コード例 #1
0
 def __init__(self):
     print(os.getcwd())
     self.model_cfg = "./src/akhenaten_dv/scripts/Perception/BBoxDetection/model_cfg/yolo_baseline_tiny.cfg"
     self.weights_path = './src/akhenaten_dv/scripts/Perception/BBoxDetection/7.weights'
     self.conf_thres = 0.8
     self.nms_thres = 0.25
     self.vanilla_anchor = False
     self.xy_loss = 2
     self.wh_loss = 1.6
     self.no_object_loss = 25
     self.object_loss = 0.1
     cuda = torch.cuda.is_available()
     self.device = torch.device('cuda:0' if cuda else 'cpu')
     random.seed(0)
     torch.manual_seed(0)
     if cuda:
         torch.cuda.manual_seed(0)
         torch.cuda.manual_seed_all(0)
         torch.backends.cudnn.benchmark = True
         torch.cuda.empty_cache()
     self.model = Darknet(config_path=self.model_cfg,
                          xy_loss=self.xy_loss,
                          wh_loss=self.wh_loss,
                          no_object_loss=self.no_object_loss,
                          object_loss=self.object_loss,
                          vanilla_anchor=self.vanilla_anchor)
     # Load weights
     self.model.load_weights(self.weights_path,
                             self.model.get_start_weight_dim())
     self.model.to(self.device, non_blocking=True)
コード例 #2
0
    def __init__(self, bgr=True, gpu_device=0, **kwargs):
        self.__dict__.update(self._defaults)  # set up default values
        # for portability between keras-yolo3/yolo.py and this
        if 'model_path' in kwargs:
            kwargs['weights'] = kwargs['model_path']
        if 'score' in kwargs:
            kwargs['thresh'] = kwargs['score']
        self.__dict__.update(kwargs)  # update with user overrides

        self.class_names = self._get_class()
        self.model = Darknet(self.config)
        self.model.load_darknet_weights(self.weights)

        self.device = gpu_device
        self.model.cuda(self.device)
        self.model.eval()

        self.bgr = bgr

        if self.half:
            self.model.half()

        # warm up
        self._detect([np.zeros((10, 10, 3), dtype=np.uint8)])
        print('Warmed up!')
コード例 #3
0
    def backbone(self, config_path) -> Darknet:  # 删除config_path参数
        if 'darknet53' in dir(self) and self.darknet53 is not None:
            raise Exception(
                "Call 'backbone' before 'features' and 'multiscale_features' method")

        if self._models_dir is not None and self._pretrained:
            self.darknet53 = Darknet(config_path)
            self.darknet53.load_state_dict(torch.load(
                os.path.join(self._models_dir, 'darknet53-5d3b4d8f.pth')
            ))
        else:
            self.darknet53 = Darknet(config_path)

        # list(darknet53.children()) consists of following modules
        #   [0] = Conv2d, [1] = BatchNorm2d, [2] = ReLU,
        #   [3] = MaxPool2d, [4] = Sequential(Bottleneck...),
        #   [5] = Sequential(Bottleneck...),
        #   [6] = Sequential(Bottleneck...),
        #   [7] = Sequential(Bottleneck...),
        #   [8] = AvgPool2d, [9] = Linear

        # children = list(self.darknet53.children())
        # self.features = children[:-3]
        # self.num_features_out = 1024

        # self.hidden = children[-3]
        # self.num_hidden_out = 2048

        return self.darknet53
コード例 #4
0
ファイル: test.py プロジェクト: buaaML2019/yolo-
def test(img_path: str = 'data/custom/images/', anno_path: str = 'data/custom/annos/') -> None:
    # transform something
    initialize(img_path=img_path, anno_path=anno_path, split_ratio=1.0)

    # some common config
    iou_thres = 0.5
    conf_thres = 0.01
    nms_thres = 0.5
    img_size = 416
    batch_size = 16
    device = tc.device('cuda' if tc.cuda.is_available() else 'cpu')

    # other paths
    weights_path = 'my/yolov3_ckpt_1.pth'
    model_def = 'config/custom.cfg'
    test_path = 'data/custom/train.txt'
    class_path = 'data/custom/classes.names'

