コード例 #1
0
def evaluate_model(config: Config, model: NNCRF, batch_insts_ids, name: str,
                   insts: List[Instance]):
    ## evaluation
    metrics = np.asarray([0, 0, 0], dtype=int)
    batch_id = 0
    batch_size = config.batch_size
    for batch in batch_insts_ids:
        one_batch_insts = insts[batch_id * batch_size:(batch_id + 1) *
                                batch_size]
        batch_max_scores, batch_max_ids = model.decode(batch)
        metrics += evaluate_batch_insts(batch_insts=one_batch_insts,
                                        batch_pred_ids=batch_max_ids,
                                        batch_gold_ids=batch[-1],
                                        word_seq_lens=batch[1],
                                        idx2label=config.idx2labels)
        batch_id += 1
    p, total_predict, total_entity = metrics[0], metrics[1], metrics[2]
    precision = p * 1.0 / total_predict * 100 if total_predict != 0 else 0
    recall = p * 1.0 / total_entity * 100 if total_entity != 0 else 0
    fscore = 2.0 * precision * recall / (
        precision + recall) if precision != 0 or recall != 0 else 0
    print("[%s set] Precision: %.2f, Recall: %.2f, F1: %.2f" %
          (name, precision, recall, fscore),
          flush=True)
    return [precision, recall, fscore]
コード例 #2
0
def predict_with_constraints(config: Config, model: NNCRF,
                             fold_batches: List[Tuple],
                             folded_insts: List[Instance]):
    batch_id = 0
    batch_size = config.batch_size
    model.eval()
    for batch in fold_batches:
        one_batch_insts = folded_insts[batch_id * batch_size:(batch_id + 1) *
                                       batch_size]
        word_seq_lens = batch[1].cpu().numpy()
        if config.variant == "hard":
            with torch.no_grad():
                batch_max_scores, batch_max_ids = model.decode(batch)
            batch_max_ids = batch_max_ids.cpu().numpy()
            for idx in range(len(batch_max_ids)):
                length = word_seq_lens[idx]
                prediction = batch_max_ids[idx][:length].tolist()
                prediction = prediction[::-1]
                one_batch_insts[idx].output_ids = prediction
        else:
            ## means soft model, assign soft probabilit
            with torch.no_grad():
                marginals = model.get_marginal(batch)
            marginals = marginals.cpu().numpy()
            for idx in range(len(marginals)):
                length = word_seq_lens[idx]
                one_batch_insts[idx].marginals = marginals[idx, :length, :]
        batch_id += 1
コード例 #3
0
def hard_constraint_predict(config: Config, model: NNCRF, fold_batches: List[Tuple], folded_insts: List[Instance],
                            model_type: str = "hard"):
    batch_id = 0
    batch_size = config.batch_size
    model.eval()
    for batch in fold_batches:
        one_batch_insts = folded_insts[batch_id * batch_size:(batch_id + 1) * batch_size]
        _, batch_max_ids = model.decode(batch)
        batch_max_ids = batch_max_ids.cpu().numpy()
        word_seq_lens = batch[1].cpu().numpy()
        for idx in range(len(batch_max_ids)):
            length = word_seq_lens[idx]
            prediction = batch_max_ids[idx][:length].tolist()
            prediction = prediction[::-1]
            one_batch_insts[idx].output_ids = prediction
        batch_id += 1
コード例 #4
0
ファイル: trainer.py プロジェクト: allanj/emerging_entity
def evaluate_model(config: Config, model: NNCRF, batch_insts_ids, name: str,
                   insts: List[Instance]):
    ## evaluation
    p_dict, total_predict_dict, total_entity_dict = Counter(), Counter(
    ), Counter()
    batch_id = 0
    batch_size = config.batch_size
    for batch in batch_insts_ids:
        one_batch_insts = insts[batch_id * batch_size:(batch_id + 1) *
                                batch_size]
        batch_max_scores, batch_max_ids = model.decode(batch)
        batch_p, batch_predict, batch_total = evaluate_batch_insts(
            one_batch_insts, batch_max_ids, batch[-1], batch[1],
            config.idx2labels, config.use_crf_layer)
        p_dict += batch_p
        total_predict_dict += batch_predict
        total_entity_dict += batch_total
        batch_id += 1

