueeze(1),
                size=img.shape[:2],
                mode="bicubic",
                align_corners=False,
            ).squeeze().cpu().numpy())
            prediction /= 1000

        # output
        filename = os.path.join(
            output_path,
            os.path.splitext(os.path.basename(img_name))[0])
        utils.write_depth(filename, prediction, bits=2)
        print(prediction)
        print(prediction.shape)

    print("finished")
コード例 #4
0
ファイル: run.py プロジェクト: arunsechergy/AgentVision2
def run(input_path, output_path, model_path):
    """Run MonoDepthNN to compute depth maps.

    Args:
        input_path (str): path to input folder
        output_path (str): path to output folder
        model_path (str): path to saved model
    """
    print("initialize")

    # select device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("device: %s" % device)

    # load network
    model = MidasNet(model_path, non_negative=True)

    transform = Compose([
        Resize(
            384,
            384,
            resize_target=None,
            keep_aspect_ratio=True,
            ensure_multiple_of=32,
            resize_method="upper_bound",
            image_interpolation_method=cv2.INTER_CUBIC,
        ),
        NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        PrepareForNet(),
    ])

    model.to(device)
    model.eval()

    # get input
    img_names = glob.glob(os.path.join(input_path, "*"))
    num_images = len(img_names)

    # create output folder
    os.makedirs(output_path, exist_ok=True)

    print("start processing")

    for ind, img_name in enumerate(img_names):

        print("  processing {} ({}/{})".format(img_name, ind + 1, num_images))

        # input

        img = utils.read_image(img_name)
        img_input = transform({"image": img})["image"]

        # compute
        with torch.no_grad():
            sample = torch.from_numpy(img_input).to(device).unsqueeze(0)
            prediction = model.forward(sample)
            prediction = (torch.nn.functional.interpolate(
                prediction.unsqueeze(1),
                size=img.shape[:2],
                mode="bicubic",
                align_corners=False,
            ).squeeze().cpu().numpy())

        # output
        filename = os.path.join(
            output_path,
            os.path.splitext(os.path.basename(img_name))[0])
        utils.write_depth(filename, prediction, bits=2)

    print("finished")
def run(model_path):
    """
    Run MonoDepthNN to compute depth maps.
    """
    # set torch options
    torch.cuda.empty_cache()
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True

    # select device
    device = torch.device(
        "cuda") if torch.cuda.is_available() else torch.device("cpu")
    print("device: %s" % device)

    # load network
    model = MidasNet(model_path, non_negative=True)

    transform = Compose([
        Resize(
            384,
            384,
            resize_target=None,
            keep_aspect_ratio=True,
            ensure_multiple_of=32,
            resize_method="upper_bound",
            image_interpolation_method=cv2.INTER_CUBIC,
        ),
        NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        PrepareForNet(),
    ])

    model.to(device)
    model.eval()

    cam = cv2.VideoCapture(0)
    cam.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
    cam.set(cv2.CAP_PROP_FRAME_HEIGHT, 360)
    cam.set(cv2.CAP_PROP_FPS, 30)

    while True:
        t = time.time()
        _, left_img = cam.read()
        image = cv2.cvtColor(left_img, cv2.COLOR_BGR2RGB) / 255.0

        #  Apply transforms
        image = transform({"image": image})["image"]

        #  Predict and resize to original resolution
        with torch.no_grad():
            image = torch.from_numpy(image).to(device).unsqueeze(0)
            depth = model.forward(image)
            depth = (torch.nn.functional.interpolate(
                depth.unsqueeze(1),
                size=left_img.shape[:2],
                mode="bicubic",
                align_corners=False,
            ).squeeze().cpu().numpy())

        depth_map = write_depth(depth, bits=2, reverse=False)

        right_img = generate_stereo(left_img, depth_map)
        anaglyph = overlap(left_img, right_img)

        cv2.imshow("anaglyph", anaglyph)

        fps = 1. / (time.time() - t)
        print('\rframerate: %f fps' % fps, end='')
        cv2.waitKey(1)
コード例 #6
0
class MiDaSROS:
    def __init__(self):
        '''Initialize ros publisher, ros subscriber'''
        # topic where we publish
        self.bridge = CvBridge()
        self.image_depth_pub = rospy.Publisher("/midas/depth/image_raw",
                                               Image,
                                               queue_size=1)
        self.image_rgb_pub = rospy.Publisher("/midas/rgb/image_raw",
                                             Image,
                                             queue_size=1)
        self.camera_info_pub = rospy.Publisher("/midas/camera_info",
                                               CameraInfo,
                                               queue_size=1)

        # subscribed Topic
        self.subscriber = rospy.Subscriber("/midas_rgb/image_raw",
                                           Image,
                                           self.callback,
                                           queue_size=1)