    # load model
    class_names = load_classes(class_path)
    model = Darknet(model_def).to(device)
    model.load_state_dict(tc.load(weights_path))


    imgs, img_detections = detect(
            model=model,
            path=img_path,
            conf_thres=conf_thres,
            nms_thres=nms_thres,
            img_size=img_size,
            batch_size=batch_size,
            n_cpu=8,
            device=device,
        )

        os.makedirs('predicted_file', exist_ok=True)

        class1 = open('predicted_file/det_test_core.txt', 'w')
        class2 = open('predicted_file/det_test_coreless.txt', 'w')
        for path, boxes in zip(imgs, img_detections):
            w, h = Image.open(path).size
            boxes = rescale_boxes(boxes, img_size, (h, w))
            for box in boxes:
                line = [
                    # os.path.split(path)[1].split('_')[1].split('.')[0],  # no prefix
                    os.path.split(path)[1].split('.')[0],  # with prefix 'core_' or 'coreless_'
                    f'{box[4].tolist():.3f}',  # conf
                    f'{box[0].tolist():.1f}',
                    f'{box[1].tolist():.1f}',
                    f'{box[2].tolist():.1f}',
                    f'{box[3].tolist():.1f}',
                ]
                if box[-1] == 0.0:
                    class1.write(' '.join(line) + '\n')
                elif box[-1] == 1.0:
                    class2.write(' '.join(line) + '\n')
        class1.close()
        class2.close()
        print('Output file saved.\n')
コード例 #5
0
def main():
    args = create_prune_argparser()
    config = create_config(args)

    # Initialize
    init_seeds(seed=0)

    model = Darknet(cfg=config['cfg'], arc=config['arc'])
    mask = create_mask(model)
    bckp = create_backup(model)
    device = select_device(config['device'])

    model = model.to(device)
    # print('Making forwards by 100 iterations')
    # mask = mask.to(device)
    # x = torch.Tensor(10, 3, 416, 416).to(device)
    # for i in range(100):
    #     out = model(x)
    # exit()

    data_dict = parse_data_cfg(config['data'])
    train_path = data_dict['train']

    dataset = LoadImagesAndLabels(
        path=train_path,
        img_size=config['img_size'][0],
        batch_size=config['batch_size'],
        augment=True,
        hyp=config['hyp'],
        cache_images=config['cache_images'],
    )

    # Dataloader
    nw = min([os.cpu_count(), 18 if 18 > 1 else 0, 8])  # number of workers
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=18,
                                             num_workers=nw,
                                             pin_memory=True,
                                             collate_fn=dataset.collate_fn)

    # torch.cuda.empty_cache()

    imgs, _, _, _ = next(iter(dataloader))
    imgs = imgs.float() / 255.0
    imgs = imgs.to(device)

    start = datetime.datetime.now()
    print(f'Starting to compute the time at {start}')
    for i in range(10):
        prune_on_cpu(model, mask, bckp, imgs, config, device)
    end = datetime.datetime.now()
    print(f'Ending at {end}')
    result = end - start
    print(f'Time of {result}')
コード例 #6
0
def run_embedding(aligned_face, opt):
    device = "cuda" if opt.use_cuda and torch.cuda.is_available() else "cpu"
    model = Darknet(opt.config_path, img_size=160)
    model.load_weights(opt.weights_path)
    model = model.to(device)
    img = np.array(aligned_face)
    img = np.repeat(img[np.newaxis, :, :], 3, axis=0)
    img = np.expand_dims(img, 0)
    img = torch.from_numpy(img).float().to(device)
    embedding = model(img)
    embedding = torch.norm(embedding).detach().cpu()
    return embedding
コード例 #7
0
    def __init__(self, device, model_def, load_path, reg_threshold,
                 cls_threshold, nms_threshold, image_size):
        self.image_size = image_size
        self.model = Darknet(model_def, img_size=self.image_size).to(device)
        # TODO
        # change device to GPU
        self.model.load_state_dict(torch.load(load_path, map_location='cpu'))
        self.model.eval()
        self.reg_threshold = reg_threshold
        self.cls_threshold = cls_threshold
        self.nms_threshold = nms_threshold

        self.device = device
コード例 #8
0
def main():
    device = torch.device("cuda" if OPT.use_cuda else "cpu")
    cudnn.benchmark = True

    classes = tools.load_classes(OPT.class_path) # Extracts class labels from file

    model = Darknet(OPT.config_path, img_size=OPT.img_size)
    model.load_weights(OPT.weights_path)

