コード例 #1
0
def update_train_insts(config: Config, train_insts: List[List[Instance]],
                       model_names):
    # assign hard prediction to other folds
    if config.variant == "hard":
        print("\n\n[Data Info] Assigning labels for the HARD approach")
    else:
        print(
            "\n\n[Data Info] Performing marginal decoding to assign the marginals"
        )
    train_batches = [
        batching_list_instances(config, insts) for insts in train_insts
    ]
    for fold_id, folded_train_insts in enumerate(train_insts):
        model = NNCRF(config)
        model_name = model_names[fold_id]
        model.load_state_dict(torch.load(model_name))
        predict_with_constraints(
            config=config,
            model=model,
            fold_batches=train_batches[1 - fold_id],
            folded_insts=train_insts[1 - fold_id])  ## set a new label id

    print("\n\n")
    return train_insts
コード例 #2
0
def train_model(config: Config, epoch: int, train_insts: List[Instance],
                dev_insts: List[Instance], test_insts: List[Instance]):
    model = NNCRF(config)
    optimizer = get_optimizer(config, model)
    train_num = len(train_insts)
    print("number of instances: %d" % (train_num))
    print(colored("[Shuffled] Shuffle the training instance ids", "red"))
    random.shuffle(train_insts)

    batched_data = batching_list_instances(config, train_insts)
    dev_batches = batching_list_instances(config, dev_insts)
    test_batches = batching_list_instances(config, test_insts)

    best_dev = [-1, 0]
    best_test = [-1, 0]

    model_folder = config.model_folder
    res_folder = "results"
    if os.path.exists(model_folder):
        raise FileExistsError(
            f"The folder {model_folder} exists. Please either delete it or create a new one "
            f"to avoid override.")
    model_name = model_folder + "/lstm_crf.m".format()
    config_name = model_folder + "/config.conf"
    res_name = res_folder + "/lstm_crf.results".format()
    print("[Info] The model will be saved to: %s.tar.gz" % (model_folder))
    if not os.path.exists(model_folder):
        os.makedirs(model_folder)
    if not os.path.exists(res_folder):
        os.makedirs(res_folder)

    for i in range(1, epoch + 1):
        epoch_loss = 0
        start_time = time.time()
        model.zero_grad()
        if config.optimizer.lower() == "sgd":
            optimizer = lr_decay(config, optimizer, i)
        for index in np.random.permutation(len(batched_data)):
            model.train()
            loss = model(*batched_data[index])
            epoch_loss += loss.item()
            loss.backward()
            optimizer.step()
            model.zero_grad()
            loss.detach()

        end_time = time.time()
        print("Epoch %d: %.5f, Time is %.2fs" %
              (i, epoch_loss, end_time - start_time),
              flush=True)

        model.eval()
        dev_metrics = evaluate_model(config, model, dev_batches, "dev",
                                     dev_insts)
        test_metrics = evaluate_model(config, model, test_batches, "test",
                                      test_insts)
        if test_metrics[1][2] > best_test[0]:
            print("saving the best model...")
            best_dev[0] = dev_metrics[1][2]
            best_dev[1] = i
            best_test[0] = test_metrics[1][2]
            best_test[1] = i
            torch.save(model.state_dict(), model_name)
            # Save the corresponding config as well.
            f = open(config_name, 'wb')
            pickle.dump(config, f)
            f.close()
            print('Exact\n')
            print_report(test_metrics[-2])
            print('Overlap\n')
            print_report(test_metrics[-1])
            write_results(res_name, test_insts)
            print("Archiving the best Model...")
            with tarfile.open(model_folder + "/" + model_folder + ".tar.gz",
                              "w:gz") as tar:
                tar.add(model_folder, arcname=os.path.basename(model_folder))
        model.zero_grad()

    print("Finished archiving the models")

    print("The best dev: %.2f" % (best_dev[0]))
    print("The corresponding test: %.2f" % (best_test[0]))
    print("Final testing.")
    model.load_state_dict(torch.load(model_name))
    model.eval()
    evaluate_model(config, model, test_batches, "test", test_insts)
    write_results(res_name, test_insts)
コード例 #3
0
def train_model(config: Config, epoch: int, train_insts: List[Instance],
                dev_insts: List[Instance], test_insts: List[Instance]):
    model = NNCRF(config)
    optimizer = get_optimizer(config, model)
    train_num = len(train_insts)
    print("number of instances: %d" % (train_num))
    print(colored("[Shuffled] Shuffle the training instance ids", "red"))
    random.shuffle(train_insts)

    batched_data = batching_list_instances(config, train_insts)
    dev_batches = batching_list_instances(config, dev_insts)
    test_batches = batching_list_instances(config, test_insts)

    best_dev = [-1, 0]
    best_test = [-1, 0]

    model_folder = config.model_folder
    res_folder = "results"
    if os.path.exists("model_files/" + model_folder):
        raise FileExistsError(
            f"The folder model_files/{model_folder} exists. Please either delete it or create a new one "
            f"to avoid override.")
    model_path = f"model_files/{model_folder}/lstm_crf.m"
    config_path = f"model_files/{model_folder}/config.conf"
    res_path = f"{res_folder}/{model_folder}.results"
    print("[Info] The model will be saved to: %s.tar.gz" % (model_folder))
    os.makedirs(f"model_files/{model_folder}",
                exist_ok=True)  ## create model files. not raise error if exist
    os.makedirs(res_folder, exist_ok=True)
    no_incre_dev = 0
    for i in tqdm(range(1, epoch + 1), desc="Epoch"):
        epoch_loss = 0
        start_time = time.time()
        model.zero_grad()
        if config.optimizer.lower() == "sgd":
            optimizer = lr_decay(config, optimizer, i)
        for index in tqdm(np.random.permutation(len(batched_data)),
                          desc="--training batch",
                          total=len(batched_data)):
            model.train()
            loss = model(*batched_data[index])
            epoch_loss += loss.item()
            loss.backward()
            optimizer.step()
            model.zero_grad()

