コード例 #1
0
ファイル: test_kit.py プロジェクト: vidushis18/mne-python
def test_ch_loc():
    """Test raw kit loc."""
    raw_py = read_raw_kit(sqd_path, mrk_path, elp_txt_path, hsp_txt_path,
                          stim='<')
    raw_bin = read_raw_fif(op.join(data_dir, 'test_bin_raw.fif'))

    ch_py = np.array([ch['loc'] for ch in
                      raw_py._raw_extras[0]['channels'][:160]])
    # ch locs stored as m, not mm
    ch_py[:, :3] *= 1e3
    ch_sns = read_sns(op.join(data_dir, 'sns.txt'))
    assert_array_almost_equal(ch_py, ch_sns, 2)

    assert_array_almost_equal(raw_py.info['dev_head_t']['trans'],
                              raw_bin.info['dev_head_t']['trans'], 4)
    for py_ch, bin_ch in zip(raw_py.info['chs'], raw_bin.info['chs']):
        if bin_ch['ch_name'].startswith('MEG'):
            # the stored ch locs have more precision than the sns.txt
            assert_array_almost_equal(py_ch['loc'], bin_ch['loc'], decimal=2)

    # test when more than one marker file provided
    mrks = [mrk_path, mrk2_path, mrk3_path]
    read_raw_kit(sqd_path, mrks, elp_txt_path, hsp_txt_path, preload=False)
    # this dataset does not have the equivalent set of points :(
    raw_bin.info['dig'] = raw_bin.info['dig'][:8]
    raw_py.info['dig'] = raw_py.info['dig'][:8]
    assert_dig_allclose(raw_py.info, raw_bin.info)
コード例 #2
0
ファイル: config.py プロジェクト: teonbrooks/OcularLDT-code
def kit2fiff(subject, exp, path, dig=True, preload=False):
    from glob import glob
    from mne.io import read_raw_kit

    kit = op.join(path, subject, 'kit', subject + '*' + exp + '*' + 'calm.con')
    mrk_pre = op.join(path, subject, 'kit',
                      subject + '*mrk*' + 'pre_' + exp + '*.mrk')
    mrk_post = op.join(path, subject, 'kit',
                       subject + '*mrk*' + 'post_' + exp + '*.mrk')
    elp = op.join(path, subject, 'kit', subject + '*p.txt')
    hsp = op.join(path, subject, 'kit', subject + '*h.txt')

    mrk_pre = glob(mrk_pre)[0]
    mrk_post = glob(mrk_post)[0]
    elp = glob(elp)[0]
    hsp = glob(hsp)[0]
    kit = glob(kit)[0]

    if dig:
        raw = read_raw_kit(input_fname=kit,
                           mrk=[mrk_pre, mrk_post],
                           elp=elp,
                           hsp=hsp,
                           stim='>',
                           slope='+',
                           preload=preload,
                           verbose=False)
    else:
        raw = read_raw_kit(input_fname=kit,
                           stim='>',
                           slope='+',
                           preload=preload,
                           verbose=False)

    return raw
コード例 #3
0
ファイル: test_kit.py プロジェクト: BushraR/mne-python
def test_ch_loc():
    """Test raw kit loc
    """
    raw_py = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path, stim='<')
    raw_bin = Raw(op.join(data_dir, 'test_bin_raw.fif'))

    ch_py = raw_py._sqd_params['sensor_locs'][:, :5]
    # ch locs stored as m, not mm
    ch_py[:, :3] *= 1e3
    ch_sns = read_sns(op.join(data_dir, 'sns.txt'))
    assert_array_almost_equal(ch_py, ch_sns, 2)

    assert_array_almost_equal(raw_py.info['dev_head_t']['trans'],
                              raw_bin.info['dev_head_t']['trans'], 4)
    for py_ch, bin_ch in zip(raw_py.info['chs'], raw_bin.info['chs']):
        if bin_ch['ch_name'].startswith('MEG'):
            # the stored ch locs have more precision than the sns.txt
            assert_array_almost_equal(py_ch['loc'], bin_ch['loc'], decimal=2)
            assert_array_almost_equal(py_ch['coil_trans'],
                                      bin_ch['coil_trans'],
                                      decimal=2)

    # test when more than one marker file provided
    mrks = [mrk_path, mrk2_path, mrk3_path]
    read_raw_kit(sqd_path, mrks, elp_path, hsp_path, preload=False)
コード例 #4
0
ファイル: test_kit.py プロジェクト: HSMin/mne-python
def test_ch_loc():
    """Test raw kit loc."""
    raw_py = read_raw_kit(sqd_path, mrk_path, elp_txt_path, hsp_txt_path,
                          stim='<')
    raw_bin = read_raw_fif(op.join(data_dir, 'test_bin_raw.fif'))

    ch_py = np.array([ch['loc'] for ch in
                      raw_py._raw_extras[0]['channels'][:160]])
    # ch locs stored as m, not mm
    ch_py[:, :3] *= 1e3
    ch_sns = read_sns(op.join(data_dir, 'sns.txt'))
    assert_array_almost_equal(ch_py, ch_sns, 2)

    assert_array_almost_equal(raw_py.info['dev_head_t']['trans'],
                              raw_bin.info['dev_head_t']['trans'], 4)
    for py_ch, bin_ch in zip(raw_py.info['chs'], raw_bin.info['chs']):
        if bin_ch['ch_name'].startswith('MEG'):
            # the stored ch locs have more precision than the sns.txt
            assert_array_almost_equal(py_ch['loc'], bin_ch['loc'], decimal=2)

    # test when more than one marker file provided
    mrks = [mrk_path, mrk2_path, mrk3_path]
    read_raw_kit(sqd_path, mrks, elp_txt_path, hsp_txt_path, preload=False)
    # this dataset does not have the equivalent set of points :(
    raw_bin.info['dig'] = raw_bin.info['dig'][:8]
    raw_py.info['dig'] = raw_py.info['dig'][:8]
    assert_dig_allclose(raw_py.info, raw_bin.info)
コード例 #5
0
ファイル: test_kit.py プロジェクト: HSMin/mne-python
def test_raw_events():
    """Test creating stim channel from raw SQD file."""
    def evts(a, b, c, d, e, f=None):
        out = [[269, a, b], [281, b, c], [1552, c, d], [1564, d, e]]
        if f is not None:
            out.append([2000, e, f])
        return out

    raw = read_raw_kit(sqd_path)
    assert_array_equal(find_events(raw, output='step', consecutive=True),
                       evts(255, 254, 255, 254, 255, 0))

    raw = read_raw_kit(sqd_path, slope='+')
    assert_array_equal(find_events(raw, output='step', consecutive=True),
                       evts(0, 1, 0, 1, 0))

    raw = read_raw_kit(sqd_path, stim='<', slope='+')
    assert_array_equal(find_events(raw, output='step', consecutive=True),
                       evts(0, 128, 0, 128, 0))

    raw = read_raw_kit(sqd_path, stim='<', slope='+', stim_code='channel')
    assert_array_equal(find_events(raw, output='step', consecutive=True),
                       evts(0, 160, 0, 160, 0))

    raw = read_raw_kit(sqd_path, stim=range(160, 162), slope='+',
                       stim_code='channel')
    assert_array_equal(find_events(raw, output='step', consecutive=True),
                       evts(0, 160, 0, 160, 0))
コード例 #6
0
ファイル: test_kit.py プロジェクト: vidushis18/mne-python
def test_raw_events():
    """Test creating stim channel from raw SQD file."""
    def evts(a, b, c, d, e, f=None):
        out = [[269, a, b], [281, b, c], [1552, c, d], [1564, d, e]]
        if f is not None:
            out.append([2000, e, f])
        return out

    raw = read_raw_kit(sqd_path)
    assert_array_equal(find_events(raw, output='step', consecutive=True),
                       evts(255, 254, 255, 254, 255, 0))

    raw = read_raw_kit(sqd_path, slope='+')
    assert_array_equal(find_events(raw, output='step', consecutive=True),
                       evts(0, 1, 0, 1, 0))

    raw = read_raw_kit(sqd_path, stim='<', slope='+')
    assert_array_equal(find_events(raw, output='step', consecutive=True),
                       evts(0, 128, 0, 128, 0))

    raw = read_raw_kit(sqd_path, stim='<', slope='+', stim_code='channel')
    assert_array_equal(find_events(raw, output='step', consecutive=True),
                       evts(0, 160, 0, 160, 0))

    raw = read_raw_kit(sqd_path, stim=range(160, 162), slope='+',
                       stim_code='channel')
    assert_array_equal(find_events(raw, output='step', consecutive=True),
                       evts(0, 160, 0, 160, 0))
コード例 #7
0
ファイル: test_kit.py プロジェクト: jaeilepp/eggie
def test_read_segment():
    """Test writing raw kit files when preload is False
    """
    raw1 = read_raw_kit(sqd_path,
                        mrk_path,
                        elp_path,
                        hsp_path,
                        stim='<',
                        preload=False)
    raw1_file = op.join(tempdir, 'test1-raw.fif')
    raw1.save(raw1_file, buffer_size_sec=.1, overwrite=True)
    raw2 = read_raw_kit(sqd_path,
                        mrk_path,
                        elp_path,
                        hsp_path,
                        stim='<',
                        preload=True)
    raw2_file = op.join(tempdir, 'test2-raw.fif')
    raw2.save(raw2_file, buffer_size_sec=.1, overwrite=True)
    raw1 = Raw(raw1_file, preload=True)
    raw2 = Raw(raw2_file, preload=True)
    assert_array_equal(raw1._data, raw2._data)
    raw3 = read_raw_kit(sqd_path,
                        mrk_path,
                        elp_path,
                        hsp_path,
                        stim='<',
                        preload=True)
    assert_array_almost_equal(raw1._data, raw3._data)
コード例 #8
0
ファイル: test_kit.py プロジェクト: jaeilepp/eggie
def test_ch_loc():
    """Test raw kit loc
    """
    raw_py = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path, stim='<')
    raw_bin = Raw(op.join(data_dir, 'test_bin_raw.fif'))

    ch_py = raw_py._sqd_params['sensor_locs'][:, :5]
    # ch locs stored as m, not mm
    ch_py[:, :3] *= 1e3
    ch_sns = read_sns(op.join(data_dir, 'sns.txt'))
    assert_array_almost_equal(ch_py, ch_sns, 2)

    assert_array_almost_equal(raw_py.info['dev_head_t']['trans'],
                              raw_bin.info['dev_head_t']['trans'], 4)
    for py_ch, bin_ch in zip(raw_py.info['chs'], raw_bin.info['chs']):
        if bin_ch['ch_name'].startswith('MEG'):
            # the stored ch locs have more precision than the sns.txt
            assert_array_almost_equal(py_ch['loc'], bin_ch['loc'], decimal=2)
            assert_array_almost_equal(py_ch['coil_trans'],
                                      bin_ch['coil_trans'],
                                      decimal=2)

    # test when more than one marker file provided
    mrks = [mrk_path, mrk2_path, mrk3_path]
    _ = read_raw_kit(sqd_path, mrks, elp_path, hsp_path, preload=False)
コード例 #9
0
def test_read_segment():
    """Test writing raw kit files when preload is False
    """
    tempdir = _TempDir()
    raw1 = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path, stim='<',
                        preload=False)
    raw1_file = op.join(tempdir, 'test1-raw.fif')
    raw1.save(raw1_file, buffer_size_sec=.1, overwrite=True)
    raw2 = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path, stim='<',
                        preload=True)
    raw2_file = op.join(tempdir, 'test2-raw.fif')
    raw2.save(raw2_file, buffer_size_sec=.1, overwrite=True)
    data1, times1 = raw1[0, 0:1]

    raw1 = Raw(raw1_file, preload=True)
    raw2 = Raw(raw2_file, preload=True)
    assert_array_equal(raw1._data, raw2._data)
    data2, times2 = raw2[0, 0:1]
    assert_array_almost_equal(data1, data2)
    assert_array_almost_equal(times1, times2)
    raw3 = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path, stim='<',
                        preload=True)
    assert_array_almost_equal(raw1._data, raw3._data)
    raw4 = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path, stim='<',
                        preload=False)
    raw4.load_data()
    buffer_fname = op.join(tempdir, 'buffer')
    assert_array_almost_equal(raw1._data, raw4._data)
    raw5 = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path, stim='<',
                        preload=buffer_fname)
    assert_array_almost_equal(raw1._data, raw5._data)
コード例 #10
0
ファイル: test_kit.py プロジェクト: EmanuelaLiaci/mne-python
def test_data():
    """Test reading raw kit files
    """
    assert_raises(TypeError, read_raw_kit, epochs_path)
    assert_raises(TypeError, read_epochs_kit, sqd_path)
    assert_raises(ValueError, read_raw_kit, sqd_path, mrk_path, elp_path)
    assert_raises(ValueError, read_raw_kit, sqd_path, None, None, None,
                  list(range(200, 190, -1)))
    assert_raises(ValueError, read_raw_kit, sqd_path, None, None, None,
                  list(range(167, 159, -1)), '*', 1, True)
    # check functionality
    raw_mrk = read_raw_kit(sqd_path, [mrk2_path, mrk3_path], elp_path,
                           hsp_path)
    raw_py = _test_raw_reader(read_raw_kit,
                              input_fname=sqd_path, mrk=mrk_path, elp=elp_path,
                              hsp=hsp_path, stim=list(range(167, 159, -1)),
                              slope='+', stimthresh=1)
    assert_true('RawKIT' in repr(raw_py))
    assert_equal(raw_mrk.info['kit_system_id'], KIT.SYSTEM_NYU_2010)
    assert_true(KIT_CONSTANTS[raw_mrk.info['kit_system_id']] is KIT_NY)

    # Test stim channel
    raw_stim = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path, stim='<',
                            preload=False)
    for raw in [raw_py, raw_stim, raw_mrk]:
        stim_pick = pick_types(raw.info, meg=False, ref_meg=False,
                               stim=True, exclude='bads')
        stim1, _ = raw[stim_pick]
        stim2 = np.array(raw.read_stim_ch(), ndmin=2)
        assert_array_equal(stim1, stim2)

    # Binary file only stores the sensor channels
    py_picks = pick_types(raw_py.info, exclude='bads')
    raw_bin = op.join(data_dir, 'test_bin_raw.fif')
    raw_bin = Raw(raw_bin, preload=True)
    bin_picks = pick_types(raw_bin.info, stim=True, exclude='bads')
    data_bin, _ = raw_bin[bin_picks]
    data_py, _ = raw_py[py_picks]

    # this .mat was generated using the Yokogawa MEG Reader
    data_Ykgw = op.join(data_dir, 'test_Ykgw.mat')
    data_Ykgw = scipy.io.loadmat(data_Ykgw)['data']
    data_Ykgw = data_Ykgw[py_picks]

    assert_array_almost_equal(data_py, data_Ykgw)

    py_picks = pick_types(raw_py.info, stim=True, ref_meg=False,
                          exclude='bads')
    data_py, _ = raw_py[py_picks]
    assert_array_almost_equal(data_py, data_bin)

    # KIT-UMD data
    _test_raw_reader(read_raw_kit, input_fname=sqd_umd_path)
    raw = read_raw_kit(sqd_umd_path)
    assert_equal(raw.info['kit_system_id'], KIT.SYSTEM_UMD_2014_12)
    assert_true(KIT_CONSTANTS[raw.info['kit_system_id']] is KIT_UMD_2014)
コード例 #11
0
ファイル: io.py プロジェクト: nnadeau/mne-bids
def _read_raw(raw_fname, electrode=None, hsp=None, hpi=None, config=None,
              verbose=None):
    """Read a raw file into MNE, making inferences based on extension."""
    fname, ext = _parse_ext(raw_fname)

    # KIT systems
    if ext in ['.con', '.sqd']:
        raw = io.read_raw_kit(raw_fname, elp=electrode, hsp=hsp,
                              mrk=hpi, preload=False)

    # Neuromag or converted-to-fif systems
    elif ext in ['.fif', '.gz']:
        raw = io.read_raw_fif(raw_fname, preload=False)

    # BTi systems
    elif ext == '.pdf':
        if os.path.isfile(raw_fname):
            raw = io.read_raw_bti(raw_fname, config_fname=config,
                                  head_shape_fname=hsp,
                                  preload=False, verbose=verbose)

    # CTF systems
    elif ext == '.ds':
        raw = io.read_raw_ctf(raw_fname)
    else:
        raise ValueError("Raw file name extension must be one of %\n"
                         "Got %" % (ALLOWED_EXTENSIONS, ext))
    return raw
コード例 #12
0
ファイル: test_kit.py プロジェクト: KatarzynaSzlachetka/eeg
def test_decimate():
    """Test decimation of digitizer headshapes with too many points."""
    # load headshape and convert to meters
    hsp_mm = _get_ico_surface(5)['rr'] * 100
    hsp_m = hsp_mm / 1000.