    if OPT.source == 'image':
        detect_image(model, device, classes)
    elif OPT.source == 'video':
        detect_video(model, device, classes)
コード例 #9
0
ファイル: compare.py プロジェクト: linsongxue/PowerfulLCP
def run_compare(cfg, data, prune_cfg, batch_size, origin_weights):
    device = select_device('', apex=None, batch_size=batch_size)

    if device.type != 'cpu' and torch.cuda.device_count() > 1:
        dist.init_process_group(
            backend='nccl',  # 'distributed backend'
            init_method=
            'tcp://127.0.0.1:9999',  # distributed training init method
            world_size=1,  # number of nodes for distributed training
            rank=0)  # distributed training node rank

    init_seeds()

    data_dict = parse_data_cfg(data)
    train_path = data_dict['valid']

    dataset = LoadImagesAndLabels(
        train_path,
        416,
        batch_size,
        augment=True,
        hyp=hyp,  # augmentation hyperparameters
        rect=False,  # rectangular training
        cache_labels=True,
        cache_images=False)
    batch_size = min(batch_size, len(dataset))
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0,
              8])  # number of workers
    train_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size,
        num_workers=nw,
        shuffle=True,  # Shuffle=True unless rectangular training is used
        pin_memory=True,
        collate_fn=dataset.collate_fn)

    origin_model = Darknet(cfg).to(device)
    chkpt = torch.load(origin_weights, map_location=device)
    origin_model.load_state_dict(chkpt['model'], strict=True)
    aux_util = AuxNetUtils(origin_model, hyp)
    del chkpt

    for layer in aux_util.pruning_layer[1:]:
        # greedy_channel_select(origin_model, prune_cfg, origin_weights, layer, device, aux_util, train_loader, 0.75)
        random_greedy_channel_select(origin_model, prune_cfg, origin_weights,
                                     layer, device, aux_util, train_loader,
                                     0.75)
コード例 #10
0
ファイル: pytorch2onnx.py プロジェクト: huidang/yolo
def transform_to_onnx(cfg_file, weight_file, batch_size, in_h, in_w):
    model = Darknet(cfg_file)
    pre_dict = torch.load(weight_file, map_location=torch.device('cpu'))
    model.load_state_dict(pre_dict['model'])
    x = torch.ones((batch_size, 3, in_h, in_w), requires_grad=True)*120 /255.0
    onnx_file_name = 'model/yolov3.onnx'
    
    torch.onnx.export(model,
                      x,
                      onnx_file_name,
                      #export_params=True,
                      #opset_version=11,
                      #do_constant_folding=True,
                      input_names=['input'], output_names=['output1'])
                      #dynamic_axes=None)
    print('Onnx model exporting done')
    return onnx_file_name, x
コード例 #11
0
def main(target_path, output_path, weights_path, model_cfg, conf_thres,
         nms_thres, xy_loss, wh_loss, no_object_loss, object_loss,
         vanilla_anchor):

    cuda = torch.cuda.is_available()
    device = torch.device('cuda:0' if cuda else 'cpu')
    random.seed(0)
    torch.manual_seed(0)
    if cuda:
        torch.cuda.manual_seed(0)
        torch.cuda.manual_seed_all(0)
        torch.backends.cudnn.benchmark = True
        torch.cuda.empty_cache()
    model = Darknet(config_path=model_cfg,
                    xy_loss=xy_loss,
                    wh_loss=wh_loss,
                    no_object_loss=no_object_loss,
                    object_loss=object_loss,
                    vanilla_anchor=vanilla_anchor)

    # Load weights
    model.load_weights(weights_path, model.get_start_weight_dim())
    model.to(device, non_blocking=True)

    detect(target_path,
           output_path,
           model,
           device=device,
           conf_thres=conf_thres,
           nms_thres=nms_thres)
コード例 #12
0
def yolov3(linux):

    # Code
    if linux:
        YOLO_PATH = '/home/student/Desktop/Automated-Active-Surveillance-System-in-the-Detection-of-Cold-Steel-Weapons/dl_models/yolov3'
    else:
        base_path = os.path.dirname(os.path.realpath(__file__)) + '\\'
        YOLO_PATH = base_path + 'yolov3'
    sys.path.insert(0, YOLO_PATH)
    from models import Darknet
    opt = YoloConfig(linux)
    img_size = opt.img_size
    out, source, weights, half, view_img, save_txt = opt.output, opt.source, opt.weights, opt.half, opt.view_img, opt.save_txt
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    model = Darknet(opt.cfg, img_size)
    model.load_state_dict(torch.load(weights)['model'])
    return model, opt
コード例 #13
0
def main():
    img_size = 512  # 必须是32的整数倍 [416, 512, 608]
    cfg = "cfg/yolov3-spp.cfg"
    weights = "weights/yolov3-spp-ultralytics-{}.pt".format(img_size)
    img_path = "test.jpg"
    input_size = (img_size, img_size)