        end_time = time.time()
        print("Epoch %d: %.5f, Time is %.2fs" %
              (i, epoch_loss, end_time - start_time),
              flush=True)

        model.eval()
        dev_metrics = evaluate_model(config, model, dev_batches, "dev",
                                     dev_insts)
        test_metrics = evaluate_model(config, model, test_batches, "test",
                                      test_insts)
        if dev_metrics[2] > best_dev[0]:
            print("saving the best model...")
            no_incre_dev = 0
            best_dev[0] = dev_metrics[2]
            best_dev[1] = i
            best_test[0] = test_metrics[2]
            best_test[1] = i
            torch.save(model.state_dict(), model_path)
            # Save the corresponding config as well.
            f = open(config_path, 'wb')
            pickle.dump(config, f)
            f.close()
            write_results(res_path, test_insts)
        else:
            no_incre_dev += 1
        model.zero_grad()
        if no_incre_dev >= config.max_no_incre:
            print(
                "early stop because there are %d epochs not increasing f1 on dev"
                % no_incre_dev)
            break

    print("Archiving the best Model...")
    with tarfile.open(f"model_files/{model_folder}/{model_folder}.tar.gz",
                      "w:gz") as tar:
        tar.add(f"model_files/{model_folder}",
                arcname=os.path.basename(model_folder))

    print("Finished archiving the models")

    print("The best dev: %.2f" % (best_dev[0]))
    print("The corresponding test: %.2f" % (best_test[0]))
    print("Final testing.")
    model.load_state_dict(torch.load(model_path))
    model.eval()
    evaluate_model(config, model, test_batches, "test", test_insts)
    write_results(res_path, test_insts)
コード例 #4
0
def train_model(config: Config, train_insts: List[List[Instance]], dev_insts: List[Instance],
                test_insts: List[Instance]):
    train_num = sum([len(insts) for insts in train_insts])
    print(f"[Training Info] number of instances: {train_num:d}")

    dev_batches = batching_list_instances(config, dev_insts)
    test_batches = batching_list_instances(config, test_insts)

    best_dev = [-1, 0]
    best_test = [-1, 0]

    model_folder = config.model_folder
    res_folder = "results"
    # if os.path.exists(model_folder):
    #     raise FileExistsError(f"The folder {model_folder} exists. Please either delete it or create a new one "
    #                           f"to avoid override.")

    print(f"[Training Info] The model will be saved to: {model_folder}.tar.gz")
    if not os.path.exists(model_folder):
        os.makedirs(model_folder)
    if not os.path.exists(res_folder):
        os.makedirs(res_folder)

    num_outer_iterations = config.num_outer_iterations
    for iter in range(num_outer_iterations):
        print(f"[Training Info] Running for {iter}th large iterations.")
        model_names = []  # model names for each fold
        train_batches = [batching_list_instances(config, insts) for insts in train_insts]
        for fold_id, folded_train_insts in enumerate(train_insts):
            print(f"[Training Info] Training fold {fold_id}.")
            model_name = model_folder + f"/lstm_crf_{fold_id}.m"
            model_names.append(model_name)
            train_one(config=config, train_batches=train_batches[fold_id],
                      dev_insts=dev_insts, dev_batches=dev_batches, model_name=model_name)

        # assign hard prediction to other folds
        print("\n\n[Data Info] Assigning labels for the HARD approach")

        for fold_id, folded_train_insts in enumerate(train_insts):
            model = NNCRF(config)
            model_name = model_names[fold_id]
            model.load_state_dict(torch.load(model_name))
            hard_constraint_predict(config=config, model=model,
                                    fold_batches=train_batches[1 - fold_id],
                                    folded_insts=train_insts[1 - fold_id])  # set a new label id
        print("\n\n")

        print("[Training Info] Training the final model")
        all_train_insts = list(itertools.chain.from_iterable(train_insts))
        model_name = model_folder + "/final_lstm_crf.m"
        config_name = model_folder + "/config.conf"
        res_name = res_folder + "/lstm_crf.results".format()
        all_train_batches = batching_list_instances(config=config, insts=all_train_insts)
        model = train_one(config=config, train_batches=all_train_batches, dev_insts=dev_insts, dev_batches=dev_batches,
                          model_name=model_name, config_name=config_name, test_insts=test_insts,
                          test_batches=test_batches, result_filename=res_name)
        print("Archiving the best Model...")
        with tarfile.open(model_folder + "/" + model_folder + ".tar.gz", "w:gz") as tar:
            tar.add(model_folder, arcname=os.path.basename(model_folder))
        # print("The best dev: %.2f" % (best_dev[0]))
        # print("The corresponding test: %.2f" % (best_test[0]))
        # print("Final testing.")
        model.load_state_dict(torch.load(model_name))
        model.eval()
        evaluate_model(config, model, test_batches, "test", test_insts)
        write_results(res_name, test_insts)