    # save headshape to a file in mm in temporary directory
    tempdir = _TempDir()
    sphere_hsp_path = op.join(tempdir, 'test_sphere.txt')
    np.savetxt(sphere_hsp_path, hsp_mm)

    # read in raw data using spherical hsp, and extract new hsp
    with warnings.catch_warnings(record=True) as w:
        raw = read_raw_kit(sqd_path, mrk_path, elp_txt_path, sphere_hsp_path)
    assert_true(any('more than' in str(ww.message) for ww in w))
    # collect headshape from raw (should now be in m)
    hsp_dec = np.array([dig['r'] for dig in raw.info['dig']])[8:]

    # with 10242 points and _decimate_points set to resolution of 5 mm, hsp_dec
    # should be a bit over 5000 points. If not, something is wrong or
    # decimation resolution has been purposefully changed
    assert_true(len(hsp_dec) > 5000)

    # should have similar size, distance from center
    dist = np.sqrt(np.sum((hsp_m - np.mean(hsp_m, axis=0))**2, axis=1))
    dist_dec = np.sqrt(np.sum((hsp_dec - np.mean(hsp_dec, axis=0))**2, axis=1))
    hsp_rad = np.mean(dist)
    hsp_dec_rad = np.mean(dist_dec)
    assert_almost_equal(hsp_rad, hsp_dec_rad, places=3)
コード例 #13
0
ファイル: test_3d.py プロジェクト: suzannewalsh/mne-python
def test_plot_trans():
    """Test plotting of -trans.fif files and MEG sensor layouts
    """
    evoked = read_evokeds(evoked_fname)[0]
    with warnings.catch_warnings(record=True):  # 4D weight tables
        bti = read_raw_bti(pdf_fname, config_fname, hs_fname, convert=True,
                           preload=False).info
    infos = dict(
        Neuromag=evoked.info,
        CTF=read_raw_ctf(ctf_fname).info,
        BTi=bti,
        KIT=read_raw_kit(sqd_fname).info,
    )
    for system, info in infos.items():
        ref_meg = False if system == 'KIT' else True
        plot_trans(info, trans_fname, subject='sample', meg_sensors=True,
                   subjects_dir=subjects_dir, ref_meg=ref_meg)
    # KIT ref sensor coil def not defined
    assert_raises(RuntimeError, plot_trans, infos['KIT'], None,
                  meg_sensors=True, ref_meg=True)
    info = infos['Neuromag']
    assert_raises(ValueError, plot_trans, info, trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  ch_type='bad-chtype')
    assert_raises(TypeError, plot_trans, 'foo', trans_fname,
                  subject='sample', subjects_dir=subjects_dir)
    # no-head version
    plot_trans(info, None, meg_sensors=True, dig=True, coord_frame='head')
    # EEG only with strange options
    with warnings.catch_warnings(record=True) as w:
        plot_trans(evoked.copy().pick_types(meg=False, eeg=True).info,
                   trans=trans_fname, meg_sensors=True)
    assert_true(['Cannot plot MEG' in str(ww.message) for ww in w])
コード例 #14
0
def test_pick_refs():
    """Test picking of reference sensors
    """
    infos = list()
    # KIT
    kit_dir = op.join(io_dir, 'kit', 'tests', 'data')
    sqd_path = op.join(kit_dir, 'test.sqd')
    mrk_path = op.join(kit_dir, 'test_mrk.sqd')
    elp_path = op.join(kit_dir, 'test_elp.txt')
    hsp_path = op.join(kit_dir, 'test_hsp.txt')
    raw_kit = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
    infos.append(raw_kit.info)
    # BTi
    bti_dir = op.join(io_dir, 'bti', 'tests', 'data')
    bti_pdf = op.join(bti_dir, 'test_pdf_linux')
    bti_config = op.join(bti_dir, 'test_config_linux')
    bti_hs = op.join(bti_dir, 'test_hs_linux')
    with warnings.catch_warnings(record=True):  # weight tables
        raw_bti = read_raw_bti(bti_pdf, bti_config, bti_hs, preload=False)
    infos.append(raw_bti.info)
    # CTF
    fname_ctf_raw = op.join(io_dir, 'tests', 'data', 'test_ctf_comp_raw.fif')
    raw_ctf = read_raw_fif(fname_ctf_raw, add_eeg_ref=False)
    raw_ctf.apply_gradient_compensation(2)
    infos.append(raw_ctf.info)
    for info in infos:
        info['bads'] = []
        assert_raises(ValueError, pick_types, info, meg='foo')
        assert_raises(ValueError, pick_types, info, ref_meg='foo')
        picks_meg_ref = pick_types(info, meg=True, ref_meg=True)
        picks_meg = pick_types(info, meg=True, ref_meg=False)
        picks_ref = pick_types(info, meg=False, ref_meg=True)
        assert_array_equal(picks_meg_ref,
                           np.sort(np.concatenate([picks_meg, picks_ref])))
        picks_grad = pick_types(info, meg='grad', ref_meg=False)
        picks_ref_grad = pick_types(info, meg=False, ref_meg='grad')
        picks_meg_ref_grad = pick_types(info, meg='grad', ref_meg='grad')
        assert_array_equal(
            picks_meg_ref_grad,
            np.sort(np.concatenate([picks_grad, picks_ref_grad])))
        picks_mag = pick_types(info, meg='mag', ref_meg=False)
        picks_ref_mag = pick_types(info, meg=False, ref_meg='mag')
        picks_meg_ref_mag = pick_types(info, meg='mag', ref_meg='mag')
        assert_array_equal(picks_meg_ref_mag,
                           np.sort(np.concatenate([picks_mag, picks_ref_mag])))
        assert_array_equal(picks_meg,
                           np.sort(np.concatenate([picks_mag, picks_grad])))
        assert_array_equal(
            picks_ref, np.sort(np.concatenate([picks_ref_mag,
                                               picks_ref_grad])))
        assert_array_equal(
            picks_meg_ref,
            np.sort(
                np.concatenate(
                    [picks_grad, picks_mag, picks_ref_grad, picks_ref_mag])))
        for pick in (picks_meg_ref, picks_meg, picks_ref, picks_grad,
                     picks_ref_grad, picks_meg_ref_grad, picks_mag,
                     picks_ref_mag, picks_meg_ref_mag):
            if len(pick) > 0:
                pick_info(info, pick)
コード例 #15
0
ファイル: test_kit.py プロジェクト: Eric89GXL/mne-python
def test_decimate(tmpdir):
    """Test decimation of digitizer headshapes with too many points."""
    # load headshape and convert to meters
    hsp_mm = _get_ico_surface(5)['rr'] * 100
    hsp_m = hsp_mm / 1000.

    # save headshape to a file in mm in temporary directory
    tempdir = str(tmpdir)
    sphere_hsp_path = op.join(tempdir, 'test_sphere.txt')
    np.savetxt(sphere_hsp_path, hsp_mm)

    # read in raw data using spherical hsp, and extract new hsp
    with pytest.warns(RuntimeWarning,
                      match='was automatically downsampled .* FastScan'):
        raw = read_raw_kit(sqd_path, mrk_path, elp_txt_path, sphere_hsp_path)
    # collect headshape from raw (should now be in m)
    hsp_dec = np.array([dig['r'] for dig in raw.info['dig']])[8:]

    # with 10242 points and _decimate_points set to resolution of 5 mm, hsp_dec
    # should be a bit over 5000 points. If not, something is wrong or
    # decimation resolution has been purposefully changed
    assert len(hsp_dec) > 5000

    # should have similar size, distance from center
    dist = np.sqrt(np.sum((hsp_m - np.mean(hsp_m, axis=0))**2, axis=1))
    dist_dec = np.sqrt(np.sum((hsp_dec - np.mean(hsp_dec, axis=0))**2, axis=1))
    hsp_rad = np.mean(dist)
    hsp_dec_rad = np.mean(dist_dec)
    assert_array_almost_equal(hsp_rad, hsp_dec_rad, decimal=3)
コード例 #16
0
ファイル: test_kit.py プロジェクト: vidushis18/mne-python
def test_decimate(tmpdir):
    """Test decimation of digitizer headshapes with too many points."""
    # load headshape and convert to meters
    hsp_mm = _get_ico_surface(5)['rr'] * 100
    hsp_m = hsp_mm / 1000.

    # save headshape to a file in mm in temporary directory
    tempdir = str(tmpdir)
    sphere_hsp_path = op.join(tempdir, 'test_sphere.txt')
    np.savetxt(sphere_hsp_path, hsp_mm)

    # read in raw data using spherical hsp, and extract new hsp
    with pytest.warns(RuntimeWarning,
                      match='was automatically downsampled .* FastScan'):
        raw = read_raw_kit(sqd_path, mrk_path, elp_txt_path, sphere_hsp_path)
    # collect headshape from raw (should now be in m)
    hsp_dec = np.array([dig['r'] for dig in raw.info['dig']])[8:]

    # with 10242 points and _decimate_points set to resolution of 5 mm, hsp_dec
    # should be a bit over 5000 points. If not, something is wrong or
    # decimation resolution has been purposefully changed
    assert len(hsp_dec) > 5000

    # should have similar size, distance from center
    dist = np.sqrt(np.sum((hsp_m - np.mean(hsp_m, axis=0))**2, axis=1))
    dist_dec = np.sqrt(np.sum((hsp_dec - np.mean(hsp_dec, axis=0))**2, axis=1))
    hsp_rad = np.mean(dist)
    hsp_dec_rad = np.mean(dist_dec)
    assert_array_almost_equal(hsp_rad, hsp_dec_rad, decimal=3)
コード例 #17
0
ファイル: test_kit.py プロジェクト: BushraR/mne-python
def test_data():
    """Test reading raw kit files
    """
    raw_py = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path,
                          stim=list(range(167, 159, -1)), slope='+',
                          stimthresh=1, preload=True)
    print(repr(raw_py))

    # Binary file only stores the sensor channels
    py_picks = pick_types(raw_py.info, exclude='bads')
    raw_bin = op.join(data_dir, 'test_bin_raw.fif')
    raw_bin = Raw(raw_bin, preload=True)
    bin_picks = pick_types(raw_bin.info, stim=True, exclude='bads')
    data_bin, _ = raw_bin[bin_picks]
    data_py, _ = raw_py[py_picks]

    # this .mat was generated using the Yokogawa MEG Reader
    data_Ykgw = op.join(data_dir, 'test_Ykgw.mat')
    data_Ykgw = scipy.io.loadmat(data_Ykgw)['data']
    data_Ykgw = data_Ykgw[py_picks]

    assert_array_almost_equal(data_py, data_Ykgw)

    py_picks = pick_types(raw_py.info, stim=True, ref_meg=False,
                          exclude='bads')
    data_py, _ = raw_py[py_picks]
    assert_array_almost_equal(data_py, data_bin)

    # Make sure concatenation works
    raw_concat = concatenate_raws([raw_py.copy(), raw_py])
    assert_equal(raw_concat.n_times, 2 * raw_py.n_times)
コード例 #18
0
ファイル: test_kit.py プロジェクト: HSMin/mne-python
def test_decimate():
    """Test decimation of digitizer headshapes with too many points."""
    # load headshape and convert to meters
    hsp_mm = _get_ico_surface(5)['rr'] * 100
    hsp_m = hsp_mm / 1000.

