コード例 #1
0
ファイル: web.py プロジェクト: rgumi/SentimentClassifier
    neg_pred, neut_pred, pos_pred = predict(raw_tweet)
    response = {}

    response["response"] = {
        'sentiment': {
            "positive": str(pos_pred),
            "neutral": str(neut_pred),
            "negative": str(neg_pred),
        },
        "tweet": str(raw_tweet),
        "time_taken": str(time.time() - start_time),
    }

    return flask.jsonify(response)


@app.route('/')
def index():
    return app.send_static_file('index.html')


if __name__ == "__main__":
    MODEL = SentimentClassifier(len(CLASS_NAMES))
    TOKENIZER = BertTokenizer.from_pretrained(PRE_TRAINED_MODEL_NAME)
    MODEL = nn.DataParallel(MODEL)
    MODEL.load_state_dict(
        torch.load(MODEL_PATH, map_location=torch.device(DEVICE)))
    MODEL.to(DEVICE)
    MODEL.eval()
    app.run(host='0.0.0.0')
コード例 #2
0
ファイル: main.py プロジェクト: fruttasecca/jobs_scraping
    parser.add_argument('--maxlen', type=int, required=False)
    args = parser.parse_args()
    args = args.__dict__
    print("Passed args:")
    print(args)

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print("Found device: %s" % device)

    print("loading model...")
    model = SentimentClassifier()
    model.to(device)  # Enable gpu support for the model

    checkpoint = torch.load(args["checkpoint"], map_location=device)
    model.load_state_dict(checkpoint["model_state_dict"])
    model.eval()
    tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
    print("model loaded")

    if not args["maxlen"]:
        args["maxlen"] = checkpoint["args"]["maxlen"]
        print("using maxlen from import checkpoint, new args:")
        print(args)

    print("connecting to redis...")
    redis_connection = redis.Redis(host=os.environ["REDIS_HOST"], port=os.environ["REDIS_PORT"], charset="utf-8")
    print("connected to redis")

    print("starting work")
    while True:
        print("waiting for task")
コード例 #3
0
class ModelHandler(BaseHandler):
    """
    A custom model handler implementation.
    """
    def __init__(self):
        self.model = None
        self._context = None
        self.initialized = False
        self.explain = False
        self.target = 0

    def initialize(self, ctx):
        """
        Initialize model. This will be called during model loading time
        :param context: Initial context contains model server system properties.
        :return:
        """
        self.properties = ctx.system_properties
        self.initialized = True
        #  load the model, refer 'c     ustom handler class' above for details
        self.device = torch.device("cuda:" +
                                   str(self.properties.get("gpu_id")) if torch.
                                   cuda.is_available() else "cpu")

        model_dir = self.properties.get("model_dir")

        # Read model serialize/pt file
        model_pt_path = os.path.join(model_dir, "model.bin")
        # # Read model definition file
        # model_def_path = os.path.join(model_dir, "model.py")
        # if not os.path.isfile(model_def_path):
        #     raise RuntimeError("Missing the model definition file")
        PRE_TRAINED_MODEL_NAME = 'dccuchile/bert-base-spanish-wwm-cased'

        from model import SentimentClassifier

        self.model = SentimentClassifier(2)
        self.model.to(self.device)
        self.tokenizer = BertTokenizer.from_pretrained(PRE_TRAINED_MODEL_NAME)

        self.model.load_state_dict(
            torch.load(model_pt_path, map_location=torch.device(self.device)))

        self.model = self.model.eval()

        self.initialized = True

        logger.debug(
            'Transformer model from path {0} loaded successfully'.format(
                model_dir))

    def preprocess(self, data):
        """
        Transform raw input into model input data.
        :param batch: list of raw requests, should match batch size
        :return: list of preprocessed model input data
        """
        # # Take the input data and make it inference ready
        # text = data[0].get("data")
        # if text is None:
        try:
            reclamo = data[0].get("body").get("data")
        except:
            reclamo = data[0].get("body")

        # logger.debug(data)
        # logger.debug(str(data))

        MAX_LEN = 450
        inputs = self.tokenizer.encode_plus(
            reclamo,
            add_special_tokens=True,
            max_length=MAX_LEN,
            return_token_type_ids=False,
            padding='max_length',
            truncation=True,
            return_attention_mask=True,
            return_tensors='pt',
        )

        return {
            'review_text': reclamo,
            'input_ids': inputs['input_ids'].flatten(),
            'attention_mask': inputs['attention_mask'].flatten()
        }

    def inference(self, model_input):
        """
        Internal inference methods
        :param model_input: transformed model input data
        :return: list of inference output in NDArray
        """
        # Do some inference call to engine here and return output

        input_ids = model_input["input_ids"].to(self.device)
        attention_mask = model_input["attention_mask"].to(self.device)

        model_output, pooled_output = self.model(
            input_ids=input_ids.unsqueeze(0),
            attention_mask=attention_mask.unsqueeze(0))

        _, preds = torch.max(model_output, dim=1)

        probs = F.softmax(model_output, dim=1)

        predicted_idx = str(preds.item())

        out_dic = {
            'idx': [predicted_idx],
            'probs': probs.detach().numpy().tolist(),
            'pooled': pooled_output.detach().numpy().tolist()
        }

        out_js = json.dumps(out_dic)

        return [out_js]

    def postprocess(self, inference_output):
        """
        Return inference result.
        :param inference_output: list of inference output
        :return: list of predict results
        """
        # Take output from network and post-process to desired format
        postprocess_output = inference_output
        return postprocess_output