コード例 #1
0
def read_all_genes(disease_name=None, ensg_number=None, gene_symbol=None, gene_type=None, pValue=0.05,
                   pValueDirection="<", mscor=None, mscorDirection="<", correlation=None, correlationDirection="<",
                   sorting=None, descending=True, limit=100, offset=0, information=True):
    """
    This function responds to a request for /sponge/ceRNAInteraction/findAll
    and returns all interactions the given identification (ensg_number or gene_symbol) in all available datasets is in involved
    :param disease_name: disease_name of interest
    :param ensg_number: esng number of the gene of interest
    :param gene_symbol: gene symbol of the gene of interest
    :param gene_type: defines the type of gene of interest
    :param pValue: pValue cutoff
    :param pValueDirection: < or >
    :param mscor mscor cutofff
    :param mscorDirection: < or >
    :param correlation: correlation cutoff
    :param correlationDirection: < or >
    :param sorting: how the results of the db query should be sorted
    :param descending: should the results be sorted in descending or ascending order
    :param limit: number of results that shouls be shown
    :param offset: startpoint from where results should be shown
    :param information: defines if each gene should contain all available information or not (default: True, if False: just ensg_nr will be shown)
    :return: all interactions given gene is involved
    """
    # test limit
    if limit > 1000:
        abort(404, "Limit is to high. For a high number of needed interactions please use the download section.")

    # test if just one of the possible identifiers is given
    if ensg_number is not None and (gene_symbol is not None or gene_type is not None) or (
            gene_symbol is not None and gene_type is not None):
        abort(404,
              "More than one identifikation paramter is given. Please choose one out of (ensg number, gene symbol or gene type)")

    queries_1 = []
    queries_2 = []
    # if specific disease_name is given:
    if disease_name is not None:
        run = models.Run.query.join(models.Dataset, models.Dataset.dataset_ID == models.Run.dataset_ID) \
            .filter(models.Dataset.disease_name.like("%" + disease_name + "%")) \
            .all()

        if len(run) > 0:
            run_IDs = [i.run_ID for i in run]
            queries_1.append(models.GeneInteraction.run_ID.in_(run_IDs))
            queries_2.append(models.GeneInteraction.run_ID.in_(run_IDs))
        else:
            abort(404, "No dataset with given disease_name found")

    gene = []
    # if ensg_numer is given to specify gene(s), get the intern gene_ID(primary_key) for requested ensg_nr(gene_ID)
    if ensg_number is not None:
        gene = models.Gene.query \
            .filter(models.Gene.ensg_number.in_(ensg_number)) \
            .all()
    # if gene_symbol is given to specify gene(s), get the intern gene_ID(primary_key) for requested gene_symbol(gene_ID)
    elif gene_symbol is not None:
        gene = models.Gene.query \
            .filter(models.Gene.gene_symbol.in_(gene_symbol)) \
            .all()
    elif gene_type is not None:
        gene = models.Gene.query \
            .filter(models.Gene.gene_type == gene_type) \
            .all()

    # save all needed queries to get correct results
    if ensg_number is not None or gene_symbol is not None or gene_type is not None:
        if len(gene) > 0:
            gene_IDs = [i.gene_ID for i in gene]
            queries_1.append(models.GeneInteraction.gene_ID1.in_(gene_IDs))
            queries_2.append(models.GeneInteraction.gene_ID2.in_(gene_IDs))
        else:
            abort(404, "Not gene found for given ensg_number(s) or gene_symbol(s)")

    # filter further depending on given statistics cutoffs
    if pValue is not None:
        if pValueDirection == "<":
            queries_1.append(models.GeneInteraction.p_value <= pValue)
            queries_2.append(models.GeneInteraction.p_value <= pValue)
        else:
            queries_1.append(models.GeneInteraction.p_value >= pValue)
            queries_2.append(models.GeneInteraction.p_value >= pValue)
    if mscor is not None:
        if mscorDirection == "<":
            queries_1.append(models.GeneInteraction.mscor <= mscor)
            queries_2.append(models.GeneInteraction.mscor <= mscor)
        else:
            queries_1.append(models.GeneInteraction.mscor >= mscor)
            queries_2.append(models.GeneInteraction.mscor >= mscor)
    if correlation is not None:
        if correlationDirection == "<":
            queries_1.append(models.GeneInteraction.correlation <= correlation)
            queries_2.append(models.GeneInteraction.correlation <= correlation)
        else:
            queries_1.append(models.GeneInteraction.correlation >= correlation)
            queries_2.append(models.GeneInteraction.correlation >= correlation)