    # save headshape to a file in mm in temporary directory
    tempdir = _TempDir()
    sphere_hsp_path = op.join(tempdir, 'test_sphere.txt')
    np.savetxt(sphere_hsp_path, hsp_mm)

    # read in raw data using spherical hsp, and extract new hsp
    with warnings.catch_warnings(record=True) as w:
        raw = read_raw_kit(sqd_path, mrk_path, elp_txt_path, sphere_hsp_path)
    assert_true(any('more than' in str(ww.message) for ww in w))
    # collect headshape from raw (should now be in m)
    hsp_dec = np.array([dig['r'] for dig in raw.info['dig']])[8:]

    # with 10242 points and _decimate_points set to resolution of 5 mm, hsp_dec
    # should be a bit over 5000 points. If not, something is wrong or
    # decimation resolution has been purposefully changed
    assert_true(len(hsp_dec) > 5000)

    # should have similar size, distance from center
    dist = np.sqrt(np.sum((hsp_m - np.mean(hsp_m, axis=0))**2, axis=1))
    dist_dec = np.sqrt(np.sum((hsp_dec - np.mean(hsp_dec, axis=0))**2, axis=1))
    hsp_rad = np.mean(dist)
    hsp_dec_rad = np.mean(dist_dec)
    assert_almost_equal(hsp_rad, hsp_dec_rad, places=3)
コード例 #19
0
def test_plot_alignment_meg(renderer, system):
    """Test plotting of MEG sensors + helmet."""
    if system == 'Neuromag':
        this_info = read_info(evoked_fname)
    elif system == 'CTF':
        this_info = read_raw_ctf(ctf_fname).info
    elif system == 'BTi':
        this_info = read_raw_bti(pdf_fname,
                                 config_fname,
                                 hs_fname,
                                 convert=True,
                                 preload=False).info
    else:
        assert system == 'KIT'
        this_info = read_raw_kit(sqd_fname).info

    meg = ['helmet', 'sensors']
    if system == 'KIT':
        meg.append('ref')
    fig = plot_alignment(this_info,
                         read_trans(trans_fname),
                         subject='sample',
                         subjects_dir=subjects_dir,
                         meg=meg,
                         eeg=False)
    # count the number of objects: should be n_meg_ch + 1 (helmet) + 1 (head)
    use_info = pick_info(
        this_info,
        pick_types(this_info,
                   meg=True,
                   eeg=False,
                   ref_meg='ref' in meg,
                   exclude=()))
    n_actors = use_info['nchan'] + 2
    _assert_n_actors(fig, renderer, n_actors)
コード例 #20
0
ファイル: test_kit.py プロジェクト: jaeilepp/eggie
def test_data():
    """Test reading raw kit files
    """
    raw_py = read_raw_kit(sqd_path,
                          mrk_path,
                          elp_path,
                          hsp_path,
                          stim=list(range(167, 159, -1)),
                          slope='+',
                          stimthresh=1,
                          preload=True)
    print(repr(raw_py))

    # Binary file only stores the sensor channels
    py_picks = pick_types(raw_py.info, exclude='bads')
    raw_bin = op.join(data_dir, 'test_bin_raw.fif')
    raw_bin = Raw(raw_bin, preload=True)
    bin_picks = pick_types(raw_bin.info, stim=True, exclude='bads')
    data_bin, _ = raw_bin[bin_picks]
    data_py, _ = raw_py[py_picks]

    # this .mat was generated using the Yokogawa MEG Reader
    data_Ykgw = op.join(data_dir, 'test_Ykgw.mat')
    data_Ykgw = scipy.io.loadmat(data_Ykgw)['data']
    data_Ykgw = data_Ykgw[py_picks]

    assert_array_almost_equal(data_py, data_Ykgw)

    py_picks = pick_types(raw_py.info,
                          stim=True,
                          ref_meg=False,
                          exclude='bads')
    data_py, _ = raw_py[py_picks]
    assert_array_almost_equal(data_py, data_bin)
コード例 #21
0
def test_data():
    """Test reading raw kit files
    """
    assert_raises(TypeError, read_raw_kit, epochs_path)
    assert_raises(TypeError, read_epochs_kit, sqd_path)
    assert_raises(ValueError, read_raw_kit, sqd_path, mrk_path, elp_path)
    assert_raises(ValueError, read_raw_kit, sqd_path, None, None, None,
                  list(range(200, 190, -1)))
    assert_raises(ValueError, read_raw_kit, sqd_path, None, None, None,
                  list(range(167, 159, -1)), '*', 1, True)
    # check functionality
    _ = read_raw_kit(sqd_path, [mrk2_path, mrk3_path], elp_path, hsp_path)
    raw_py = read_raw_kit(sqd_path,
                          mrk_path,
                          elp_path,
                          hsp_path,
                          stim=list(range(167, 159, -1)),
                          slope='+',
                          stimthresh=1,
                          preload=True)
    assert_true('RawKIT' in repr(raw_py))

    # Binary file only stores the sensor channels
    py_picks = pick_types(raw_py.info, exclude='bads')
    raw_bin = op.join(data_dir, 'test_bin_raw.fif')
    raw_bin = Raw(raw_bin, preload=True)
    bin_picks = pick_types(raw_bin.info, stim=True, exclude='bads')
    data_bin, _ = raw_bin[bin_picks]
    data_py, _ = raw_py[py_picks]

    # this .mat was generated using the Yokogawa MEG Reader
    data_Ykgw = op.join(data_dir, 'test_Ykgw.mat')
    data_Ykgw = scipy.io.loadmat(data_Ykgw)['data']
    data_Ykgw = data_Ykgw[py_picks]

    assert_array_almost_equal(data_py, data_Ykgw)

    py_picks = pick_types(raw_py.info,
                          stim=True,
                          ref_meg=False,
                          exclude='bads')
    data_py, _ = raw_py[py_picks]
    assert_array_almost_equal(data_py, data_bin)

    # Make sure concatenation works
    raw_concat = concatenate_raws([raw_py.copy(), raw_py])
    assert_equal(raw_concat.n_times, 2 * raw_py.n_times)
コード例 #22
0
def test_epochs():
    raw = read_raw_kit(sqd_path, stim=None)
    events = read_events(events_path)
    raw_epochs = Epochs(raw, events, None, tmin=0, tmax=.099, baseline=None)
    data1 = raw_epochs.get_data()
    epochs = read_epochs_kit(epochs_path, events_path)
    data11 = epochs.get_data()
    assert_array_equal(data1, data11)
コード例 #23
0
ファイル: test_kit.py プロジェクト: Tavpritesh/mne-python
def test_epochs():
    raw = read_raw_kit(sqd_path, stim=None)
    events = read_events(events_path)
    raw_epochs = Epochs(raw, events, None, tmin=0, tmax=.099, baseline=None)
    data1 = raw_epochs.get_data()
    epochs = read_epochs_kit(epochs_path, events_path)
    data11 = epochs.get_data()
    assert_array_equal(data1, data11)
コード例 #24
0
ファイル: test_kit.py プロジェクト: dengemann/mne-python
def test_read_segment():
    """Test writing raw kit files when preload is False
    """
    raw1 = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path, stim='<',
                        preload=False)
    raw1_file = op.join(tempdir, 'test1-raw.fif')
    raw1.save(raw1_file, buffer_size_sec=.1, overwrite=True)
    raw2 = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path, stim='<',
                        preload=True)
    raw2_file = op.join(tempdir, 'test2-raw.fif')
    raw2.save(raw2_file, buffer_size_sec=.1, overwrite=True)
    raw1 = Raw(raw1_file, preload=True)
    raw2 = Raw(raw2_file, preload=True)
    assert_array_equal(raw1._data, raw2._data)
    raw3 = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path, stim='<',
                        preload=True)
    assert_array_almost_equal(raw1._data, raw3._data)
コード例 #25
0
ファイル: test_pick.py プロジェクト: jmontoyam/mne-python
def test_pick_refs():
    """Test picking of reference sensors
    """
    infos = list()
    # KIT
    kit_dir = op.join(io_dir, 'kit', 'tests', 'data')
    sqd_path = op.join(kit_dir, 'test.sqd')
    mrk_path = op.join(kit_dir, 'test_mrk.sqd')
    elp_path = op.join(kit_dir, 'test_elp.txt')
    hsp_path = op.join(kit_dir, 'test_hsp.txt')
    raw_kit = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
    infos.append(raw_kit.info)
    # BTi
    bti_dir = op.join(io_dir, 'bti', 'tests', 'data')
    bti_pdf = op.join(bti_dir, 'test_pdf_linux')
    bti_config = op.join(bti_dir, 'test_config_linux')
    bti_hs = op.join(bti_dir, 'test_hs_linux')
    with warnings.catch_warnings(record=True):  # weight tables
        raw_bti = read_raw_bti(bti_pdf, bti_config, bti_hs, preload=False)
    infos.append(raw_bti.info)
    # CTF
    fname_ctf_raw = op.join(io_dir, 'tests', 'data', 'test_ctf_comp_raw.fif')
    raw_ctf = read_raw_fif(fname_ctf_raw, add_eeg_ref=False)
    raw_ctf.apply_gradient_compensation(2)
    infos.append(raw_ctf.info)
    for info in infos:
        info['bads'] = []
        assert_raises(ValueError, pick_types, info, meg='foo')
        assert_raises(ValueError, pick_types, info, ref_meg='foo')
        picks_meg_ref = pick_types(info, meg=True, ref_meg=True)
        picks_meg = pick_types(info, meg=True, ref_meg=False)
        picks_ref = pick_types(info, meg=False, ref_meg=True)
        assert_array_equal(picks_meg_ref,
                           np.sort(np.concatenate([picks_meg, picks_ref])))
        picks_grad = pick_types(info, meg='grad', ref_meg=False)
        picks_ref_grad = pick_types(info, meg=False, ref_meg='grad')
        picks_meg_ref_grad = pick_types(info, meg='grad', ref_meg='grad')
        assert_array_equal(picks_meg_ref_grad,
                           np.sort(np.concatenate([picks_grad,
                                                   picks_ref_grad])))
        picks_mag = pick_types(info, meg='mag', ref_meg=False)
        picks_ref_mag = pick_types(info, meg=False, ref_meg='mag')
        picks_meg_ref_mag = pick_types(info, meg='mag', ref_meg='mag')
        assert_array_equal(picks_meg_ref_mag,
                           np.sort(np.concatenate([picks_mag,
                                                   picks_ref_mag])))
        assert_array_equal(picks_meg,
                           np.sort(np.concatenate([picks_mag, picks_grad])))
        assert_array_equal(picks_ref,
                           np.sort(np.concatenate([picks_ref_mag,
                                                   picks_ref_grad])))
        assert_array_equal(picks_meg_ref, np.sort(np.concatenate(
            [picks_grad, picks_mag, picks_ref_grad, picks_ref_mag])))
        for pick in (picks_meg_ref, picks_meg, picks_ref,
                     picks_grad, picks_ref_grad, picks_meg_ref_grad,
                     picks_mag, picks_ref_mag, picks_meg_ref_mag):
            if len(pick) > 0:
                pick_info(info, pick)
コード例 #26
0
ファイル: mne_kit2fiff.py プロジェクト: Eric89GXL/mne-python
def run():
    """Run command."""
    from mne.commands.utils import get_optparser

    parser = get_optparser(__file__)

    parser.add_option('--input', dest='input_fname',
                      help='Input data file name', metavar='filename')
    parser.add_option('--mrk', dest='mrk_fname',
                      help='MEG Marker file name', metavar='filename')
    parser.add_option('--elp', dest='elp_fname',
                      help='Headshape points file name', metavar='filename')
    parser.add_option('--hsp', dest='hsp_fname',
                      help='Headshape file name', metavar='filename')
    parser.add_option('--stim', dest='stim',
                      help='Colon Separated Stimulus Trigger Channels',
                      metavar='chs')
    parser.add_option('--slope', dest='slope', help='Slope direction',
                      metavar='slope')
    parser.add_option('--stimthresh', dest='stimthresh', default=1,
                      help='Threshold value for trigger channels',
                      metavar='value')
    parser.add_option('--output', dest='out_fname',
                      help='Name of the resulting fiff file',
                      metavar='filename')
    parser.add_option('--debug', dest='debug', action='store_true',
                      default=False,
                      help='Set logging level for terminal output to debug')

    options, args = parser.parse_args()

    if options.debug:
        mne.set_log_level('debug')

    input_fname = options.input_fname
    if input_fname is None:
        with ETSContext():
            mne.gui.kit2fiff()
        sys.exit(0)

    hsp_fname = options.hsp_fname
    elp_fname = options.elp_fname
    mrk_fname = options.mrk_fname
    stim = options.stim
    slope = options.slope
    stimthresh = options.stimthresh
    out_fname = options.out_fname

    if isinstance(stim, str):
        stim = map(int, stim.split(':'))

    raw = read_raw_kit(input_fname=input_fname, mrk=mrk_fname, elp=elp_fname,
                       hsp=hsp_fname, stim=stim, slope=slope,
                       stimthresh=stimthresh)

    raw.save(out_fname)
    raw.close()
    sys.exit(0)
コード例 #27
0
ファイル: mne_kit2fiff.py プロジェクト: zahransa/mne-python
def run():
    """Run command."""
    from mne.commands.utils import get_optparser

    parser = get_optparser(__file__)

    parser.add_option('--input', dest='input_fname',
                      help='Input data file name', metavar='filename')
    parser.add_option('--mrk', dest='mrk_fname',
                      help='MEG Marker file name', metavar='filename')
    parser.add_option('--elp', dest='elp_fname',
                      help='Headshape points file name', metavar='filename')
    parser.add_option('--hsp', dest='hsp_fname',
                      help='Headshape file name', metavar='filename')
    parser.add_option('--stim', dest='stim',
                      help='Colon Separated Stimulus Trigger Channels',
                      metavar='chs')
    parser.add_option('--slope', dest='slope', help='Slope direction',
                      metavar='slope')
    parser.add_option('--stimthresh', dest='stimthresh', default=1,
                      help='Threshold value for trigger channels',
                      metavar='value')
    parser.add_option('--output', dest='out_fname',
                      help='Name of the resulting fiff file',
                      metavar='filename')
    parser.add_option('--debug', dest='debug', action='store_true',
                      default=False,
                      help='Set logging level for terminal output to debug')

    options, args = parser.parse_args()

    if options.debug:
        mne.set_log_level('debug')

    input_fname = options.input_fname
    if input_fname is None:
        with ETSContext():
            mne.gui.kit2fiff()
        sys.exit(0)

    hsp_fname = options.hsp_fname
    elp_fname = options.elp_fname
    mrk_fname = options.mrk_fname
    stim = options.stim
    slope = options.slope
    stimthresh = options.stimthresh
    out_fname = options.out_fname

    if isinstance(stim, str):
        stim = map(int, stim.split(':'))

    raw = read_raw_kit(input_fname=input_fname, mrk=mrk_fname, elp=elp_fname,
                       hsp=hsp_fname, stim=stim, slope=slope,
                       stimthresh=stimthresh)

    raw.save(out_fname)
    raw.close()
コード例 #28
0
ファイル: test_kit.py プロジェクト: vidushis18/mne-python
def test_hsp_elp():
    """Test KIT usage of *.elp and *.hsp files against *.txt files."""
    raw_txt = read_raw_kit(sqd_path, mrk_path, elp_txt_path, hsp_txt_path)
    raw_elp = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)

    # head points
    pts_txt = np.array([dig_point['r'] for dig_point in raw_txt.info['dig']])
    pts_elp = np.array([dig_point['r'] for dig_point in raw_elp.info['dig']])
    assert_array_almost_equal(pts_elp, pts_txt, decimal=5)

    # transforms
    trans_txt = raw_txt.info['dev_head_t']['trans']
    trans_elp = raw_elp.info['dev_head_t']['trans']
    assert_array_almost_equal(trans_elp, trans_txt, decimal=5)

