image_path = 'try.jpg' im = Image.open(image_path) im = np.array(im) im = np.delete(im, [1, 2], axis=2) im = np.array(im) / 255.0 im = np.expand_dims(im, axis=0) print(im.shape) model = DenseNet(dense_blocks=5, dense_layers=-1, growth_rate=8, dropout_rate=0.2, bottleneck=True, compression=1.0, weight_decay=1e-4, depth=40) model.load_weights("outputs/model-230.h5") lmarks = model.predict(im) print(lmarks) lmarks = lmarks[0] lmarks[0:8:2] = lmarks[0:8:2] * im.shape[2] lmarks[1:8:2] = lmarks[1:8:2] * im.shape[1] print(lmarks) #print(lmarks) im = im[0] * 255 im = np.squeeze(im, axis=(2, )) print(im.shape) for m in range(0, 8, 2): cv2.circle(im, (int(lmarks[m]), int(lmarks[m + 1])), 5, (255, 255, 255), -1)
if __name__ == "__main__": ### prediction.. image_path = 'try3.jpg' im = Image.open(image_path) im = np.array(im) im = np.delete(im, [1, 2], axis=2) im = np.array(im) / 255.0 im = np.expand_dims(im, axis=0) print(im.shape) model = DenseNet(dense_blocks=5, dense_layers=-1, growth_rate=8, dropout_rate=0.2, bottleneck=True, compression=1.0, weight_decay=1e-4, depth=40) #model.load_weights("outputs/model-230.h5") model.load_weights("test") lmarks = model.predict(im) print (lmarks) lmarks= lmarks[0] lmarks[0:8:2] = lmarks[0:8:2] * im.shape[2] lmarks[1:8:2] = lmarks[1:8:2] * im.shape[1] print (lmarks) #print(lmarks) im = im[0] * 255 im = np.squeeze(im, axis=(2,)) print(im.shape) for m in range(0, 8,2):