コード例 #1
0
def main():
    args = get_args()
    logger = get_logger()

    logger.info(vars(args))

    with tf.device("/gpu:0"):
        if args.densenet == True:
            model = DenseNet()
        else:
            model = CnnLstm()

    tfrecord = TFRecord()
    tfrecord.make_iterator(args.tfr_fname, training=False)

    total = sum(1 for _ in tf.python_io.tf_record_iterator(args.tfr_fname)) // tfrecord.batch_size

    saver = tf.train.Saver(tf.global_variables())

    with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
        saver.restore(sess, args.model_fname)

        sess.run(tfrecord.init_op)

        spec = tfrecord.load(sess, training=False)
        predict = model.predict(sess, spec, args.proba)

        progress_bar = tqdm(total=total, desc="[PREDICT]", unit="batch", leave=False)

        while True:
            try:
                spec = tfrecord.load(sess, training=False)

                if args.proba:
                    predict = np.vstack([predict, model.predict(sess, spec, args.proba)])
                else:
                    predict = np.hstack([predict, model.predict(sess, spec, args.proba)])

                progress_bar.update(1)

            except tf.errors.OutOfRangeError:
                break

    make_submission(predict, args.sample_fname, args.output_fname, args.proba)
    logger.info(f"{args.output_fname} is created.")
コード例 #2
0
    im = np.array(im)
    im = np.delete(im, [1, 2], axis=2)
    im = np.array(im) / 255.0
    im = np.expand_dims(im, axis=0)
    print(im.shape)
    model = DenseNet(dense_blocks=5,
                     dense_layers=-1,
                     growth_rate=8,
                     dropout_rate=0.2,
                     bottleneck=True,
                     compression=1.0,
                     weight_decay=1e-4,
                     depth=40)
    model.load_weights("outputs/model-230.h5")

    lmarks = model.predict(im)
    print(lmarks)
    lmarks = lmarks[0]
    lmarks[0:8:2] = lmarks[0:8:2] * im.shape[2]
    lmarks[1:8:2] = lmarks[1:8:2] * im.shape[1]
    print(lmarks)

    #print(lmarks)
    im = im[0] * 255
    im = np.squeeze(im, axis=(2, ))
    print(im.shape)
    for m in range(0, 8, 2):
        cv2.circle(im, (int(lmarks[m]), int(lmarks[m + 1])), 5,
                   (255, 255, 255), -1)

    plt.figure(1, figsize=(25, 25))