    # head points in device space
    pts_txt_in_dev = apply_trans(linalg.inv(trans_txt), pts_txt)
    pts_elp_in_dev = apply_trans(linalg.inv(trans_elp), pts_elp)
    assert_array_almost_equal(pts_elp_in_dev, pts_txt_in_dev, decimal=5)
コード例 #29
0
ファイル: test_kit.py プロジェクト: jmontoyam/mne-python
def test_epochs():
    """Test reading epoched SQD file."""
    raw = read_raw_kit(sqd_path, stim=None)
    events = read_events(events_path)
    raw_epochs = Epochs(raw, events, None, tmin=0, tmax=.099, baseline=None,
                        add_eeg_ref=False)
    data1 = raw_epochs.get_data()
    epochs = read_epochs_kit(epochs_path, events_path)
    data11 = epochs.get_data()
    assert_array_equal(data1, data11)
コード例 #30
0
ファイル: test_kit.py プロジェクト: HSMin/mne-python
def test_hsp_elp():
    """Test KIT usage of *.elp and *.hsp files against *.txt files."""
    raw_txt = read_raw_kit(sqd_path, mrk_path, elp_txt_path, hsp_txt_path)
    raw_elp = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)

    # head points
    pts_txt = np.array([dig_point['r'] for dig_point in raw_txt.info['dig']])
    pts_elp = np.array([dig_point['r'] for dig_point in raw_elp.info['dig']])
    assert_array_almost_equal(pts_elp, pts_txt, decimal=5)

    # transforms
    trans_txt = raw_txt.info['dev_head_t']['trans']
    trans_elp = raw_elp.info['dev_head_t']['trans']
    assert_array_almost_equal(trans_elp, trans_txt, decimal=5)

    # head points in device space
    pts_txt_in_dev = apply_trans(linalg.inv(trans_txt), pts_txt)
    pts_elp_in_dev = apply_trans(linalg.inv(trans_elp), pts_elp)
    assert_array_almost_equal(pts_elp_in_dev, pts_txt_in_dev, decimal=5)
コード例 #31
0
def test_stim_ch():
    """Test raw kit stim ch
    """
    raw = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path, stim='<',
                       slope='+', preload=True)
    stim_pick = pick_types(raw.info, meg=False, ref_meg=False,
                           stim=True, exclude='bads')
    stim1, _ = raw[stim_pick]
    stim2 = np.array(raw.read_stim_ch(), ndmin=2)
    assert_array_equal(stim1, stim2)
コード例 #32
0
ファイル: test_kit.py プロジェクト: aces/EEG2BIDS
def test_unknown_format(tmp_path):
    """Test our warning about an unknown format."""
    fname = tmp_path / op.basename(ricoh_path)
    _, kit_info = get_kit_info(ricoh_path, allow_unknown_format=False)
    n_before = kit_info['dirs'][KIT.DIR_INDEX_SYSTEM]['offset']
    with open(fname, 'wb') as fout:
        with open(ricoh_path, 'rb') as fin:
            fout.write(fin.read(n_before))
            version, revision = np.fromfile(fin, '<i4', 2)
            assert version > 2  # good
            version = 1  # bad
            np.array([version, revision], '<i4').tofile(fout)
            fout.write(fin.read())
    with pytest.raises(ValueError, match='SQD file format V1R000 is not offi'):
        read_raw_kit(fname)
    # it's not actually an old file, so it actually raises an exception later
    # about an unknown datatype
    with pytest.raises(Exception):
        with pytest.warns(RuntimeWarning, match='Force loading'):
            read_raw_kit(fname, allow_unknown_format=True)
コード例 #33
0
ファイル: test_kit.py プロジェクト: yikai28/mne-python
def test_ricoh_data(tmpdir, fname, desc):
    """Test reading channel names and dig information from Ricoh systems."""
    with pytest.deprecated_call(match='standardize_names'):
        raw = read_raw_kit(fname)
    assert raw.ch_names[0] == 'MEG 001'
    raw = read_raw_kit(fname, standardize_names=False, verbose='debug')
    assert raw.info['description'] == desc
    assert_allclose(raw.times[-1], 5. - 1. / raw.info['sfreq'])
    assert raw.ch_names[0] == 'LF31'
    eeg_picks = pick_types(raw.info, meg=False, eeg=True)
    assert len(eeg_picks) == 45
    assert len(raw.info['dig']) == 8 + len(eeg_picks) - 2  # EKG+ and E no pos
    bad_dig = [
        ch['ch_name'] for ci, ch in enumerate(raw.info['chs'])
        if ci in eeg_picks and (ch['loc'][:3] == 0).all()
    ]
    assert bad_dig == ['EKG+', 'E']
    assert not any(np.allclose(d['r'], 0.) for d in raw.info['dig'])
    assert_allclose(
        raw.info['dev_head_t']['trans'],
        [[0.998311, -0.056923, 0.01164, 0.001403],
         [0.054469, 0.986653, 0.153458, 0.0044],
         [-0.02022, -0.152564, 0.988087, 0.018634], [0., 0., 0., 1.]],
        atol=1e-5)
    data = raw.get_data()
    # 1 pT 10 Hz on the first channel
    assert raw.info['chs'][0]['coil_type'] == FIFF.FIFFV_COIL_KIT_GRAD
    _assert_sinusoid(data[0], raw.times, 10, 1e-12, '1 pT 10 Hz MEG')
    assert_allclose(data[1:160], 0., atol=1e-13)
    # 1 V 5 Hz analog
    assert raw.info['chs'][186]['coil_type'] == FIFF.FIFFV_COIL_EEG
    _assert_sinusoid(data[160], raw.times, 5, 1, '1 V 5 Hz analog')
    assert_allclose(data[161:185], 0., atol=1e-20)
    # 50 uV 8 Hz plus 1.6 mV offset
    assert raw.info['chs'][186]['coil_type'] == FIFF.FIFFV_COIL_EEG
    eeg_data = data[186]
    assert_allclose(eeg_data.mean(), 1.6e-3, atol=1e-5)  # offset
    eeg_data = eeg_data - eeg_data.mean()
    _assert_sinusoid(eeg_data, raw.times, 8, 50e-6, '50 uV 8 Hz EEG')
    assert_allclose(data[187:-1], 0., atol=1e-20)
    assert_allclose(data[-1], 254.5, atol=0.51)
コード例 #34
0
def test_data():
    """Test reading raw kit files
    """
    assert_raises(TypeError, read_raw_kit, epochs_path)
    assert_raises(TypeError, read_epochs_kit, sqd_path)
    assert_raises(ValueError, read_raw_kit, sqd_path, mrk_path, elp_path)
    assert_raises(ValueError, read_raw_kit, sqd_path, None, None, None,
                  list(range(200, 190, -1)))
    assert_raises(ValueError, read_raw_kit, sqd_path, None, None, None,
                  list(range(167, 159, -1)), '*', 1, True)
    # check functionality
    _ = read_raw_kit(sqd_path, [mrk2_path, mrk3_path], elp_path,
                     hsp_path)
    raw_py = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path,
                          stim=list(range(167, 159, -1)), slope='+',
                          stimthresh=1, preload=True)
    assert_true('RawKIT' in repr(raw_py))

    # Binary file only stores the sensor channels
    py_picks = pick_types(raw_py.info, exclude='bads')
    raw_bin = op.join(data_dir, 'test_bin_raw.fif')
    raw_bin = Raw(raw_bin, preload=True)
    bin_picks = pick_types(raw_bin.info, stim=True, exclude='bads')
    data_bin, _ = raw_bin[bin_picks]
    data_py, _ = raw_py[py_picks]

    # this .mat was generated using the Yokogawa MEG Reader
    data_Ykgw = op.join(data_dir, 'test_Ykgw.mat')
    data_Ykgw = scipy.io.loadmat(data_Ykgw)['data']
    data_Ykgw = data_Ykgw[py_picks]

    assert_array_almost_equal(data_py, data_Ykgw)

    py_picks = pick_types(raw_py.info, stim=True, ref_meg=False,
                          exclude='bads')
    data_py, _ = raw_py[py_picks]
    assert_array_almost_equal(data_py, data_bin)

    # Make sure concatenation works
    raw_concat = concatenate_raws([raw_py.copy(), raw_py])
    assert_equal(raw_concat.n_times, 2 * raw_py.n_times)
コード例 #35
0
ファイル: test_chpi.py プロジェクト: jackz314/mne-python
def test_calculate_head_pos_kit():
    """Test calculation of head position using KIT data."""
    raw = read_raw_kit(con_fname, mrk_fname, elp_fname, hsp_fname)
    assert len(raw.info['hpi_results']) == 1
    chpi_locs = extract_chpi_locs_kit(raw)
    assert chpi_locs['rrs'].shape == (2, 5, 3)
    assert_array_less(chpi_locs['gofs'], 1.)
    assert_array_less(0.98, chpi_locs['gofs'])
    quats = compute_head_pos(raw.info, chpi_locs)
    assert quats.shape == (2, 10)
    # plotting works
    plot_head_positions(quats, info=raw.info)
    raw_berlin = read_raw_kit(berlin_fname)
    assert_allclose(raw_berlin.info['dev_head_t']['trans'], np.eye(4))
    assert len(raw_berlin.info['hpi_results']) == 0
    with pytest.raises(ValueError, match='Invalid value'):
        extract_chpi_locs_kit(raw_berlin)
    with pytest.raises(RuntimeError, match='not find appropriate'):
        extract_chpi_locs_kit(raw_berlin, 'STI 014')
    with pytest.raises(RuntimeError, match='no initial cHPI'):
        compute_head_pos(raw_berlin.info, chpi_locs)
コード例 #36
0
def _read_raw(raw_fpath,
              electrode=None,
              hsp=None,
              hpi=None,
              allow_maxshield=False,
              config=None,
              **kwargs):
    """Read a raw file into MNE, making inferences based on extension."""
    _, ext = _parse_ext(raw_fpath)

    # KIT systems
    if ext in ['.con', '.sqd']:
        raw = io.read_raw_kit(raw_fpath,
                              elp=electrode,
                              hsp=hsp,
                              mrk=hpi,
                              preload=False,
                              **kwargs)

    # BTi systems
    elif ext == '.pdf':
        raw = io.read_raw_bti(raw_fpath,
                              config_fname=config,
                              head_shape_fname=hsp,
                              preload=False,
                              **kwargs)

    elif ext == '.fif':
        raw = reader[ext](raw_fpath, allow_maxshield, **kwargs)

    elif ext in ['.ds', '.vhdr', '.set', '.edf', '.bdf', '.EDF']:
        raw_fpath = Path(raw_fpath)
        # handle EDF extension upper/lower casing
        if ext == '.edf' and not raw_fpath.exists():
            raw_fpath = raw_fpath.with_suffix('.EDF')
        elif ext == '.EDF' and not raw_fpath.exists():
            raw_fpath = raw_fpath.with_suffix('.edf')
        raw = reader[ext](raw_fpath, **kwargs)

    # MEF and NWB are allowed, but not yet implemented
    elif ext in ['.mef', '.nwb']:
        raise ValueError(f'Got "{ext}" as extension. This is an allowed '
                         f'extension but there is no IO support for this '
                         f'file format yet.')

    # No supported data found ...
    # ---------------------------
    else:
        raise ValueError(f'Raw file name extension must be one '
                         f'of {ALLOWED_DATATYPE_EXTENSIONS}\n'
                         f'Got {ext}')
    return raw
コード例 #37
0
def _read_raw(raw_path,
              electrode=None,
              hsp=None,
              hpi=None,
              allow_maxshield=False,
              config_path=None,
              **kwargs):
    """Read a raw file into MNE, making inferences based on extension."""
    _, ext = _parse_ext(raw_path)

    # KIT systems
    if ext in ['.con', '.sqd']:
        raw = io.read_raw_kit(raw_path,
                              elp=electrode,
                              hsp=hsp,
                              mrk=hpi,
                              preload=False,
                              **kwargs)

    # BTi systems
    elif ext == '.pdf':
        raw = io.read_raw_bti(
            pdf_fname=str(raw_path),  # FIXME MNE should accept Path!
            config_fname=str(config_path),  # FIXME MNE should accept Path!
            head_shape_fname=hsp,
            preload=False,
            **kwargs)

    elif ext == '.fif':
        raw = reader[ext](raw_path, allow_maxshield, **kwargs)

    elif ext in ['.ds', '.vhdr', '.set', '.edf', '.bdf', '.EDF', '.snirf']:
        if (ext == '.snirf'
                and not check_version('mne', '1.0')):  # pragma: no cover
            raise RuntimeError(
                'fNIRS support in MNE-BIDS requires MNE-Python version 1.0')
        raw_path = Path(raw_path)
        raw = reader[ext](raw_path, **kwargs)

    # MEF and NWB are allowed, but not yet implemented
    elif ext in ['.mef', '.nwb']:
        raise ValueError(f'Got "{ext}" as extension. This is an allowed '
                         f'extension but there is no IO support for this '
                         f'file format yet.')