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    model = Darknet(cfg, img_size)
    model.load_state_dict(torch.load(weights, map_location=device)["model"])
    model.to(device)

    model.eval()

    # init
    img = torch.zeros((1, 3, img_size, img_size), device=device)
    model(img)

    img_o = cv2.imread(img_path)  # BGR
    assert img_o is not None, "Image Not Found " + img_path

    img = img_utils.letterbox(img_o, new_shape=input_size, auto=True, color=(0, 0, 0))[0]
    # Convert
    img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
    img = np.ascontiguousarray(img)

    img = torch.from_numpy(img).to(device).float()
    img /= 255.0  # scale (0, 255) to (0, 1)
    img = img.unsqueeze(0)  # add batch dimension

    t1 = torch_utils.time_synchronized()
    pred = model(img)[0]  # only get inference result
    t2 = torch_utils.time_synchronized()
    print(t2 - t1)

    pred = utils.non_max_suppression(pred, conf_thres=0.3, iou_thres=0.6, multi_label=True)[0]
    t3 = time.time()
    print(t3 - t2)

    # process detections
    pred[:, :4] = utils.scale_coords(img.shape[2:], pred[:, :4], img_o.shape).round()
    print(pred.shape)

    bboxes = pred[:, :4].detach().cpu().numpy()
    scores = pred[:, 4].detach().cpu().numpy()
    classes = pred[:, 5].detach().cpu().numpy().astype(np.int) + 1

    category_index = dict([(i + 1, str(i + 1)) for i in range(90)])
    img_o = draw_box(img_o[:, :, ::-1], bboxes, classes, scores, category_index)
    plt.imshow(img_o)
    plt.show()

    img_o.save("test_result.jpg")
コード例 #14
0
ファイル: eval.py プロジェクト: wasaCheney/FisherReg
def eval_flowchart(init_style, para_part, reg, alpha, ablation_type):
    '''Main body for evaluation'''
    args = all_args()
    # Storage path 'eval/'
    os.makedirs(args.save_folder, exist_ok=True)
    # Dataset
    dataset = get_data(args)
    # Load net
    net = Darknet(args.model_config_path, img_size=args.img_size)
    # Visdom
    viz, epoch_aps = init_viz(args, init_style, para_part, reg, alpha, dataset)
    # Evaluate
    ckpt_path, ckpts = get_ckpts(args, init_style, para_part, reg, alpha,
                                 ablation_type)

    mAP_max = 0
    for ckpt_idx, ckpt in enumerate(ckpts):
        # sample one for hyperparameter adjustment
        if ckpt_idx < 120:
            continue
        # Make output dir
        dir_name = '_'.join([
            ablation_type, args.arc, args.dataset, args.set_type, init_style,
            para_part, reg,
            str(alpha), ckpt,
            str(ckpt_idx)
        ])
        output_dir = get_output_dir(args.save_folder, dir_name)
        # Load weight
        args.weight_path = os.path.join(ckpt_path, ckpt)
        #  assert os.path.isfile(args.weight_path)
        try:
            net.load_weights(args.weight_path)
        except FileNotFoundError as err:
            print(err)
        # Cuda or not
        if args.cuda:
            net = net.cuda()
            cudnn.benchmark = True
        net.eval()
        print('Finished loading model!')
        # Evaluation, use_07_eval False
        aps, mAP = test_net(output_dir,
                            net,
                            args.cuda,
                            dataset,
                            args.score_thres,
                            args.nms_thres,
                            use_07_eval=False,
                            iou_thres=args.iou_thres)
        # If not greater than before, delete
        if mAP_max >= mAP:
            rmtree(output_dir)
        else:
            mAP_max = mAP
        # Visdom
        update_vis(viz, epoch_aps, ckpt_idx + 1, *aps, mAP)
コード例 #15
0
ファイル: yolo.py プロジェクト: waylonflinn/BBoxEE
    def __init__(self, data_config, net_config, weights, image_size):
        """Class init function."""
        QtCore.QThread.__init__(self)
        self.image_list = []
        self.threshold = 0.9
        self.image_directory = ''
        self.data = None
        self.image_size = image_size