    for key in total_entity_dict:
        precision_key, recall_key, fscore_key = get_metric(
            p_dict[key], total_entity_dict[key], total_predict_dict[key])
        print("[%s] Prec.: %.2f, Rec.: %.2f, F1: %.2f" %
              (key, precision_key, recall_key, fscore_key))
        if key == config.new_type:
            precision_new_type, recall_new_type, fscore_new_type = get_metric(
                p_dict[key], total_entity_dict[key], total_predict_dict[key])

    total_p = sum(list(p_dict.values()))
    total_predict = sum(list(total_predict_dict.values()))
    total_entity = sum(list(total_entity_dict.values()))
    precision, recall, fscore = get_metric(total_p, total_entity,
                                           total_predict)
    print(colored(
        "[%s set Total] Prec.: %.2f, Rec.: %.2f, F1: %.2f" %
        (name, precision, recall, fscore), 'blue'),
          flush=True)
    if config.choose_by_new_type:
        return [precision_new_type, recall_new_type, fscore_new_type]
    else:
        return [precision, recall, fscore]
コード例 #5
0
def evaluate_model(config: Config, model: NNCRF, batch_insts_ids, name: str,
                   insts: List[Instance]):
    ## evaluation
    metrics_exact = np.asarray([0, 0, 0], dtype=int)
    metrics_overlap = np.asarray([0, 0, 0], dtype=int)

    dict_exact = {}
    dict_overlap = {}

    batch_id = 0
    batch_size = config.batch_size
    for batch in batch_insts_ids:
        one_batch_insts = insts[batch_id * batch_size:(batch_id + 1) *
                                batch_size]
        batch_max_scores, batch_max_ids = model.decode(batch)
        results = evaluate_batch_insts(one_batch_insts, batch_max_ids,
                                       batch[-1], batch[1], config.idx2labels)

        metrics_exact += results[0]
        metrics_overlap += results[1]

        for key in results[2]:
            if key not in dict_exact:
                dict_exact[key] = [0, 0, 0]
            dict_exact[key][0] += results[2][key][0]
            dict_exact[key][1] += results[2][key][1]
            dict_exact[key][2] += results[2][key][2]

        for key in results[3]:
            if key not in dict_overlap:
                dict_overlap[key] = [0, 0, 0]
            dict_overlap[key][0] += results[3][key][0]
            dict_overlap[key][1] += results[3][key][1]
            dict_overlap[key][2] += results[3][key][2]

        batch_id += 1

    p_exact, total_predict, total_entity = metrics_exact[0], metrics_exact[
        1], metrics_exact[2]
    precision_exact = p_exact * 1.0 / total_predict * 100 if total_predict != 0 else 0
    recall_exact = p_exact * 1.0 / total_entity * 100 if total_entity != 0 else 0
    fscore_exact = 2.0 * precision_exact * recall_exact / (
        precision_exact +
        recall_exact) if precision_exact != 0 or recall_exact != 0 else 0
    print("[%s set - Exact] Precision: %.2f, Recall: %.2f, F1: %.2f" %
          (name, precision_exact, recall_exact, fscore_exact),
          flush=True)
    #print_report(dict_exact)