    # No supported data found ...
    # ---------------------------
    else:
        raise ValueError(f'Raw file name extension must be one '
                         f'of {ALLOWED_DATATYPE_EXTENSIONS}\n'
                         f'Got {ext}')
    return raw
コード例 #38
0
ファイル: read.py プロジェクト: kalenkovich/mne-bids
def _read_raw(raw_fpath,
              electrode=None,
              hsp=None,
              hpi=None,
              config=None,
              verbose=None,
              **kwargs):
    """Read a raw file into MNE, making inferences based on extension."""
    _, ext = _parse_ext(raw_fpath)

    # KIT systems
    if ext in ['.con', '.sqd']:
        raw = io.read_raw_kit(raw_fpath,
                              elp=electrode,
                              hsp=hsp,
                              mrk=hpi,
                              preload=False,
                              **kwargs)

    # BTi systems
    elif ext == '.pdf':
        raw = io.read_raw_bti(raw_fpath,
                              config_fname=config,
                              head_shape_fname=hsp,
                              preload=False,
                              verbose=verbose,
                              **kwargs)

    elif ext == '.fif':
        raw = reader[ext](raw_fpath, **kwargs)

    elif ext in ['.ds', '.vhdr', '.set']:
        raw = reader[ext](raw_fpath, **kwargs)

    # EDF (european data format) or BDF (biosemi) format
    # TODO: integrate with lines above once MNE can read
    # annotations with preload=False
    elif ext in ['.edf', '.bdf']:
        raw = reader[ext](raw_fpath, preload=True, **kwargs)

    # MEF and NWB are allowed, but not yet implemented
    elif ext in ['.mef', '.nwb']:
        raise ValueError(
            'Got "{}" as extension. This is an allowed extension '
            'but there is no IO support for this file format yet.'.format(ext))

    # No supported data found ...
    # ---------------------------
    else:
        raise ValueError('Raw file name extension must be one of {}\n'
                         'Got {}'.format(ALLOWED_EXTENSIONS, ext))
    return raw
コード例 #39
0
def run():
    from mne.commands.utils import get_optparser

    parser = get_optparser(__file__)

    parser.add_option('--input', dest='input_fname',
                      help='Input data file name', metavar='filename')
    parser.add_option('--mrk', dest='mrk_fname',
                      help='MEG Marker file name', metavar='filename')
    parser.add_option('--elp', dest='elp_fname',
                      help='Headshape points file name', metavar='filename')
    parser.add_option('--hsp', dest='hsp_fname',
                      help='Headshape file name', metavar='filename')
    parser.add_option('--stim', dest='stim',
                      help='Colon Separated Stimulus Trigger Channels',
                      metavar='chs')
    parser.add_option('--slope', dest='slope', help='Slope direction',
                      metavar='slope')
    parser.add_option('--stimthresh', dest='stimthresh', default=1,
                      help='Threshold value for trigger channels',
                      metavar='value')
    parser.add_option('--output', dest='out_fname',
                      help='Name of the resulting fiff file',
                      metavar='filename')

    options, args = parser.parse_args()

    input_fname = options.input_fname
    if input_fname is None:
        os.environ['ETS_TOOLKIT'] = 'qt4'
        mne.gui.kit2fiff()
        sys.exit(0)

    hsp_fname = options.hsp_fname
    elp_fname = options.elp_fname
    mrk_fname = options.mrk_fname
    stim = options.stim
    slope = options.slope
    stimthresh = options.stimthresh
    out_fname = options.out_fname

    if isinstance(stim, str):
        stim = stim.split(':')

    raw = read_raw_kit(input_fname=input_fname, mrk=mrk_fname, elp=elp_fname,
                       hsp=hsp_fname, stim=stim, slope=slope,
                       stimthresh=stimthresh)

    raw.save(out_fname)
    raw.close()
    sys.exit(0)
コード例 #40
0
def test_berlin():
    """Test data from Berlin."""
    # gh-8535
    raw = read_raw_kit(berlin_path)
    assert raw.info['description'] == 'Physikalisch Technische Bundesanstalt, Berlin/128-channel MEG System (124) V2R004 PQ1128R-N2'  # noqa: E501
    assert raw.info['kit_system_id'] == 124
    assert raw.info['highpass'] == 0.
    assert raw.info['lowpass'] == 200.
    assert raw.info['sfreq'] == 500.
    n = int(round(28.77 * raw.info['sfreq']))
    meg = raw.get_data('MEG 003', n, n + 1)[0, 0]
    assert_allclose(meg, -8.89e-12, rtol=1e-3)
    eeg = raw.get_data('E14', n, n + 1)[0, 0]
    assert_allclose(eeg, -2.55, rtol=1e-3)
コード例 #41
0
ファイル: test_kit.py プロジェクト: jmontoyam/mne-python
def test_epochs():
    """Test reading epoched SQD file."""
    raw = read_raw_kit(sqd_path, stim=None)
    events = read_events(events_path)
    raw_epochs = Epochs(raw,
                        events,
                        None,
                        tmin=0,
                        tmax=.099,
                        baseline=None,
                        add_eeg_ref=False)
    data1 = raw_epochs.get_data()
    epochs = read_epochs_kit(epochs_path, events_path)
    data11 = epochs.get_data()
    assert_array_equal(data1, data11)
コード例 #42
0
ファイル: mne_kit2fiff.py プロジェクト: jasmainak/mne-python
def run():
    from mne.commands.utils import get_optparser

    parser = get_optparser(__file__)

    parser.add_option("--input", dest="input_fname", help="Input data file name", metavar="filename")
    parser.add_option("--mrk", dest="mrk_fname", help="MEG Marker file name", metavar="filename")
    parser.add_option("--elp", dest="elp_fname", help="Headshape points file name", metavar="filename")
    parser.add_option("--hsp", dest="hsp_fname", help="Headshape file name", metavar="filename")
    parser.add_option("--stim", dest="stim", help="Colon Separated Stimulus Trigger Channels", metavar="chs")
    parser.add_option("--slope", dest="slope", help="Slope direction", metavar="slope")
    parser.add_option(
        "--stimthresh", dest="stimthresh", default=1, help="Threshold value for trigger channels", metavar="value"
    )
    parser.add_option("--output", dest="out_fname", help="Name of the resulting fiff file", metavar="filename")

    options, args = parser.parse_args()

    input_fname = options.input_fname
    if input_fname is None:
        os.environ["ETS_TOOLKIT"] = "qt4"
        mne.gui.kit2fiff()
        sys.exit(0)

    hsp_fname = options.hsp_fname
    elp_fname = options.elp_fname
    mrk_fname = options.mrk_fname
    stim = options.stim
    slope = options.slope
    stimthresh = options.stimthresh
    out_fname = options.out_fname

    if isinstance(stim, str):
        stim = map(int, stim.split(":"))

    raw = read_raw_kit(
        input_fname=input_fname,
        mrk=mrk_fname,
        elp=elp_fname,
        hsp=hsp_fname,
        stim=stim,
        slope=slope,
        stimthresh=stimthresh,
    )

    raw.save(out_fname)
    raw.close()
    sys.exit(0)
コード例 #43
0
ファイル: test_3d.py プロジェクト: hoechenberger/mne-python
def test_plot_trans():
    """Test plotting of -trans.fif files and MEG sensor layouts."""
    from mayavi import mlab
    evoked = read_evokeds(evoked_fname)[0]
    with warnings.catch_warnings(record=True):  # 4D weight tables
        bti = read_raw_bti(pdf_fname, config_fname, hs_fname, convert=True,
                           preload=False).info
    infos = dict(
        Neuromag=evoked.info,
        CTF=read_raw_ctf(ctf_fname).info,
        BTi=bti,
        KIT=read_raw_kit(sqd_fname).info,
    )
    for system, info in infos.items():
        ref_meg = False if system == 'KIT' else True
        plot_trans(info, trans_fname, subject='sample', meg_sensors=True,
                   subjects_dir=subjects_dir, ref_meg=ref_meg)
        mlab.close(all=True)
    # KIT ref sensor coil def is defined
    plot_trans(infos['KIT'], None, meg_sensors=True, ref_meg=True)
    mlab.close(all=True)
    info = infos['Neuromag']
    assert_raises(ValueError, plot_trans, info, trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  ch_type='bad-chtype')
    assert_raises(TypeError, plot_trans, 'foo', trans_fname,
                  subject='sample', subjects_dir=subjects_dir)
    # no-head version
    plot_trans(info, None, meg_sensors=True, dig=True, coord_frame='head')
    mlab.close(all=True)
    # all coord frames
    for coord_frame in ('meg', 'head', 'mri'):
        plot_trans(info, meg_sensors=True, dig=True, coord_frame=coord_frame,
                   trans=trans_fname, subject='sample',
                   subjects_dir=subjects_dir)
        mlab.close(all=True)
    # EEG only with strange options
    evoked_eeg_ecog = evoked.copy().pick_types(meg=False, eeg=True)
    evoked_eeg_ecog.info['projs'] = []  # "remove" avg proj
    evoked_eeg_ecog.set_channel_types({'EEG 001': 'ecog'})
    with warnings.catch_warnings(record=True) as w:
        plot_trans(evoked_eeg_ecog.info, subject='sample', trans=trans_fname,
                   source='outer_skin', meg_sensors=True, skull=True,
                   eeg_sensors=['original', 'projected'], ecog_sensors=True,
                   brain='white', head=True, subjects_dir=subjects_dir)
    mlab.close(all=True)
    assert_true(['Cannot plot MEG' in str(ww.message) for ww in w])
コード例 #44
0
ファイル: test_channels.py プロジェクト: wangruosi/mne-python
def test_find_ch_adjacency():
    """Test computing the adjacency matrix."""
    data_path = testing.data_path()

    raw = read_raw_fif(raw_fname, preload=True)
    sizes = {'mag': 828, 'grad': 1700, 'eeg': 386}
    nchans = {'mag': 102, 'grad': 204, 'eeg': 60}
    for ch_type in ['mag', 'grad', 'eeg']:
        conn, ch_names = find_ch_adjacency(raw.info, ch_type)
        # Silly test for checking the number of neighbors.
        assert_equal(conn.getnnz(), sizes[ch_type])
        assert_equal(len(ch_names), nchans[ch_type])
    pytest.raises(ValueError, find_ch_adjacency, raw.info, None)

    # Test computing the conn matrix with gradiometers.
    conn, ch_names = _compute_ch_adjacency(raw.info, 'grad')
    assert_equal(conn.getnnz(), 2680)

    # Test ch_type=None.
    raw.pick_types(meg='mag')
    find_ch_adjacency(raw.info, None)

    bti_fname = op.join(data_path, 'BTi', 'erm_HFH', 'c,rfDC')
    bti_config_name = op.join(data_path, 'BTi', 'erm_HFH', 'config')
    raw = read_raw_bti(bti_fname, bti_config_name, None)
    _, ch_names = find_ch_adjacency(raw.info, 'mag')
    assert 'A1' in ch_names

    ctf_fname = op.join(data_path, 'CTF', 'testdata_ctf_short.ds')
    raw = read_raw_ctf(ctf_fname)
    _, ch_names = find_ch_adjacency(raw.info, 'mag')
    assert 'MLC11' in ch_names

    pytest.raises(ValueError, find_ch_adjacency, raw.info, 'eog')

    raw_kit = read_raw_kit(fname_kit_157)
    neighb, ch_names = find_ch_adjacency(raw_kit.info, 'mag')
    assert neighb.data.size == 1329
    assert ch_names[0] == 'MEG 001'
コード例 #45
0
ファイル: test_layout.py プロジェクト: yuvfried/mne-python
def test_find_layout():
    """Test finding layout."""
    pytest.raises(ValueError, find_layout, _get_test_info(), ch_type='meep')

    sample_info = read_info(fif_fname)
    grads = pick_types(sample_info, meg='grad')
    sample_info2 = pick_info(sample_info, grads)

    mags = pick_types(sample_info, meg='mag')
    sample_info3 = pick_info(sample_info, mags)

    # mock new convention
    sample_info4 = copy.deepcopy(sample_info)
    for ii, name in enumerate(sample_info4['ch_names']):
        new = name.replace(' ', '')
        sample_info4['chs'][ii]['ch_name'] = new

    eegs = pick_types(sample_info, meg=False, eeg=True)
    sample_info5 = pick_info(sample_info, eegs)

    lout = find_layout(sample_info, ch_type=None)
    assert lout.kind == 'Vectorview-all'
    assert all(' ' in k for k in lout.names)

    lout = find_layout(sample_info2, ch_type='meg')
    assert_equal(lout.kind, 'Vectorview-all')

    # test new vector-view
    lout = find_layout(sample_info4, ch_type=None)
    assert_equal(lout.kind, 'Vectorview-all')
    assert all(' ' not in k for k in lout.names)

    lout = find_layout(sample_info, ch_type='grad')
    assert_equal(lout.kind, 'Vectorview-grad')
    lout = find_layout(sample_info2)
    assert_equal(lout.kind, 'Vectorview-grad')
    lout = find_layout(sample_info2, ch_type='grad')
    assert_equal(lout.kind, 'Vectorview-grad')
    lout = find_layout(sample_info2, ch_type='meg')
    assert_equal(lout.kind, 'Vectorview-all')

    lout = find_layout(sample_info, ch_type='mag')
    assert_equal(lout.kind, 'Vectorview-mag')
    lout = find_layout(sample_info3)
    assert_equal(lout.kind, 'Vectorview-mag')
    lout = find_layout(sample_info3, ch_type='mag')
    assert_equal(lout.kind, 'Vectorview-mag')
    lout = find_layout(sample_info3, ch_type='meg')
    assert_equal(lout.kind, 'Vectorview-all')

    lout = find_layout(sample_info, ch_type='eeg')
    assert_equal(lout.kind, 'EEG')
    lout = find_layout(sample_info5)
    assert_equal(lout.kind, 'EEG')
    lout = find_layout(sample_info5, ch_type='eeg')
    assert_equal(lout.kind, 'EEG')
    # no common layout, 'meg' option not supported

    lout = find_layout(read_info(fname_ctf_raw))
    assert_equal(lout.kind, 'CTF-275')

    fname_bti_raw = op.join(bti_dir, 'exported4D_linux_raw.fif')
    lout = find_layout(read_info(fname_bti_raw))
    assert_equal(lout.kind, 'magnesWH3600')

    raw_kit = read_raw_kit(fname_kit_157)
    lout = find_layout(raw_kit.info)
    assert_equal(lout.kind, 'KIT-157')

    raw_kit.info['bads'] = ['MEG 013', 'MEG 014', 'MEG 015', 'MEG 016']
    raw_kit.info._check_consistency()
    lout = find_layout(raw_kit.info)
    assert_equal(lout.kind, 'KIT-157')
    # fallback for missing IDs
    for val in (35, 52, 54, 1001):
        raw_kit.info['kit_system_id'] = val
        lout = find_layout(raw_kit.info)
        assert lout.kind == 'custom'

    raw_umd = read_raw_kit(fname_kit_umd)
    lout = find_layout(raw_umd.info)
    assert_equal(lout.kind, 'KIT-UMD-3')

    # Test plotting
    lout.plot()
    lout.plot(picks=np.arange(10))
    plt.close('all')
コード例 #46
0
ファイル: test_kit.py プロジェクト: HSMin/mne-python
def test_data():
    """Test reading raw kit files."""
    assert_raises(TypeError, read_raw_kit, epochs_path)
    assert_raises(TypeError, read_epochs_kit, sqd_path)
    assert_raises(ValueError, read_raw_kit, sqd_path, mrk_path, elp_txt_path)
    assert_raises(ValueError, read_raw_kit, sqd_path, None, None, None,
                  list(range(200, 190, -1)))
    assert_raises(ValueError, read_raw_kit, sqd_path, None, None, None,
                  list(range(167, 159, -1)), '*', 1, True)
    # check functionality
    raw_mrk = read_raw_kit(sqd_path, [mrk2_path, mrk3_path], elp_txt_path,
                           hsp_txt_path)
    raw_py = _test_raw_reader(read_raw_kit, input_fname=sqd_path, mrk=mrk_path,
                              elp=elp_txt_path, hsp=hsp_txt_path,
                              stim=list(range(167, 159, -1)), slope='+',
                              stimthresh=1)
    assert_true('RawKIT' in repr(raw_py))
    assert_equal(raw_mrk.info['kit_system_id'], KIT.SYSTEM_NYU_2010)

    # check number/kind of channels
    assert_equal(len(raw_py.info['chs']), 193)
    kit_channels = (('kind', {FIFF.FIFFV_MEG_CH: 157, FIFF.FIFFV_REF_MEG_CH: 3,
                              FIFF.FIFFV_MISC_CH: 32, FIFF.FIFFV_STIM_CH: 1}),
                    ('coil_type', {FIFF.FIFFV_COIL_KIT_GRAD: 157,
                                   FIFF.FIFFV_COIL_KIT_REF_MAG: 3,
                                   FIFF.FIFFV_COIL_NONE: 33}))
    for label, target in kit_channels:
        actual = {id_: sum(ch[label] == id_ for ch in raw_py.info['chs']) for
                  id_ in target.keys()}
        assert_equal(actual, target)