    # add all sorting if given:
    sort = []
    if sorting is not None:
        if sorting == "pValue":
            if descending:
                sort.append(models.GeneInteraction.p_value.desc())
            else:
                sort.append(models.GeneInteraction.p_value.asc())
        if sorting == "mscor":
            if descending:
                sort.append(models.GeneInteraction.mscor.desc())
            else:
                sort.append(models.GeneInteraction.mscor.asc())
        if sorting == "correlation":
            if descending:
                sort.append(models.GeneInteraction.correlation.desc())
            else:
                sort.append(models.GeneInteraction.correlation.asc())

    # interaction_result = []
    interaction_result = models.GeneInteraction.query \
        .filter(*queries_1) \
        .order_by(*sort) \
        .union(models.GeneInteraction.query
               .filter(*queries_2)
               .order_by(*sort)) \
        .slice(offset, offset + limit) \
        .all()

    # if len(tmp) > 0:
    #    interaction_result.append(tmp)
    # else:
    #    abort(404, "No information with given parameters found")

    # interaction_result = [val for sublist in interaction_result for val in sublist]

    if len(interaction_result) > 0:
        if information:
            # Serialize the data for the response depending on parameter all
            schema = models.GeneInteractionDatasetLongSchema(many=True)
        else:
            # Serialize the data for the response depending on parameter all
            schema = models.GeneInteractionDatasetShortSchema(many=True)
        return schema.dump(interaction_result).data
    else:
        abort(404, "No information with given parameters found")
コード例 #2
0
def read_specific_interaction(disease_name=None, ensg_number=None, gene_symbol=None, pValue=0.05,
                              pValueDirection="<", limit=100, offset=0):
    """
      This function responds to a request for /sponge/ceRNAInteraction/findSpecific
      and returns all interactions between the given identifications (ensg_number or gene_symbol)
      :param disease_name: disease_name of interest
      :param ensg_number: esng number of the genes of interest
      :param gene_symbol: gene symbol of the genes of interest
      :param limit: number of results that shouls be shown
      :param offset: startpoint from where results should be shown
      :return: all interactions between given genes
      """

    # test limit
    if limit > 1000:
        abort(404, "Limit is to high. For a high number of needed interactions please use the download section.")

    # test if any of the two identification possibilites is given
    if ensg_number is None and gene_symbol is None:
        abort(404, "One of the two possible identification numbers must be provided")

    if ensg_number is not None and gene_symbol is not None:
        abort(404,
              "More than one identifikation paramter is given. Please choose one out of (ensg number, gene symbol)")

    gene = []
    # if ensg_numer is given for specify gene, get the intern gene_ID(primary_key) for requested ensg_nr(gene_ID)
    if ensg_number is not None:
        gene = models.Gene.query \
            .filter(models.Gene.ensg_number.in_(ensg_number)) \
            .all()
    elif gene_symbol is not None:
        gene = models.Gene.query \
            .filter(models.Gene.gene_symbol.in_(gene_symbol)) \
            .all()

    if len(gene) > 0:
        gene_IDs = [i.gene_ID for i in gene]
    else:
        abort(404, "Not gene found for given ensg_number(s) or gene_symbol(s)")

    # save all needed queries to get correct results
    queries = [sa.and_(models.GeneInteraction.gene_ID1.in_(gene_IDs), models.GeneInteraction.gene_ID2.in_(gene_IDs))]

    # if specific disease_name is given:
    if disease_name is not None:
        run = models.Run.query.join(models.Dataset, models.Dataset.dataset_ID == models.Run.dataset_ID) \
            .filter(models.Dataset.disease_name.like("%" + disease_name + "%")) \
            .all()

        if len(run) > 0:
            run_IDs = [i.run_ID for i in run]
            queries.append(models.GeneInteraction.run_ID.in_(run_IDs))
        else:
            abort(404, "No dataset with given disease_name found")

    # filter further depending on given statistics cutoffs
    if pValue is not None:
        if pValueDirection == "<":
            queries.append(models.GeneInteraction.p_value < pValue)
        else:
            queries.append(models.GeneInteraction.p_value > pValue)

    interaction_result = models.GeneInteraction.query \
        .filter(*queries) \
        .slice(offset, offset + limit) \
        .all()

    if len(interaction_result) > 0:
        # Serialize the data for the response depending on parameter all
        return models.GeneInteractionDatasetShortSchema(many=True).dump(interaction_result).data
    else:
        abort(404, "No information with given parameters found")