        if torch.cuda.is_available():
            self.device = torch.device('cuda:0')
        else:
            self.device = torch.device('cpu')
        self.data_config = parse_data_config(data_config)
        # Extracts class labels from file
        self.classes = load_classes(self.data_config['names'])
        self.model = Darknet(net_config, image_size)

        checkpoint = torch.load(weights, map_location='cpu')
        self.model.load_state_dict(checkpoint['model'])
コード例 #16
0
    def build_model(self) -> nn.Module:

        opt = get_cli_args(batch_size=pedl_batch_size,
                           prebias=pedl_prebias,
                           accumulate=pedl_accumulate)
        hyp = get_hyp(lr0=pedl_init_lr)

        # Initialize model
        model = Darknet(opt.cfg, arc=opt.arc)  # .to(device)

        # Fetch starting weights
        # TODO Once download_data_fn is implemented this should go into download_data
        attempt_download(opt.weights)
        chkpt = torch.load(opt.weights)

        # load model
        try:
            chkpt["model"] = {
                k: v
                for k, v in chkpt["model"].items()
                if model.state_dict()[k].numel() == v.numel()
            }
            model.load_state_dict(chkpt["model"], strict=False)
        except KeyError as e:
            s = (
                "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s. "
                "See https://github.com/ultralytics/yolov3/issues/657" %
                (opt.weights, opt.cfg, opt.weights))
            raise KeyError(s) from e

        del chkpt

        data_dict = get_data_cfg()
        nc = 1 if opt.single_cls else int(data_dict["classes"])
        model.nc = nc  # attach number of classes to model

        model.arc = opt.arc  # attach yolo architecture
        model.hyp = hyp  # attach hyperparameters to model

        train_dataset = LazyModule.get()

        # The model class weights depend on the dataset labels
        model.class_weights = labels_to_class_weights(
            train_dataset.labels, nc)  # attach class weights

        return model
コード例 #17
0
class DarkNet53(backbone.base.Base):

    def __init__(self, pretrained: bool, models_dir: Optional[str] = None):
        super().__init__(pretrained)
        self._models_dir = models_dir

    def features(self) -> Tuple[nn.Module, nn.Module, int, int]:
        if 'darknet53' not in dir(self):
            self.backbone()

        return self.darknet53

    def backbone(self, config_path) -> Darknet:  # 删除config_path参数
        if 'darknet53' in dir(self) and self.darknet53 is not None:
            raise Exception(
                "Call 'backbone' before 'features' and 'multiscale_features' method")

        if self._models_dir is not None and self._pretrained:
            self.darknet53 = Darknet(config_path)
            self.darknet53.load_state_dict(torch.load(
                os.path.join(self._models_dir, 'darknet53-5d3b4d8f.pth')
            ))
        else:
            self.darknet53 = Darknet(config_path)

        # list(darknet53.children()) consists of following modules
        #   [0] = Conv2d, [1] = BatchNorm2d, [2] = ReLU,
        #   [3] = MaxPool2d, [4] = Sequential(Bottleneck...),
        #   [5] = Sequential(Bottleneck...),
        #   [6] = Sequential(Bottleneck...),
        #   [7] = Sequential(Bottleneck...),
        #   [8] = AvgPool2d, [9] = Linear

        # children = list(self.darknet53.children())
        # self.features = children[:-3]
        # self.num_features_out = 1024

        # self.hidden = children[-3]
        # self.num_hidden_out = 2048

        return self.darknet53
コード例 #18
0
ファイル: darknet2pytorch.py プロジェクト: youzhaxiaomayi/123
def convert(cfg='cfg/yolov4.cfg', weights='weights/yolov4.weights'):

    # Initialize model
    model = Darknet(cfg)

    if weights.endswith('.weights'):  # darknet format
        _ = load_darknet_weights(model, weights)

        chkpt = {
            'epoch': -1,
            'best_fitness': None,
            'training_results': None,
            'model': model.state_dict(),
            'optimizer': None
        }

        torch.save(chkpt, 'weights/yolov4.pt')
        print("Success: converted '%s' to 'converted.pt'" % weights)

