コード例 #1
0
def get_model(args):

    sd = None
    model_args = args
    if args.load is not None and args.load != '':
        # sd = torch.load(args.load, map_location=lambda storage, location: 'cpu')
        device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
        sd = torch.load(args.load, map_location=device)
        if 'args' in sd:
            model_args = sd['args']
        if 'sd' in sd:
            sd = sd['sd']

    ntokens = model_args.data_size
    concat_pools = model_args.concat_max, model_args.concat_min, model_args.concat_mean
    if args.model == 'transformer':
        model = SentimentClassifier(model_args.model, ntokens, None, None,
                                    None, model_args.classifier_hidden_layers,
                                    model_args.classifier_dropout, None,
                                    concat_pools, False, model_args)
    else:
        model = SentimentClassifier(
            model_args.model, ntokens, model_args.emsize, model_args.nhid,
            model_args.nlayers, model_args.classifier_hidden_layers,
            model_args.classifier_dropout, model_args.all_layers, concat_pools,
            False, model_args)
    args.heads_per_class = model_args.heads_per_class
    args.use_softmax = model_args.use_softmax
    try:
        args.classes = list(model_args.classes)
    except:
        args.classes = [args.label_key]

    try:
        args.dual_thresh = model_args.dual_thresh and not model_args.joint_binary_train
    except:
        args.dual_thresh = False

    if args.cuda:
        model.cuda()

    if args.fp16:
        model.half()

    if sd is not None:
        try:
            model.load_state_dict(sd)
        except:
            # if state dict has weight normalized parameters apply and remove weight norm to model while loading sd
            if hasattr(model.lm_encoder, 'rnn'):
                apply_weight_norm(model.lm_encoder.rnn)
            else:
                apply_weight_norm(model.lm_encoder)
            model.lm_encoder.load_state_dict(sd)
            remove_weight_norm(model)

    if args.neurons > 0:
        print('WARNING. Setting neurons %s' % str(args.neurons))
        model.set_neurons(args.neurons)
    return model
コード例 #2
0
ファイル: train.py プロジェクト: fruttasecca/jobs_scraping
    train_loader = DataLoader(dataset_train,
                              batch_size=args["batch_size"],
                              num_workers=5,
                              shuffle=True,
                              drop_last=True)
    val_loader = DataLoader(dataset_validation,
                            batch_size=args["batch_size"],
                            num_workers=5,
                            shuffle=True,
                            drop_last=True)

    starting_epoch = 0
    if checkpoint:
        print("Loading state dict")
        model.load_state_dict(checkpoint["model_state_dict"])
        optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
        print("Starting training from evaluation accuracy: %s" %
              checkpoint["evaluation_accuracy"])
        starting_epoch = checkpoint["epoch"] + 1

    scheduler = CosineAnnealingWarmRestarts(
        optimizer,
        T_0=args["SGDR_T0"],
        T_mult=args["SGDR_T_MULT"],
        eta_min=args["SGDR_ETA_MIN"],
        last_epoch=checkpoint["epoch"] if checkpoint else -1)

    if checkpoint:
        scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
コード例 #3
0
import pandas as pd
from model import SentimentClassifier
from dataset import SSTDataset

#Create validation set
val_set = SSTDataset(filename='data/dev.tsv', maxlen=30)
#Create validation dataloader
val_loader = DataLoader(val_set, batch_size=64, num_workers=5)
#Create the network
net = SentimentClassifier()
#CPU or GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#Put the network to the GPU if available
net = net.to(device)
#Load the state dictionary of the network
net.load_state_dict(torch.load('./models/model', map_location=device))
#Takes as the input the logits of the positive class and computes the binary cross-entropy
criterion = nn.BCEWithLogitsLoss()


def get_accuracy_from_logits(logits, labels):
    #Get a tensor of shape [B, 1, 1] with probabilities that the sentiment is positive
    probs = torch.sigmoid(logits.unsqueeze(-1))
    #Convert probabilities to predictions, 1 being positive and 0 being negative
    soft_probs = (probs > 0.5).long()
    #Check which predictions are the same as the ground truth and calculate the accuracy
    acc = (soft_probs.squeeze() == labels).float().mean()
    #Return the accuracy
    return acc