    # Test stim channel
    raw_stim = read_raw_kit(sqd_path, mrk_path, elp_txt_path, hsp_txt_path,
                            stim='<', preload=False)
    for raw in [raw_py, raw_stim, raw_mrk]:
        stim_pick = pick_types(raw.info, meg=False, ref_meg=False,
                               stim=True, exclude='bads')
        stim1, _ = raw[stim_pick]
        stim2 = np.array(raw.read_stim_ch(), ndmin=2)
        assert_array_equal(stim1, stim2)

    # Binary file only stores the sensor channels
    py_picks = pick_types(raw_py.info, exclude='bads')
    raw_bin = op.join(data_dir, 'test_bin_raw.fif')
    raw_bin = read_raw_fif(raw_bin, preload=True)
    bin_picks = pick_types(raw_bin.info, stim=True, exclude='bads')
    data_bin, _ = raw_bin[bin_picks]
    data_py, _ = raw_py[py_picks]

    # this .mat was generated using the Yokogawa MEG Reader
    data_Ykgw = op.join(data_dir, 'test_Ykgw.mat')
    data_Ykgw = scipy.io.loadmat(data_Ykgw)['data']
    data_Ykgw = data_Ykgw[py_picks]

    assert_array_almost_equal(data_py, data_Ykgw)

    py_picks = pick_types(raw_py.info, stim=True, ref_meg=False,
                          exclude='bads')
    data_py, _ = raw_py[py_picks]
    assert_array_almost_equal(data_py, data_bin)

    # KIT-UMD data
    _test_raw_reader(read_raw_kit, input_fname=sqd_umd_path)
    raw = read_raw_kit(sqd_umd_path)
    assert_equal(raw.info['kit_system_id'], KIT.SYSTEM_UMD_2014_12)
    # check number/kind of channels
    assert_equal(len(raw.info['chs']), 193)
    for label, target in kit_channels:
        actual = {id_: sum(ch[label] == id_ for ch in raw.info['chs']) for
                  id_ in target.keys()}
        assert_equal(actual, target)

    # KIT Academia Sinica
    raw = read_raw_kit(sqd_as_path, slope='+')
    assert_equal(raw.info['kit_system_id'], KIT.SYSTEM_AS_2008)
    assert_equal(raw.info['chs'][100]['ch_name'], 'MEG 101')
    assert_equal(raw.info['chs'][100]['kind'], FIFF.FIFFV_MEG_CH)
    assert_equal(raw.info['chs'][100]['coil_type'], FIFF.FIFFV_COIL_KIT_GRAD)
    assert_equal(raw.info['chs'][157]['ch_name'], 'MEG 158')
    assert_equal(raw.info['chs'][157]['kind'], FIFF.FIFFV_REF_MEG_CH)
    assert_equal(raw.info['chs'][157]['coil_type'],
                 FIFF.FIFFV_COIL_KIT_REF_MAG)
    assert_equal(raw.info['chs'][160]['ch_name'], 'EEG 001')
    assert_equal(raw.info['chs'][160]['kind'], FIFF.FIFFV_EEG_CH)
    assert_equal(raw.info['chs'][160]['coil_type'], FIFF.FIFFV_COIL_EEG)
    assert_array_equal(find_events(raw), [[91, 0, 2]])
コード例 #47
0
ファイル: test_3d.py プロジェクト: kambysese/mne-python
def test_plot_alignment(tmpdir):
    """Test plotting of -trans.fif files and MEG sensor layouts."""
    # generate fiducials file for testing
    tempdir = str(tmpdir)
    fiducials_path = op.join(tempdir, 'fiducials.fif')
    fid = [{'coord_frame': 5, 'ident': 1, 'kind': 1,
            'r': [-0.08061612, -0.02908875, -0.04131077]},
           {'coord_frame': 5, 'ident': 2, 'kind': 1,
            'r': [0.00146763, 0.08506715, -0.03483611]},
           {'coord_frame': 5, 'ident': 3, 'kind': 1,
            'r': [0.08436285, -0.02850276, -0.04127743]}]
    write_dig(fiducials_path, fid, 5)

    mlab = _import_mlab()
    evoked = read_evokeds(evoked_fname)[0]
    sample_src = read_source_spaces(src_fname)
    bti = read_raw_bti(pdf_fname, config_fname, hs_fname, convert=True,
                       preload=False).info
    infos = dict(
        Neuromag=evoked.info,
        CTF=read_raw_ctf(ctf_fname).info,
        BTi=bti,
        KIT=read_raw_kit(sqd_fname).info,
    )
    for system, info in infos.items():
        meg = ['helmet', 'sensors']
        if system == 'KIT':
            meg.append('ref')
        plot_alignment(info, trans_fname, subject='sample',
                       subjects_dir=subjects_dir, meg=meg)
        mlab.close(all=True)
    # KIT ref sensor coil def is defined
    mlab.close(all=True)
    info = infos['Neuromag']
    pytest.raises(TypeError, plot_alignment, 'foo', trans_fname,
                  subject='sample', subjects_dir=subjects_dir)
    pytest.raises(TypeError, plot_alignment, info, trans_fname,
                  subject='sample', subjects_dir=subjects_dir, src='foo')
    pytest.raises(ValueError, plot_alignment, info, trans_fname,
                  subject='fsaverage', subjects_dir=subjects_dir,
                  src=sample_src)
    sample_src.plot(subjects_dir=subjects_dir, head=True, skull=True,
                    brain='white')
    mlab.close(all=True)
    # no-head version
    mlab.close(all=True)
    # all coord frames
    pytest.raises(ValueError, plot_alignment, info)
    plot_alignment(info, surfaces=[])
    for coord_frame in ('meg', 'head', 'mri'):
        plot_alignment(info, meg=['helmet', 'sensors'], dig=True,
                       coord_frame=coord_frame, trans=trans_fname,
                       subject='sample', mri_fiducials=fiducials_path,
                       subjects_dir=subjects_dir, src=sample_src)
        mlab.close(all=True)
    # EEG only with strange options
    evoked_eeg_ecog_seeg = evoked.copy().pick_types(meg=False, eeg=True)
    evoked_eeg_ecog_seeg.info['projs'] = []  # "remove" avg proj
    evoked_eeg_ecog_seeg.set_channel_types({'EEG 001': 'ecog',
                                            'EEG 002': 'seeg'})
    with pytest.warns(RuntimeWarning, match='Cannot plot MEG'):
        plot_alignment(evoked_eeg_ecog_seeg.info, subject='sample',
                       trans=trans_fname, subjects_dir=subjects_dir,
                       surfaces=['white', 'outer_skin', 'outer_skull'],
                       meg=['helmet', 'sensors'],
                       eeg=['original', 'projected'], ecog=True, seeg=True)
    mlab.close(all=True)

    sphere = make_sphere_model(info=evoked.info, r0='auto', head_radius='auto')
    bem_sol = read_bem_solution(op.join(subjects_dir, 'sample', 'bem',
                                        'sample-1280-1280-1280-bem-sol.fif'))
    bem_surfs = read_bem_surfaces(op.join(subjects_dir, 'sample', 'bem',
                                          'sample-1280-1280-1280-bem.fif'))
    sample_src[0]['coord_frame'] = 4  # hack for coverage
    plot_alignment(info, subject='sample', eeg='projected',
                   meg='helmet', bem=sphere, dig=True,
                   surfaces=['brain', 'inner_skull', 'outer_skull',
                             'outer_skin'])
    plot_alignment(info, trans_fname, subject='sample', meg='helmet',
                   subjects_dir=subjects_dir, eeg='projected', bem=sphere,
                   surfaces=['head', 'brain'], src=sample_src)
    assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI
               for surf in bem_sol['surfs'])
    plot_alignment(info, trans_fname, subject='sample', meg=[],
                   subjects_dir=subjects_dir, bem=bem_sol, eeg=True,
                   surfaces=['head', 'inflated', 'outer_skull', 'inner_skull'])
    assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI
               for surf in bem_sol['surfs'])
    plot_alignment(info, trans_fname, subject='sample',
                   meg=True, subjects_dir=subjects_dir,
                   surfaces=['head', 'inner_skull'], bem=bem_surfs)
    sphere = make_sphere_model('auto', 'auto', evoked.info)
    src = setup_volume_source_space(sphere=sphere)
    plot_alignment(info, eeg='projected', meg='helmet', bem=sphere,
                   src=src, dig=True, surfaces=['brain', 'inner_skull',
                                                'outer_skull', 'outer_skin'])
    sphere = make_sphere_model('auto', None, evoked.info)  # one layer
    plot_alignment(info, trans_fname, subject='sample', meg=False,
                   coord_frame='mri', subjects_dir=subjects_dir,
                   surfaces=['brain'], bem=sphere, show_axes=True)

    # 3D coil with no defined draw (ConvexHull)
    info_cube = pick_info(info, [0])
    info['dig'] = None
    info_cube['chs'][0]['coil_type'] = 9999
    with pytest.raises(RuntimeError, match='coil definition not found'):
        plot_alignment(info_cube, meg='sensors', surfaces=())
    coil_def_fname = op.join(tempdir, 'temp')
    with open(coil_def_fname, 'w') as fid:
        fid.write(coil_3d)
    with use_coil_def(coil_def_fname):
        plot_alignment(info_cube, meg='sensors', surfaces=(), dig=True)

    # one layer bem with skull surfaces:
    pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  surfaces=['brain', 'head', 'inner_skull'], bem=sphere)
    # wrong eeg value:
    pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir, eeg='foo')
    # wrong meg value:
    pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir, meg='bar')
    # multiple brain surfaces:
    pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  surfaces=['white', 'pial'])
    pytest.raises(TypeError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  surfaces=[1])
    pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  surfaces=['foo'])
    mlab.close(all=True)
コード例 #48
0
def test_find_layout():
    """Test finding layout"""
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        find_layout(chs=test_info['chs'])
        assert_true(w[0].category == DeprecationWarning)
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        find_layout(test_info['chs'])
        assert_true(w[0].category == DeprecationWarning)
    assert_raises(ValueError, find_layout, dict())
    assert_raises(ValueError, find_layout, test_info, ch_type='meep')

    sample_info = Raw(fif_fname).info
    grads = pick_types(sample_info, meg='grad')
    sample_info2 = pick_info(sample_info, grads)

    mags = pick_types(sample_info, meg='mag')
    sample_info3 = pick_info(sample_info, mags)

    # mock new convention
    sample_info4 = copy.deepcopy(sample_info)
    for ii, name in enumerate(sample_info4['ch_names']):
        new = name.replace(' ', '')
        sample_info4['ch_names'][ii] = new
        sample_info4['chs'][ii]['ch_name'] = new

    mags = pick_types(sample_info, meg=False, eeg=True)
    sample_info5 = pick_info(sample_info, mags)

    lout = find_layout(sample_info, ch_type=None)
    assert_true(lout.kind == 'Vectorview-all')
    assert_true(all(' ' in k for k in lout.names))

    lout = find_layout(sample_info2, ch_type='meg')
    assert_true(lout.kind == 'Vectorview-all')

    # test new vector-view
    lout = find_layout(sample_info4, ch_type=None)
    assert_true(lout.kind == 'Vectorview-all')
    assert_true(all(not ' ' in k for k in lout.names))

    lout = find_layout(sample_info, ch_type='grad')
    assert_true(lout.kind == 'Vectorview-grad')
    lout = find_layout(sample_info2)
    assert_true(lout.kind == 'Vectorview-grad')
    lout = find_layout(sample_info2, ch_type='grad')
    assert_true(lout.kind == 'Vectorview-grad')
    lout = find_layout(sample_info2, ch_type='meg')
    assert_true(lout.kind == 'Vectorview-all')


    lout = find_layout(sample_info, ch_type='mag')
    assert_true(lout.kind == 'Vectorview-mag')
    lout = find_layout(sample_info3)
    assert_true(lout.kind == 'Vectorview-mag')
    lout = find_layout(sample_info3, ch_type='mag')
    assert_true(lout.kind == 'Vectorview-mag')
    lout = find_layout(sample_info3, ch_type='meg')
    assert_true(lout.kind == 'Vectorview-all')
    #
    lout = find_layout(sample_info, ch_type='eeg')
    assert_true(lout.kind == 'EEG')
    lout = find_layout(sample_info5)
    assert_true(lout.kind == 'EEG')
    lout = find_layout(sample_info5, ch_type='eeg')
    assert_true(lout.kind == 'EEG')
    # no common layout, 'meg' option not supported

    fname_bti_raw = op.join(bti_dir, 'exported4D_linux_raw.fif')
    lout = find_layout(Raw(fname_bti_raw).info)
    assert_true(lout.kind == 'magnesWH3600')

    lout = find_layout(Raw(fname_ctf_raw).info)
    assert_true(lout.kind == 'CTF-275')

    lout = find_layout(read_raw_kit(fname_kit_157).info)
    assert_true(lout.kind == 'KIT-157')

    sample_info5['dig'] = []
    assert_raises(RuntimeError, find_layout, sample_info5)
コード例 #49
0
def test_make_forward_solution_kit():
    """Test making fwd using KIT, BTI, and CTF (compensated) files."""
    kit_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'kit', 'tests',
                      'data')
    sqd_path = op.join(kit_dir, 'test.sqd')
    mrk_path = op.join(kit_dir, 'test_mrk.sqd')
    elp_path = op.join(kit_dir, 'test_elp.txt')
    hsp_path = op.join(kit_dir, 'test_hsp.txt')
    trans_path = op.join(kit_dir, 'trans-sample.fif')
    fname_kit_raw = op.join(kit_dir, 'test_bin_raw.fif')

    bti_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'bti', 'tests',
                      'data')
    bti_pdf = op.join(bti_dir, 'test_pdf_linux')
    bti_config = op.join(bti_dir, 'test_config_linux')
    bti_hs = op.join(bti_dir, 'test_hs_linux')
    fname_bti_raw = op.join(bti_dir, 'exported4D_linux_raw.fif')

    fname_ctf_raw = op.join(op.dirname(__file__), '..', '..', 'io', 'tests',
                            'data', 'test_ctf_comp_raw.fif')

    # first set up a small testing source space
    temp_dir = _TempDir()
    fname_src_small = op.join(temp_dir, 'sample-oct-2-src.fif')
    src = setup_source_space('sample',
                             'oct2',
                             subjects_dir=subjects_dir,
                             add_dist=False)
    write_source_spaces(fname_src_small, src)  # to enable working with MNE-C
    n_src = 108  # this is the resulting # of verts in fwd