    else:
        print('Error: extension not supported.')
コード例 #19
0
class Detector(object):
    def __init__(self, device, model_def, load_path, reg_threshold,
                 cls_threshold, nms_threshold, image_size):
        self.image_size = image_size
        self.model = Darknet(model_def, img_size=self.image_size).to(device)
        # TODO
        # change device to GPU
        self.model.load_state_dict(torch.load(load_path, map_location='cpu'))
        self.model.eval()
        self.reg_threshold = reg_threshold
        self.cls_threshold = cls_threshold
        self.nms_threshold = nms_threshold

        self.device = device

    @torch.no_grad()
    def __call__(self, image):
        original_size = image.shape[:2]
        tensor = torch.from_numpy(image).to(self.device).permute(2, 0, 1)
        tensor = tensor.contiguous().float().div_(255)
        _, h, w = tensor.shape
        dim_diff = np.abs(h - w)
        pad1, pad2 = dim_diff // 2, dim_diff - dim_diff // 2
        pad = (0, 0, pad1, pad2) if h <= w else (pad1, pad2, 0, 0)
        tensor = f.pad(tensor, pad, "constant", value=0)
        tensor = f.interpolate(tensor.unsqueeze(0),
                               size=self.image_size,
                               mode="nearest").squeeze_(0)

        result = self.model(tensor.unsqueeze_(0))
        detection = non_max_suppression(result, self.reg_threshold,
                                        self.nms_threshold)[0]
        if detection is not None:
            detection = detection[detection[:, -2] > self.cls_threshold]
            detection = rescale_boxes(detection, self.image_size,
                                      original_size)
        else:
            print("detection result is None")
        return detection
コード例 #20
0
def main(*, batch_size, model_cfg, weights_path, bbox_all, step, n_cpu):
    cuda = torch.cuda.is_available()
    device = torch.device('cuda:0' if cuda else 'cpu')
    random.seed(0)
    torch.manual_seed(0)
    if cuda:
        torch.cuda.manual_seed(0)
        torch.cuda.manual_seed_all(0)
        torch.backends.cudnn.benchmark = True
        torch.cuda.empty_cache()

    # Initiate model
    model = Darknet(model_cfg)
    validate_uri, _, weights_uri = model.get_links()
    _, _, _, _, bw = model.get_dataAug()
    num_images, _ = model.num_images()

    # Load weights
    model.load_weights(weights_path, model.get_start_weight_dim())
    model.to(device, non_blocking=True)

    # Get dataloader
    dataloader = torch.utils.data.DataLoader(ImageLabelDataset(
        validate_uri,
        height=img_height,
        width=img_width,
        augment_hsv=False,
        augment_affine=False,
        num_images=num_images,
        bw=bw,
        n_cpu=n_cpu,
        lr_flip=False,
        ud_flip=False),
                                             batch_size=batch_size,
                                             shuffle=False,
                                             num_workers=n_cpu,
                                             pin_memory=True)
    return validate(dataloader, model, device, step, bbox_all)
コード例 #21
0
def main(args):
    import torch
    from os.path import join, dirname
    from models import Darknet, save_weights, parse_model_cfg
    from utils.prune_utils import write_cfg
    cfg = parse_model_cfg(args.cfg)
    idx = list(range(5))
    if args.class_idx != '-1':
        idx += [int(x) + 5
                for x in args.class_idx.split(',')]  # box + obj + cls
    else:
        for i, c in enumerate(cfg):
            if c['type'] == 'yolo':
                nf = int(cfg[i - 1]['filters'])
                nc = int(c['classes'])
                na = nf // (5 + nc)
                c['classes'] = '0'
                cfg[i - 1]['filters'] = str(nf - na * nc)
    model = Darknet(cfg)
    na = model.module_list[model.yolo_layers[0]].na  # anchor number per point
    sd0 = model.state_dict()
    if args.src.endswith('.pt'):
        sd1 = torch.load(args.src)['model']
    else:
        raise NotImplementedError('darknet weights not supported')

    for k in sd0:
        if sd0[k].shape != sd1[k].shape:
            sd1[k] = torch.cat([x[idx] for x in sd1[k].chunk(na)])
    model.load_state_dict(sd1)
    save_weights(model, args.dst)
    from os.path import basename, splitext
    cfg_path = args.cfg.replace(
        splitext(basename(args.cfg))[0],
        splitext(basename(args.dst))[0])
    write_cfg(cfg_path, [model.hyperparams] + model.module_defs)
    print('cfg saved to:', cfg_path)
コード例 #22
0
def Load_Yolo(device):

