コード例 #1
0
    def __init__(self,
                 args,
                 cfg=None,
                 net='resnet',
                 output_stride=32,
                 num_classes=21,
                 img_size=512,
                 pretrained=True,
                 freeze_bn=False):
        super(DSSD, self).__init__()

        self.args = args
        self.cfg = cfg
        self.net = net
        self.num_classes = num_classes
        self.image_size = img_size
        self.priorbox = PriorBox(cfg, net, output_stride)
        self.priors = self.priorbox().to(args.device)
        self.backbone = build_backbone(net, output_stride, pretrained)
        self.aspp = build_aspp(net, output_stride)
        self.decoder = build_decoder(net)
        self.head = build_head(inplances=self.decoder.plances, 
                               num_classes=num_classes,
                               num_anchor=cfg.anchor_number)

        if freeze_bn:
            self.freeze_bn

        # For detect
        self.softmax = nn.Softmax(dim=-1)
        self.detect = Detect(self.args, self.cfg, self.num_classes)
コード例 #2
0
ファイル: deeplab.py プロジェクト: zhouleiSJTU/ViewAL
    def __init__(self,
                 backbone='resnet',
                 output_stride=16,
                 num_classes=21,
                 sync_bn=False,
                 freeze_bn=False,
                 mc_dropout=False):
        super(DeepLab, self).__init__()
        if backbone == 'drn':
            output_stride = 8

        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.backbone = build_backbone(backbone,
                                       output_stride,
                                       BatchNorm,
                                       mc_dropout=mc_dropout)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        self.decoder = build_decoder(num_classes, backbone, BatchNorm)
        self.return_features = False

        if freeze_bn:
            self.freeze_bn()
コード例 #3
0
ファイル: detr.py プロジェクト: PaperCodeReview/DETR-TF
def build(args):
    backbone = build_backbone(args)
    transformer = build_transformer(args)
    model = DETR(backbone,
                 transformer,
                 num_classes=args.classes,
                 num_queries=args.num_queries,
                 aux_loss=args.aux_loss)
    if args.masks:
        raise NotImplementedError('Segmentation model is not implemented yet.')
コード例 #4
0
ファイル: deeplab.py プロジェクト: ShunqiangBian/lane_detect
    def __init__(self, args):
        super(DeepLab, self).__init__()
        if args.backbone == 'drn':
            output_stride = 8
        else:
            output_stride = args.output_stride

        if args.sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.backbone = build_backbone(args.backbone, output_stride, BatchNorm)
        self.aspp = build_aspp(args.backbone, output_stride, BatchNorm)
        self.decoder = build_decoder(args.num_classes, args.backbone,
                                     BatchNorm)
        self.freeze_bn = args.freeze_bn
コード例 #5
0
    def __init__(self,
                 backbone='resnst',
                 sync_bn=False,
                 num_classes=1000,
                 freeze_bn=False,
                 output_scale=16,
                 pretrained=False):
        super(DeepLabV3Plus, self).__init__()
        if backbone == 'drn':
            output_scale = 8

        self.backbone = build_backbone(backbone, output_scale, sync_bn,
                                       pretrained)
        self.aspp = ASPP(backbone, output_scale, sync_bn)
        self.decoder = Decoder(backbone, num_classes, sync_bn)

        if freeze_bn:
            for m in self.modules():
                if isinstance(m, nn.BatchNorm2d):
                    m.eval()
コード例 #6
0
    def __init__(self,
                 num_blocks,
                 num_classes,
                 back_bone='resnet',
                 pretrained=True):
        super(FPN, self).__init__()
        self.in_planes = 64
        self.num_classes = num_classes

        self.conv1 = nn.Conv2d(3,
                               64,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)

        BatchNorm = nn.BatchNorm2d
        self.back_bone = build_backbone(back_bone)

        # Bottom-up layers
        self.layer1 = self._make_layer(Bottleneck, 64, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(Bottleneck,
                                       128,
                                       num_blocks[1],
                                       stride=2)
        self.layer3 = self._make_layer(Bottleneck,
                                       256,
                                       num_blocks[2],
                                       stride=2)
        self.layer4 = self._make_layer(Bottleneck,
                                       512,
                                       num_blocks[3],
                                       stride=2)

        # Top layer
        self.toplayer = nn.Conv2d(2048,
                                  256,
                                  kernel_size=1,
                                  stride=1,
                                  padding=0)  # Reduce channels

        # Smooth layers
        self.smooth1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.smooth2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.smooth3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)

        # Lateral layers
        self.latlayer1 = nn.Conv2d(1024,
                                   256,
                                   kernel_size=1,
                                   stride=1,
                                   padding=0)
        self.latlayer2 = nn.Conv2d(512,
                                   256,
                                   kernel_size=1,
                                   stride=1,
                                   padding=0)
        self.latlayer3 = nn.Conv2d(256,
                                   256,
                                   kernel_size=1,
                                   stride=1,
                                   padding=0)

        # Semantic branch
        self.semantic_branch = nn.Conv2d(256,
                                         128,
                                         kernel_size=3,
                                         stride=1,
                                         padding=1)
        self.conv2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.conv3 = nn.Conv2d(128,
                               self.num_classes,
                               kernel_size=1,
                               stride=1,
                               padding=0)
        # num_groups, num_channels
        self.gn1 = nn.GroupNorm(128, 128)
        self.gn2 = nn.GroupNorm(256, 256)
コード例 #7
0
 def __init__(self, backbone='xception', num_classes=3):
     super(GNet, self).__init__()
     filters = [32, 64, 128, 256, 512]
     Norm_layer = nn.InstanceNorm3d
     self.backbone = build_backbone(backbone, filters, Norm_layer)
     self.decoder = build_decoder(num_classes, filters, Norm_layer)