    # first use mne-C: convert file, make forward solution
    fwd = _do_forward_solution('sample',
                               fname_kit_raw,
                               src=fname_src_small,
                               bem=fname_bem_meg,
                               mri=trans_path,
                               eeg=False,
                               meg=True,
                               subjects_dir=subjects_dir)
    assert_true(isinstance(fwd, Forward))

    # now let's use python with the same raw file
    fwd_py = make_forward_solution(fname_kit_raw,
                                   trans_path,
                                   src,
                                   fname_bem_meg,
                                   eeg=False,
                                   meg=True)
    _compare_forwards(fwd, fwd_py, 157, n_src)
    assert_true(isinstance(fwd_py, Forward))

    # now let's use mne-python all the way
    raw_py = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
    # without ignore_ref=True, this should throw an error:
    assert_raises(NotImplementedError,
                  make_forward_solution,
                  raw_py.info,
                  src=src,
                  eeg=False,
                  meg=True,
                  bem=fname_bem_meg,
                  trans=trans_path)

    # check that asking for eeg channels (even if they don't exist) is handled
    meg_only_info = pick_info(raw_py.info,
                              pick_types(raw_py.info, meg=True, eeg=False))
    fwd_py = make_forward_solution(meg_only_info,
                                   src=src,
                                   meg=True,
                                   eeg=True,
                                   bem=fname_bem_meg,
                                   trans=trans_path,
                                   ignore_ref=True)
    _compare_forwards(fwd, fwd_py, 157, n_src, meg_rtol=1e-3, meg_atol=1e-7)

    # BTI python end-to-end versus C
    fwd = _do_forward_solution('sample',
                               fname_bti_raw,
                               src=fname_src_small,
                               bem=fname_bem_meg,
                               mri=trans_path,
                               eeg=False,
                               meg=True,
                               subjects_dir=subjects_dir)
    with warnings.catch_warnings(record=True):  # weight tables
        raw_py = read_raw_bti(bti_pdf, bti_config, bti_hs, preload=False)
    fwd_py = make_forward_solution(raw_py.info,
                                   src=src,
                                   eeg=False,
                                   meg=True,
                                   bem=fname_bem_meg,
                                   trans=trans_path)
    _compare_forwards(fwd, fwd_py, 248, n_src)

    # now let's test CTF w/compensation
    fwd_py = make_forward_solution(fname_ctf_raw,
                                   fname_trans,
                                   src,
                                   fname_bem_meg,
                                   eeg=False,
                                   meg=True)

    fwd = _do_forward_solution('sample',
                               fname_ctf_raw,
                               mri=fname_trans,
                               src=fname_src_small,
                               bem=fname_bem_meg,
                               eeg=False,
                               meg=True,
                               subjects_dir=subjects_dir)
    _compare_forwards(fwd, fwd_py, 274, n_src)

    # CTF with compensation changed in python
    ctf_raw = read_raw_fif(fname_ctf_raw)
    ctf_raw.apply_gradient_compensation(2)

    fwd_py = make_forward_solution(ctf_raw.info,
                                   fname_trans,
                                   src,
                                   fname_bem_meg,
                                   eeg=False,
                                   meg=True)
    with warnings.catch_warnings(record=True):
        fwd = _do_forward_solution('sample',
                                   ctf_raw,
                                   mri=fname_trans,
                                   src=fname_src_small,
                                   bem=fname_bem_meg,
                                   eeg=False,
                                   meg=True,
                                   subjects_dir=subjects_dir)
    _compare_forwards(fwd, fwd_py, 274, n_src)
コード例 #50
0
ファイル: test_maxwell.py プロジェクト: kambysese/mne-python
def test_other_systems():
    """Test Maxwell filtering on KIT, BTI, and CTF files."""
    # KIT
    kit_dir = op.join(io_dir, 'kit', 'tests', 'data')
    sqd_path = op.join(kit_dir, 'test.sqd')
    mrk_path = op.join(kit_dir, 'test_mrk.sqd')
    elp_path = op.join(kit_dir, 'test_elp.txt')
    hsp_path = op.join(kit_dir, 'test_hsp.txt')
    raw_kit = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
    with pytest.warns(RuntimeWarning, match='fit'):
        pytest.raises(RuntimeError, maxwell_filter, raw_kit)
    with catch_logging() as log:
        raw_sss = maxwell_filter(raw_kit, origin=(0., 0., 0.04),
                                 ignore_ref=True, verbose=True)
    assert '12/15 out' in log.getvalue()  # homogeneous fields removed
    _assert_n_free(raw_sss, 65, 65)
    raw_sss_auto = maxwell_filter(raw_kit, origin=(0., 0., 0.04),
                                  ignore_ref=True, mag_scale='auto')
    assert_allclose(raw_sss._data, raw_sss_auto._data)
    # XXX this KIT origin fit is terrible! Eventually we should get a
    # corrected HSP file with proper coverage
    with pytest.warns(RuntimeWarning, match='more than 20 mm'):
        with catch_logging() as log:
            pytest.raises(RuntimeError, maxwell_filter, raw_kit,
                          ignore_ref=True, regularize=None)  # bad condition
            raw_sss = maxwell_filter(raw_kit, origin='auto',
                                     ignore_ref=True, bad_condition='info',
                                     verbose=True)
    log = log.getvalue()
    assert 'badly conditioned' in log
    assert 'more than 20 mm from' in log
    # fits can differ slightly based on scipy version, so be lenient here
    _assert_n_free(raw_sss, 28, 34)  # bad origin == brutal reg
    # Let's set the origin
    with catch_logging() as log:
        raw_sss = maxwell_filter(raw_kit, origin=(0., 0., 0.04),
                                 ignore_ref=True, bad_condition='info',
                                 regularize=None, verbose=True)
    log = log.getvalue()
    assert 'badly conditioned' in log
    assert '80/80 in, 12/15 out' in log
    _assert_n_free(raw_sss, 80)
    # Now with reg
    with catch_logging() as log:
        raw_sss = maxwell_filter(raw_kit, origin=(0., 0., 0.04),
                                 ignore_ref=True, verbose=True)
    log = log.getvalue()
    assert 'badly conditioned' not in log
    assert '12/15 out' in log
    _assert_n_free(raw_sss, 65)

    # BTi
    bti_dir = op.join(io_dir, 'bti', 'tests', 'data')
    bti_pdf = op.join(bti_dir, 'test_pdf_linux')
    bti_config = op.join(bti_dir, 'test_config_linux')
    bti_hs = op.join(bti_dir, 'test_hs_linux')
    raw_bti = read_raw_bti(bti_pdf, bti_config, bti_hs, preload=False)
    picks = pick_types(raw_bti.info, meg='mag', exclude=())
    power = np.sqrt(np.sum(raw_bti[picks][0] ** 2))
    raw_sss = maxwell_filter(raw_bti)
    _assert_n_free(raw_sss, 70)
    _assert_shielding(raw_sss, power, 0.5)
    raw_sss_auto = maxwell_filter(raw_bti, mag_scale='auto', verbose=True)
    _assert_shielding(raw_sss_auto, power, 0.7)

    # CTF
    raw_ctf = read_crop(fname_ctf_raw)
    assert_equal(raw_ctf.compensation_grade, 3)
    pytest.raises(RuntimeError, maxwell_filter, raw_ctf)  # compensated
    raw_ctf.apply_gradient_compensation(0)
    pytest.raises(ValueError, maxwell_filter, raw_ctf)  # cannot fit headshape
    raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04))
    _assert_n_free(raw_sss, 68)
    _assert_shielding(raw_sss, raw_ctf, 1.8)
    with catch_logging() as log:
        raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04),
                                 ignore_ref=True, verbose=True)
    assert ', 12/15 out' in log.getvalue()  # homogeneous fields removed
    _assert_n_free(raw_sss, 70)
    _assert_shielding(raw_sss, raw_ctf, 12)
    raw_sss_auto = maxwell_filter(raw_ctf, origin=(0., 0., 0.04),
                                  ignore_ref=True, mag_scale='auto')
    assert_allclose(raw_sss._data, raw_sss_auto._data)
    with catch_logging() as log:
        maxwell_filter(raw_ctf, origin=(0., 0., 0.04), regularize=None,
                       ignore_ref=True, verbose=True)
    assert '80/80 in, 12/15 out' in log.getvalue()  # homogeneous fields
コード例 #51
0
ファイル: plot_meg_sensors.py プロジェクト: kvlung/mne-python
import os.path as op

from mayavi import mlab

import mne
from mne.io import Raw, read_raw_ctf, read_raw_bti, read_raw_kit
from mne.datasets import sample, spm_face
from mne.viz import plot_trans

print(__doc__)

bti_path = op.abspath(op.dirname(mne.__file__)) + '/io/bti/tests/data/'
kit_path = op.abspath(op.dirname(mne.__file__)) + '/io/kit/tests/data/'
raws = dict(
    Neuromag=Raw(sample.data_path() + '/MEG/sample/sample_audvis_raw.fif'),
    CTF_275=read_raw_ctf(spm_face.data_path() +
                         '/MEG/spm/SPM_CTF_MEG_example_faces1_3D.ds'),
    Magnes_3600wh=read_raw_bti(bti_path + 'test_pdf_linux',
                               bti_path + 'test_config_linux',
                               bti_path + 'test_hs_linux'),
    KIT=read_raw_kit(kit_path + 'test.sqd'),
)

for system, raw in raws.items():
    # We don't have coil definitions for KIT refs, so exclude them
    ref_meg = False if system == 'KIT' else True
    fig = plot_trans(raw.info, trans=None, dig=False, eeg_sensors=False,
                     meg_sensors=True, coord_frame='meg', ref_meg=ref_meg)
    mlab.title(system)
コード例 #52
0
ファイル: test_maxwell.py プロジェクト: mdclarke/mne-python
def test_other_systems():
    """Test Maxwell filtering on KIT, BTI, and CTF files
    """
    io_dir = op.join(op.dirname(__file__), '..', '..', 'io')

    # KIT
    kit_dir = op.join(io_dir, 'kit', 'tests', 'data')
    sqd_path = op.join(kit_dir, 'test.sqd')
    mrk_path = op.join(kit_dir, 'test_mrk.sqd')
    elp_path = op.join(kit_dir, 'test_elp.txt')
    hsp_path = op.join(kit_dir, 'test_hsp.txt')
    raw_kit = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
    with warnings.catch_warnings(record=True):  # head fit
        assert_raises(RuntimeError, maxwell_filter, raw_kit)
    raw_sss = maxwell_filter(raw_kit, origin=(0., 0., 0.04), ignore_ref=True)
    _assert_n_free(raw_sss, 65, 65)
    # XXX this KIT origin fit is terrible! Eventually we should get a
    # corrected HSP file with proper coverage
    with warnings.catch_warnings(record=True):
        with catch_logging() as log_file:
            assert_raises(RuntimeError, maxwell_filter, raw_kit,
                          ignore_ref=True, regularize=None)  # bad condition
            raw_sss = maxwell_filter(raw_kit, origin='auto',
                                     ignore_ref=True, bad_condition='warning',
                                     verbose='warning')
    log_file = log_file.getvalue()
    assert_true('badly conditioned' in log_file)
    assert_true('more than 20 mm from' in log_file)
    # fits can differ slightly based on scipy version, so be lenient here
    _assert_n_free(raw_sss, 28, 34)  # bad origin == brutal reg
    # Let's set the origin
    with warnings.catch_warnings(record=True):
        with catch_logging() as log_file:
            raw_sss = maxwell_filter(raw_kit, origin=(0., 0., 0.04),
                                     ignore_ref=True, bad_condition='warning',
                                     regularize=None, verbose='warning')
    log_file = log_file.getvalue()
    assert_true('badly conditioned' in log_file)
    _assert_n_free(raw_sss, 80)
    # Now with reg
    with warnings.catch_warnings(record=True):
        with catch_logging() as log_file:
            raw_sss = maxwell_filter(raw_kit, origin=(0., 0., 0.04),
                                     ignore_ref=True, verbose=True)
    log_file = log_file.getvalue()
    assert_true('badly conditioned' not in log_file)
    _assert_n_free(raw_sss, 65)

    # BTi
    bti_dir = op.join(io_dir, 'bti', 'tests', 'data')
    bti_pdf = op.join(bti_dir, 'test_pdf_linux')
    bti_config = op.join(bti_dir, 'test_config_linux')
    bti_hs = op.join(bti_dir, 'test_hs_linux')
    with warnings.catch_warnings(record=True):  # weght table
        raw_bti = read_raw_bti(bti_pdf, bti_config, bti_hs, preload=False)
    raw_sss = maxwell_filter(raw_bti)
    _assert_n_free(raw_sss, 70)

    # CTF
    fname_ctf_raw = op.join(io_dir, 'tests', 'data', 'test_ctf_comp_raw.fif')
    raw_ctf = Raw(fname_ctf_raw, compensation=2)
    assert_raises(RuntimeError, maxwell_filter, raw_ctf)  # compensated
    raw_ctf = Raw(fname_ctf_raw)
    assert_raises(ValueError, maxwell_filter, raw_ctf)  # cannot fit headshape
    raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04))
    _assert_n_free(raw_sss, 68)
    raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04), ignore_ref=True)
    _assert_n_free(raw_sss, 70)
コード例 #53
0
ファイル: test_layout.py プロジェクト: YoheiOseki/mne-python
def test_find_layout():
    """Test finding layout"""
    assert_raises(ValueError, find_layout, test_info, ch_type='meep')

    sample_info = Raw(fif_fname).info
    grads = pick_types(sample_info, meg='grad')
    sample_info2 = pick_info(sample_info, grads)

    mags = pick_types(sample_info, meg='mag')
    sample_info3 = pick_info(sample_info, mags)

    # mock new convention
    sample_info4 = copy.deepcopy(sample_info)
    for ii, name in enumerate(sample_info4['ch_names']):
        new = name.replace(' ', '')
        sample_info4['ch_names'][ii] = new
        sample_info4['chs'][ii]['ch_name'] = new

    eegs = pick_types(sample_info, meg=False, eeg=True)
    sample_info5 = pick_info(sample_info, eegs)

    lout = find_layout(sample_info, ch_type=None)
    assert_true(lout.kind == 'Vectorview-all')
    assert_true(all(' ' in k for k in lout.names))

    lout = find_layout(sample_info2, ch_type='meg')
    assert_true(lout.kind == 'Vectorview-all')