コード例 #4
0
ファイル: web.py プロジェクト: rgumi/SentimentClassifier
    neg_pred, neut_pred, pos_pred = predict(raw_tweet)
    response = {}

    response["response"] = {
        'sentiment': {
            "positive": str(pos_pred),
            "neutral": str(neut_pred),
            "negative": str(neg_pred),
        },
        "tweet": str(raw_tweet),
        "time_taken": str(time.time() - start_time),
    }

    return flask.jsonify(response)


@app.route('/')
def index():
    return app.send_static_file('index.html')


if __name__ == "__main__":
    MODEL = SentimentClassifier(len(CLASS_NAMES))
    TOKENIZER = BertTokenizer.from_pretrained(PRE_TRAINED_MODEL_NAME)
    MODEL = nn.DataParallel(MODEL)
    MODEL.load_state_dict(
        torch.load(MODEL_PATH, map_location=torch.device(DEVICE)))
    MODEL.to(DEVICE)
    MODEL.eval()
    app.run(host='0.0.0.0')
コード例 #5
0
train_data, val_data, test_data = data_config.apply(args)
ntokens = args.data_size
model = SentimentClassifier(args.model, ntokens, args.emsize, args.nhid,
                            args.nlayers, 0.0, args.all_layers)
if args.cuda:
    model.cuda()

if args.fp16:
    model.half()

with open(args.load_model, 'rb') as f:
    sd = torch.load(f)

try:
    model.load_state_dict(sd)
except:
    apply_weight_norm(model.encoder.rnn)
    model.load_state_dict(sd)
    remove_weight_norm(model)

if args.neurons > 0:
    model.set_neurons(args.neurons)


# uses similar function as transform from transfer.py
def classify(model, text):
    model.eval()
    labels = np.array([])
    first_label = True
コード例 #6
0
class ModelHandler(BaseHandler):
    """
    A custom model handler implementation.
    """
    def __init__(self):
        self.model = None
        self._context = None
        self.initialized = False
        self.explain = False
        self.target = 0

    def initialize(self, ctx):
        """
        Initialize model. This will be called during model loading time
        :param context: Initial context contains model server system properties.
        :return:
        """
        self.properties = ctx.system_properties
        self.initialized = True
        #  load the model, refer 'c     ustom handler class' above for details
        self.device = torch.device("cuda:" +
                                   str(self.properties.get("gpu_id")) if torch.
                                   cuda.is_available() else "cpu")

        model_dir = self.properties.get("model_dir")

        # Read model serialize/pt file
        model_pt_path = os.path.join(model_dir, "model.bin")
        # # Read model definition file
        # model_def_path = os.path.join(model_dir, "model.py")
        # if not os.path.isfile(model_def_path):
        #     raise RuntimeError("Missing the model definition file")
        PRE_TRAINED_MODEL_NAME = 'dccuchile/bert-base-spanish-wwm-cased'

        from model import SentimentClassifier

        self.model = SentimentClassifier(2)
        self.model.to(self.device)
        self.tokenizer = BertTokenizer.from_pretrained(PRE_TRAINED_MODEL_NAME)

        self.model.load_state_dict(
            torch.load(model_pt_path, map_location=torch.device(self.device)))

        self.model = self.model.eval()

        self.initialized = True

        logger.debug(
            'Transformer model from path {0} loaded successfully'.format(
                model_dir))

    def preprocess(self, data):
        """
        Transform raw input into model input data.
        :param batch: list of raw requests, should match batch size
        :return: list of preprocessed model input data
        """
        # # Take the input data and make it inference ready
        # text = data[0].get("data")
        # if text is None:
        try:
            reclamo = data[0].get("body").get("data")
        except:
            reclamo = data[0].get("body")

        # logger.debug(data)
        # logger.debug(str(data))

        MAX_LEN = 450
        inputs = self.tokenizer.encode_plus(
            reclamo,
            add_special_tokens=True,
            max_length=MAX_LEN,
            return_token_type_ids=False,
            padding='max_length',
            truncation=True,
            return_attention_mask=True,
            return_tensors='pt',
        )

        return {
            'review_text': reclamo,
            'input_ids': inputs['input_ids'].flatten(),
            'attention_mask': inputs['attention_mask'].flatten()
        }

    def inference(self, model_input):
        """
        Internal inference methods
        :param model_input: transformed model input data
        :return: list of inference output in NDArray
        """
        # Do some inference call to engine here and return output

        input_ids = model_input["input_ids"].to(self.device)
        attention_mask = model_input["attention_mask"].to(self.device)

        model_output, pooled_output = self.model(
            input_ids=input_ids.unsqueeze(0),
            attention_mask=attention_mask.unsqueeze(0))