    p_overlap, total_predict, total_entity = metrics_overlap[
        0], metrics_overlap[1], metrics_overlap[2]
    precision_overlap = p_overlap * 1.0 / total_predict * 100 if total_predict != 0 else 0
    recall_overlap = p_overlap * 1.0 / total_entity * 100 if total_entity != 0 else 0
    fscore_overlap = 2.0 * precision_overlap * recall_overlap / (
        precision_overlap +
        recall_overlap) if precision_overlap != 0 or recall_overlap != 0 else 0
    print("[%s set - Overlap] Precision: %.2f, Recall: %.2f, F1: %.2f" %
          (name, precision_overlap, recall_overlap, fscore_overlap),
          flush=True)
    #print_report(dict_overlap)

    return [precision_exact, recall_exact,
            fscore_exact], [precision_overlap, recall_overlap,
                            fscore_overlap], dict_exact, dict_overlap
コード例 #6
0
def evaluate_model(config: Config, model: NNCRF, batch_insts_ids, name: str,
                   insts: List[Instance]):
    ## evaluation
    i = 0
    metrics = np.asarray([
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0
    ],
                         dtype=int)
    batch_id = 0
    batch_size = config.batch_size
    for batch in batch_insts_ids:
        i += 1
        flag = 0
        one_batch_insts = insts[batch_id * batch_size:(batch_id + 1) *
                                batch_size]
        batch_max_scores, batch_max_ids = model.decode(batch)
        if i == len(batch_insts_ids) - 1:
            flag = 1
        metrics += evaluate_batch_insts(one_batch_insts, batch_max_ids,
                                        batch[-1], batch[1], config.idx2labels,
                                        config.use_crf_layer, config.test_kind,
                                        flag)
        batch_id += 1
    p, p_special, total_predict, total_entity, special_predict, special_entity = metrics[
        0], metrics[1], metrics[2], metrics[3], metrics[4], metrics[5]

    wrong_prediction = {}
    wrong_prediction["BLater"] = metrics[6]
    wrong_prediction["BEarlier"] = metrics[7]
    wrong_prediction["ILater"] = metrics[8]
    wrong_prediction["IEarlier"] = metrics[9]
    wrong_prediction["O2misc"] = metrics[10]
    wrong_prediction["misc2O"] = metrics[11]
    wrong_prediction[1] = metrics[12]
    wrong_prediction[2] = metrics[13]
    wrong_prediction[3] = metrics[14]
    wrong_prediction[4] = metrics[15]
    wrong_prediction[5] = metrics[16]
    wrong_prediction[6] = metrics[17]
    wrong_prediction[7] = metrics[18]
    wrong_prediction["length1"] = metrics[19]
    wrong_prediction["length2"] = metrics[20]
    wrong_prediction["length3"] = metrics[21]
    wrong_prediction["length4"] = metrics[22]
    wrong_prediction["length5"] = metrics[23]
    wrong_prediction["length6"] = metrics[24]
    wrong_prediction["length7"] = metrics[25]

    precision = p * 1.0 / total_predict * 100 if total_predict != 0 else 0
    recall = p * 1.0 / total_entity * 100 if total_entity != 0 else 0
    fscore = 2.0 * precision * recall / (
        precision + recall) if precision != 0 or recall != 0 else 0

    precision_special = p_special * 1.0 / special_predict * 100 if special_predict != 0 else 0
    recall_special = p_special * 1.0 / special_entity * 100 if special_entity != 0 else 0
    fscore_special = 2.0 * precision_special * recall_special / (precision_special + recall_special) \
                    if precision_special != 0 or recall_special != 0 else 0
    print("---[%s set] Precision: %.2f, Recall: %.2f, F1: %.2f" %
          (name, precision, recall, fscore),
          flush=True)
    print("---[%s of %s set] Precision: %.2f, Recall: %.2f, F1: %.2f" %
          (config.test_kind, name, precision_special, recall_special,
           fscore_special),
          flush=True)

    print(p_special, special_entity, special_predict)
    for inn in wrong_prediction.keys():
        if str(inn).startswith("length"):
            print(wrong_prediction[inn], end=" ")
    print()
    print(wrong_prediction)

    if name == "test":
        print()
    return [precision, recall, fscore]