    # test new vector-view
    lout = find_layout(sample_info4, ch_type=None)
    assert_true(lout.kind == 'Vectorview-all')
    assert_true(all(' ' not in k for k in lout.names))

    lout = find_layout(sample_info, ch_type='grad')
    assert_true(lout.kind == 'Vectorview-grad')
    lout = find_layout(sample_info2)
    assert_true(lout.kind == 'Vectorview-grad')
    lout = find_layout(sample_info2, ch_type='grad')
    assert_true(lout.kind == 'Vectorview-grad')
    lout = find_layout(sample_info2, ch_type='meg')
    assert_true(lout.kind == 'Vectorview-all')

    lout = find_layout(sample_info, ch_type='mag')
    assert_true(lout.kind == 'Vectorview-mag')
    lout = find_layout(sample_info3)
    assert_true(lout.kind == 'Vectorview-mag')
    lout = find_layout(sample_info3, ch_type='mag')
    assert_true(lout.kind == 'Vectorview-mag')
    lout = find_layout(sample_info3, ch_type='meg')
    assert_true(lout.kind == 'Vectorview-all')

    lout = find_layout(sample_info, ch_type='eeg')
    assert_true(lout.kind == 'EEG')
    lout = find_layout(sample_info5)
    assert_true(lout.kind == 'EEG')
    lout = find_layout(sample_info5, ch_type='eeg')
    assert_true(lout.kind == 'EEG')
    # no common layout, 'meg' option not supported

    fname_bti_raw = op.join(bti_dir, 'exported4D_linux_raw.fif')
    lout = find_layout(Raw(fname_bti_raw).info)
    assert_true(lout.kind == 'magnesWH3600')

    lout = find_layout(Raw(fname_ctf_raw).info)
    assert_true(lout.kind == 'CTF-275')

    lout = find_layout(read_raw_kit(fname_kit_157).info)
    assert_true(lout.kind == 'KIT-157')
コード例 #54
0
def test_make_forward_solution_kit():
    """Test making fwd using KIT, BTI, and CTF (compensated) files."""
    kit_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'kit',
                      'tests', 'data')
    sqd_path = op.join(kit_dir, 'test.sqd')
    mrk_path = op.join(kit_dir, 'test_mrk.sqd')
    elp_path = op.join(kit_dir, 'test_elp.txt')
    hsp_path = op.join(kit_dir, 'test_hsp.txt')
    trans_path = op.join(kit_dir, 'trans-sample.fif')
    fname_kit_raw = op.join(kit_dir, 'test_bin_raw.fif')

    bti_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'bti',
                      'tests', 'data')
    bti_pdf = op.join(bti_dir, 'test_pdf_linux')
    bti_config = op.join(bti_dir, 'test_config_linux')
    bti_hs = op.join(bti_dir, 'test_hs_linux')
    fname_bti_raw = op.join(bti_dir, 'exported4D_linux_raw.fif')

    fname_ctf_raw = op.join(op.dirname(__file__), '..', '..', 'io', 'tests',
                            'data', 'test_ctf_comp_raw.fif')

    # first set up a small testing source space
    temp_dir = _TempDir()
    fname_src_small = op.join(temp_dir, 'sample-oct-2-src.fif')
    src = setup_source_space('sample', 'oct2', subjects_dir=subjects_dir,
                             add_dist=False)
    write_source_spaces(fname_src_small, src)  # to enable working with MNE-C
    n_src = 108  # this is the resulting # of verts in fwd

    # first use mne-C: convert file, make forward solution
    fwd = _do_forward_solution('sample', fname_kit_raw, src=fname_src_small,
                               bem=fname_bem_meg, mri=trans_path,
                               eeg=False, meg=True, subjects_dir=subjects_dir)
    assert (isinstance(fwd, Forward))

    # now let's use python with the same raw file
    fwd_py = make_forward_solution(fname_kit_raw, trans_path, src,
                                   fname_bem_meg, eeg=False, meg=True)
    _compare_forwards(fwd, fwd_py, 157, n_src)
    assert (isinstance(fwd_py, Forward))

    # now let's use mne-python all the way
    raw_py = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
    # without ignore_ref=True, this should throw an error:
    pytest.raises(NotImplementedError, make_forward_solution, raw_py.info,
                  src=src, eeg=False, meg=True,
                  bem=fname_bem_meg, trans=trans_path)

    # check that asking for eeg channels (even if they don't exist) is handled
    meg_only_info = pick_info(raw_py.info, pick_types(raw_py.info, meg=True,
                                                      eeg=False))
    fwd_py = make_forward_solution(meg_only_info, src=src, meg=True, eeg=True,
                                   bem=fname_bem_meg, trans=trans_path,
                                   ignore_ref=True)
    _compare_forwards(fwd, fwd_py, 157, n_src,
                      meg_rtol=1e-3, meg_atol=1e-7)

    # BTI python end-to-end versus C
    fwd = _do_forward_solution('sample', fname_bti_raw, src=fname_src_small,
                               bem=fname_bem_meg, mri=trans_path,
                               eeg=False, meg=True, subjects_dir=subjects_dir)
    raw_py = read_raw_bti(bti_pdf, bti_config, bti_hs, preload=False)
    fwd_py = make_forward_solution(raw_py.info, src=src, eeg=False, meg=True,
                                   bem=fname_bem_meg, trans=trans_path)
    _compare_forwards(fwd, fwd_py, 248, n_src)

    # now let's test CTF w/compensation
    fwd_py = make_forward_solution(fname_ctf_raw, fname_trans, src,
                                   fname_bem_meg, eeg=False, meg=True)

    fwd = _do_forward_solution('sample', fname_ctf_raw, mri=fname_trans,
                               src=fname_src_small, bem=fname_bem_meg,
                               eeg=False, meg=True, subjects_dir=subjects_dir)
    _compare_forwards(fwd, fwd_py, 274, n_src)

    # CTF with compensation changed in python
    ctf_raw = read_raw_fif(fname_ctf_raw)
    ctf_raw.info['bads'] = ['MRO24-2908']  # test that it works with some bads
    ctf_raw.apply_gradient_compensation(2)

    fwd_py = make_forward_solution(ctf_raw.info, fname_trans, src,
                                   fname_bem_meg, eeg=False, meg=True)
    fwd = _do_forward_solution('sample', ctf_raw, mri=fname_trans,
                               src=fname_src_small, bem=fname_bem_meg,
                               eeg=False, meg=True,
                               subjects_dir=subjects_dir)
    _compare_forwards(fwd, fwd_py, 274, n_src)

    temp_dir = _TempDir()
    fname_temp = op.join(temp_dir, 'test-ctf-fwd.fif')
    write_forward_solution(fname_temp, fwd_py)
    fwd_py2 = read_forward_solution(fname_temp)
    _compare_forwards(fwd_py, fwd_py2, 274, n_src)
    repr(fwd_py)
コード例 #55
0
def test_make_forward_solution_kit():
    """Test making fwd using KIT, BTI, and CTF (compensated) files
    """
    fname_bem = op.join(subjects_dir, 'sample', 'bem',
                        'sample-5120-bem-sol.fif')
    kit_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'kit',
                      'tests', 'data')
    sqd_path = op.join(kit_dir, 'test.sqd')
    mrk_path = op.join(kit_dir, 'test_mrk.sqd')
    elp_path = op.join(kit_dir, 'test_elp.txt')
    hsp_path = op.join(kit_dir, 'test_hsp.txt')
    mri_path = op.join(kit_dir, 'trans-sample.fif')
    fname_kit_raw = op.join(kit_dir, 'test_bin_raw.fif')

    bti_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'bti',
                      'tests', 'data')
    bti_pdf = op.join(bti_dir, 'test_pdf_linux')
    bti_config = op.join(bti_dir, 'test_config_linux')
    bti_hs = op.join(bti_dir, 'test_hs_linux')
    fname_bti_raw = op.join(bti_dir, 'exported4D_linux_raw.fif')

    fname_ctf_raw = op.join(op.dirname(__file__), '..', '..', 'io', 'tests',
                            'data', 'test_ctf_comp_raw.fif')

    # first set up a testing source space
    fname_src = op.join(temp_dir, 'oct2-src.fif')
    src = setup_source_space('sample', fname_src, 'oct2',
                             subjects_dir=subjects_dir)

    # first use mne-C: convert file, make forward solution
    fwd = do_forward_solution('sample', fname_kit_raw, src=fname_src,
                              mindist=0.0, bem=fname_bem, mri=mri_path,
                              eeg=False, meg=True, subjects_dir=subjects_dir)
    assert_true(isinstance(fwd, Forward))

    # now let's use python with the same raw file
    fwd_py = make_forward_solution(fname_kit_raw, mindist=0.0,
                                   src=src, eeg=False, meg=True,
                                   bem=fname_bem, mri=mri_path)
    _compare_forwards(fwd, fwd_py, 157, 108)
    assert_true(isinstance(fwd_py, Forward))

    # now let's use mne-python all the way
    raw_py = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
    # without ignore_ref=True, this should throw an error:
    assert_raises(NotImplementedError, make_forward_solution, raw_py.info,
                  mindist=0.0, src=src, eeg=False, meg=True,
                  bem=fname_bem, mri=mri_path)
    fwd_py = make_forward_solution(raw_py.info, mindist=0.0,
                                   src=src, eeg=False, meg=True,
                                   bem=fname_bem, mri=mri_path,
                                   ignore_ref=True)
    _compare_forwards(fwd, fwd_py, 157, 108,
                      meg_rtol=1e-3, meg_atol=1e-7)

    # BTI python end-to-end versus C
    fwd = do_forward_solution('sample', fname_bti_raw, src=fname_src,
                              mindist=0.0, bem=fname_bem, mri=mri_path,
                              eeg=False, meg=True, subjects_dir=subjects_dir)
    raw_py = read_raw_bti(bti_pdf, bti_config, bti_hs)
    fwd_py = make_forward_solution(raw_py.info, mindist=0.0,
                                   src=src, eeg=False, meg=True,
                                   bem=fname_bem, mri=mri_path)
    _compare_forwards(fwd, fwd_py, 248, 108)

    # now let's test CTF w/compensation
    fwd_py = make_forward_solution(fname_ctf_raw, mindist=0.0,
                                   src=src, eeg=False, meg=True,
                                   bem=fname_bem, mri=fname_mri)

    fwd = do_forward_solution('sample', fname_ctf_raw, src=fname_src,
                              mindist=0.0, bem=fname_bem, mri=fname_mri,
                              eeg=False, meg=True, subjects_dir=subjects_dir)
    _compare_forwards(fwd, fwd_py, 274, 108)

    # CTF with compensation changed in python
    ctf_raw = Raw(fname_ctf_raw, compensation=2)

    fwd_py = make_forward_solution(ctf_raw.info, mindist=0.0,
                                   src=src, eeg=False, meg=True,
                                   bem=fname_bem, mri=fname_mri)
    with warnings.catch_warnings(record=True):
        fwd = do_forward_solution('sample', ctf_raw, src=fname_src,
                                  mindist=0.0, bem=fname_bem, mri=fname_mri,
                                  eeg=False, meg=True,
                                  subjects_dir=subjects_dir)
    _compare_forwards(fwd, fwd_py, 274, 108)
コード例 #56
0
ファイル: test_pick.py プロジェクト: jhouck/mne-python
def test_pick_refs():
    """Test picking of reference sensors."""
    infos = list()
    # KIT
    kit_dir = op.join(io_dir, 'kit', 'tests', 'data')
    sqd_path = op.join(kit_dir, 'test.sqd')
    mrk_path = op.join(kit_dir, 'test_mrk.sqd')
    elp_path = op.join(kit_dir, 'test_elp.txt')
    hsp_path = op.join(kit_dir, 'test_hsp.txt')
    raw_kit = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
    infos.append(raw_kit.info)
    # BTi
    bti_dir = op.join(io_dir, 'bti', 'tests', 'data')
    bti_pdf = op.join(bti_dir, 'test_pdf_linux')
    bti_config = op.join(bti_dir, 'test_config_linux')
    bti_hs = op.join(bti_dir, 'test_hs_linux')
    raw_bti = read_raw_bti(bti_pdf, bti_config, bti_hs, preload=False)
    infos.append(raw_bti.info)
    # CTF
    fname_ctf_raw = op.join(io_dir, 'tests', 'data', 'test_ctf_comp_raw.fif')
    raw_ctf = read_raw_fif(fname_ctf_raw)
    raw_ctf.apply_gradient_compensation(2)
    for info in infos:
        info['bads'] = []
        pytest.raises(ValueError, pick_types, info, meg='foo')
        pytest.raises(ValueError, pick_types, info, ref_meg='foo')
        picks_meg_ref = pick_types(info, meg=True, ref_meg=True)
        picks_meg = pick_types(info, meg=True, ref_meg=False)
        picks_ref = pick_types(info, meg=False, ref_meg=True)
        assert_array_equal(picks_meg_ref,
                           np.sort(np.concatenate([picks_meg, picks_ref])))
        picks_grad = pick_types(info, meg='grad', ref_meg=False)
        picks_ref_grad = pick_types(info, meg=False, ref_meg='grad')
        picks_meg_ref_grad = pick_types(info, meg='grad', ref_meg='grad')
        assert_array_equal(picks_meg_ref_grad,
                           np.sort(np.concatenate([picks_grad,
                                                   picks_ref_grad])))
        picks_mag = pick_types(info, meg='mag', ref_meg=False)
        picks_ref_mag = pick_types(info, meg=False, ref_meg='mag')
        picks_meg_ref_mag = pick_types(info, meg='mag', ref_meg='mag')
        assert_array_equal(picks_meg_ref_mag,
                           np.sort(np.concatenate([picks_mag,
                                                   picks_ref_mag])))
        assert_array_equal(picks_meg,
                           np.sort(np.concatenate([picks_mag, picks_grad])))
        assert_array_equal(picks_ref,
                           np.sort(np.concatenate([picks_ref_mag,
                                                   picks_ref_grad])))
        assert_array_equal(picks_meg_ref, np.sort(np.concatenate(
            [picks_grad, picks_mag, picks_ref_grad, picks_ref_mag])))

        for pick in (picks_meg_ref, picks_meg, picks_ref,
                     picks_grad, picks_ref_grad, picks_meg_ref_grad,
                     picks_mag, picks_ref_mag, picks_meg_ref_mag):
            if len(pick) > 0:
                pick_info(info, pick)

    # test CTF expected failures directly
    info = raw_ctf.info
    info['bads'] = []
    picks_meg_ref = pick_types(info, meg=True, ref_meg=True)
    picks_meg = pick_types(info, meg=True, ref_meg=False)
    picks_ref = pick_types(info, meg=False, ref_meg=True)
    picks_mag = pick_types(info, meg='mag', ref_meg=False)
    picks_ref_mag = pick_types(info, meg=False, ref_meg='mag')
    picks_meg_ref_mag = pick_types(info, meg='mag', ref_meg='mag')
    for pick in (picks_meg_ref, picks_ref, picks_ref_mag, picks_meg_ref_mag):
        if len(pick) > 0:
            pick_info(info, pick)

    for pick in (picks_meg, picks_mag):
        if len(pick) > 0:
            with catch_logging() as log:
                pick_info(info, pick, verbose=True)
            assert ('Removing {} compensators'.format(len(info['comps']))
                    in log.getvalue())