        # setup image display
        self.display_rgb = False
        self.display_depth = True

        # initialize Intel MiDas
        self.initialized_midas = False
        rospack = rospkg.RosPack()
        ros_pkg_path = rospack.get_path('intelisl_midas_ros')
        model_path = os.path.join(ros_pkg_path, 'src/model-f6b98070.pt')

        self.model = MidasNet(model_path, non_negative=True)
        self.device = torch.device(
            "cuda") if torch.cuda.is_available() else torch.device("cpu")
        self.model.to(self.device)
        self.model.eval()
        rospy.loginfo('Loaded Intel MiDaS')

        midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
        self.transform = midas_transforms.default_transform
        rospy.loginfo('Initialized Intel MiDaS transform')
        self.initialized_midas = True

    def show_image(self, img, window_name="Image Window"):
        cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
        cv2.imshow(window_name, img)
        cv2.waitKey(2)

    def callback(self, img_msg):
        # conversion to OpenCV and the correct color
        img = cv2.cvtColor(
            self.bridge.imgmsg_to_cv2(img_msg, desired_encoding='passthrough'),
            cv2.COLOR_BGR2RGB)
        if self.display_rgb:
            self.show_image(img, window_name='Ground Truth RGB')

        # convert RGB to depth using MiDaS
        if self.initialized_midas:
            input_batch = self.transform(img).to(self.device)
            with torch.no_grad():
                prediction = self.model(input_batch)
                prediction = torch.nn.functional.interpolate(
                    prediction.unsqueeze(1),
                    size=img.shape[:2],
                    mode="bicubic",
                    align_corners=False,
                ).squeeze()

            # scale pixel values to display
            omax, omin = prediction.max(), prediction.min()
            prediction = (prediction - omin) / (omax - omin)

            # convert depth prediction to numpy
            output = prediction.cpu().numpy()
            if self.display_depth:
                self.show_image(output, window_name='Estimated Depth')

            # setup message (depth)
            depth_msg = self.bridge.cv2_to_imgmsg(output,
                                                  encoding="passthrough")

            # setup message camera info
            camera_info_msg = CameraInfo()
            camera_info_msg.header.stamp = img_msg.header.stamp
            camera_info_msg.height = img.shape[0]
            camera_info_msg.width = img.shape[1]

            # publish
            self.image_depth_pub.publish(depth_msg)
            self.image_rgb_pub.publish(img_msg)
            self.camera_info_pub.publish(camera_info_msg)
コード例 #7
0
def run(model_path):
    """
    Run MonoDepthNN to compute depth maps.
    """
    # Input images
    img_list = os.listdir(args.input)
    img_list.sort()

    # output dir
    output_dir = './depth'
    os.makedirs(output_dir, exist_ok=True)

    # set torch options
    torch.cuda.empty_cache()
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True

    # select device
    device = torch.device(
        "cuda") if torch.cuda.is_available() else torch.device("cpu")
    print("device: %s" % device)

    # load network
    model = MidasNet(model_path, non_negative=True)

    transform = Compose([
        Resize(
            384,
            384,
            resize_target=None,
            keep_aspect_ratio=True,
            ensure_multiple_of=32,
            resize_method="upper_bound",
            image_interpolation_method=cv2.INTER_CUBIC,
        ),
        NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        PrepareForNet(),
    ])

    model.to(device)
    model.eval()

    for idx in tqdm(range(len(img_list))):
        sample = img_list[idx]
        raw_image = cv2.imread(os.path.join(args.input, sample))
        raw_image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB) / 255.0

        #  Apply transforms
        image = transform({"image": raw_image})["image"]

        #  Predict and resize to original resolution
        with torch.no_grad():
            image = torch.from_numpy(image).to(device).unsqueeze(0)
            prediction = model.forward(image)
            prediction = (torch.nn.functional.interpolate(
                prediction.unsqueeze(1),
                size=raw_image.shape[:2],
                mode="bicubic",
                align_corners=False,
            ).squeeze().cpu().numpy())

        depth_map = write_depth(prediction, bits=2, reverse=False)

        cv2.imwrite(
            os.path.join(output_dir,
                         'MiDaS_{}.png'.format(sample.split('.')[0])),
            depth_map)
コード例 #8
0
        'random':
        1,
        'stride': [32, 16, 8]
    }

    plane_segmentation_cfg = {
        "meta_data_path":
        "G:/EVA5/ToGit/Planercnn/content/planercnn/test/inference/"
    }

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("device: %s" % device)

    midas_model = MidasNet(r"G:\EVA5\ToGit\model-f6b98070.pt",
                           non_negative=True)
    midas_model.eval()
    midas_model.to(device)
    #print(midas_model)
    print("Model Loaded")

    # model = CustomNet("model-f46da743.pt", non_negative=True, yolo_cfg=yolo_cfg)
    model = CustomNet("G:\EVA5\ToGit\yolov3-spp-ultralytics.pt",
                      non_negative=True,
                      yolo_cfg=yolo_cfg)

    model.gr = 1.0
    model.hyp = hyp
    model.to(device)

    #print(model)