        _, preds = torch.max(model_output, dim=1)

        probs = F.softmax(model_output, dim=1)

        predicted_idx = str(preds.item())

        out_dic = {
            'idx': [predicted_idx],
            'probs': probs.detach().numpy().tolist(),
            'pooled': pooled_output.detach().numpy().tolist()
        }

        out_js = json.dumps(out_dic)

        return [out_js]

    def postprocess(self, inference_output):
        """
        Return inference result.
        :param inference_output: list of inference output
        :return: list of predict results
        """
        # Take output from network and post-process to desired format
        postprocess_output = inference_output
        return postprocess_output
コード例 #7
0
def run():
    df = pd.read_csv("inputs/reviews.csv")
    df["sentiment"] = df.score.apply(rating_to_sentiment)
    df_train, df_rem = train_test_split(df,
                                        test_size=0.1,
                                        random_state=config.RANDOM_SEED)
    df_val, df_test = train_test_split(df_rem,
                                       test_size=0.5,
                                       random_state=config.RANDOM_SEED)
    train_data_loader = create_data_loader(df_train, config.TOKENIZER,
                                           config.MAX_LEN, config.BATCH_SIZE)
    val_data_loader = create_data_loader(df_val, config.TOKENIZER,
                                         config.MAX_LEN, config.BATCH_SIZE)
    test_data_loader = create_data_loader(df_test, config.TOKENIZER,
                                          config.MAX_LEN, config.BATCH_SIZE)

    # data = next(iter(val_data_loader))
    # input_ids = data["input_ids"].to(config.DEVICE)
    # attention_mask = data["attention_mask"].to(config.DEVICE)
    # bert_model = BertModel.from_pretrained(config.BERT_NAME)

    model = SentimentClassifier(num_classes=len(class_labels))
    if config.LOAD_MODEL == True:
        model.load_state_dict(torch.load("best_model_state.bin"))
    model = model.to(config.DEVICE)

    optimizer = AdamW(model.parameters(), lr=2e-5, correct_bias=False)
    total_steps = len(train_data_loader) * config.EPOCHS
    scheduler = get_linear_schedule_with_warmup(optimizer,
                                                num_warmup_steps=0,
                                                num_training_steps=total_steps)
    loss_fn = nn.CrossEntropyLoss().to(config.DEVICE)

    history = defaultdict(list)
    best_accuracy = 0

    for epoch in range(config.EPOCHS):
        print(f"Epoch {epoch + 1}/{config.EPOCHS}")
        print("-" * 10)

        train_acc, train_loss = train_fn(
            model,
            train_data_loader,
            loss_fn,
            optimizer,
            config.DEVICE,
            scheduler,
            len(df_train),
        )

        print(f"Train loss {train_loss} accuracy {train_acc}")

        val_acc, val_loss = eval_fn(model, val_data_loader, loss_fn,
                                    config.DEVICE, len(df_val))

        print(f"Val   loss {val_loss} accuracy {val_acc}")
        print()

        history["train_acc"].append(train_acc)
        history["train_loss"].append(train_loss)
        history["val_acc"].append(val_acc)
        history["val_loss"].append(val_loss)

        if val_acc > best_accuracy:
            torch.save(model.state_dict(), "best_model_state.bin")
            best_accuracy = val_acc
コード例 #8
0
def predict():
    sentence = request.args.get("sentence")
    start_time = time.time()
    positive_prediction = sentence_prediction(sentence, model=MODEL)
    negative_prediction = 1 - positive_prediction
    response = {}
    response["response"] = {
        "positive": str(positive_prediction),
        "negative": str(negative_prediction),
        "neutral": str(neutral_prediction),
        "sentence": str(sentence),
        "time_taken": str(time.time() - start_time),
    }
    return flask.jsonify(response)


if __name__ == "__main__":
    RANDOM_SEED = 42
    np.random.seed(RANDOM_SEED)
    torch.manual_seed(RANDOM_SEED)

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print(device)

    MODEL = SentimentClassifier(3)
    MODEL.load_state_dict(torch.load(config.MODEL_PATH, map_location='cpu'))
    MODEL.to(DEVICE)
    MODEL.eval()
    app.run()

    # oaded_state = torch.load(model_path+seq_to_seq_test_model_fname,map_location='cuda:0'