    #Load Darknet
    yolo_model_def = os.path.join(yolo_path, 'config/yolov3-tiny.cfg')
    yolo_img_size = 416
    yolo_weights_path = os.path.join(yolo_path, 'weights/yolov3-tiny.weights')
    model = Darknet(yolo_model_def, img_size=yolo_img_size).to(device)

    if yolo_weights_path.endswith(".weights"):
        # Load darknet weights
        model.load_darknet_weights(yolo_weights_path)
    else:
        # Load checkpoint weights
        model.load_state_dict(torch.load(yolo_weights_path))

    model.eval()  # Set in evaluation mode
    return model
コード例 #23
0
ファイル: utils.py プロジェクト: atimashov/object_detection
def load_checkpoint(file_name, device, S, B, C, cfg=None):
    print('Loading checkpoint...')
    if cfg is None:
        checkpoint = torch.load(file_name)
        cfg = checkpoint['cfg']
    BACKBONE = cfg['MODEL']
    N_LAYERS = cfg.get('N_LAYERS', 0)
    MIN_IMAGES = cfg['MIN_IMAGES']
    DATASET_DIR = cfg['DATASET_DIR']
    print(MIN_IMAGES, DATASET_DIR)

    print('backbone:', BACKBONE)
    if BACKBONE == 'Darknet':
        n_classes = get_n_classes(MIN_IMAGES, root=DATASET_DIR)
        backbone = Darknet(n_layers=N_LAYERS, num_classes=n_classes)
        backbone.load_state_dict(checkpoint['model'])
        model = YoloV1_pretrained(backbone=backbone,
                                  n_layers=N_LAYERS,
                                  grid_size=S,
                                  num_boxes=B,
                                  num_classes=C).to(device)

    # for param in backbone.parameters():
    #     param.requires_grad = False

    elif BACKBONE == 'VGG16':
        model = OD_backbone(bb_name=BACKBONE,
                            grid_size=S,
                            num_boxes=B,
                            num_classes=C).to(device)

    if BACKBONE == 'Darknet':
        epoch = checkpoint['epoch']
    else:
        epoch = 0
    return model, cfg, epoch
def yolov3(linux):
    # image_path = "/home/student/Desktop/Automated-Active-Surveillance-System-in-the-Detection-of-Cold-Steel-Weapons/models/yolov3/meme.jpg"
    # # os.system(f"cd yolov3")
    # os.chdir("yolov3")
    # os.system(f"python3 detect.py --source {image_path} --cfg cfg/yolov3-spp.cfg --weights yolov3-spp.pt")
    # os.chdir("..")
    # YOLOV3_PATH = '/home/student/Desktop/Automated-Active-Surveillance-System-in-the-Detection-of-Cold-Steel-Weapons/models/yolov3'
    # sys.path.insert(0, YOLOV3_PATH)

    # Code
    if linux:
        YOLO_PATH = '/home/student/Desktop/Automated-Active-Surveillance-System-in-the-Detection-of-Cold-Steel-Weapons/dl_models/yolov3'
    else:
        YOLO_PATH = 'D:\GitLab_respos\Automated-Active-Surveillance-System-in-the-Detection-of-Cold-Steel-Weapons\dl_models\yolov3'
    sys.path.insert(0, YOLO_PATH)
    from models import Darknet
    opt = YoloConfig(linux)
    img_size = opt.img_size
    out, source, weights, half, view_img, save_txt = opt.output, opt.source, opt.weights, opt.half, opt.view_img, opt.save_txt
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    model = Darknet(opt.cfg, img_size)
    model.load_state_dict(torch.load(weights)['model'])
    return model, opt
コード例 #25
0
def restore_pruned_checkpt(cfg, img_size, resume_prune_point):
    device = torch_utils.select_device()
    model = Darknet(cfg, img_size)
    pruned_weight = resume_prune_point + os.sep + pruned_pt_name
    pruned_tracker = resume_prune_point + os.sep + pruned_tracker_name
    load_tracker(pruned_tracker, model)
    checkpoint = torch.load(pruned_weight, map_location='cpu')
    model.load_state_dict(checkpoint['model'])
    model.to(device)
    return model, pruned_tracker
コード例 #26
0
def initial_model_gen(cfg, img_size, weights):
    device = torch_utils.select_device()
    model = Darknet(cfg, img_size)
    if weights.endswith('.pt'):  # pytorch format
        model.load_state_dict(torch.load(weights, map_location='cpu')['model'])
    else:  # darknet format
        assert False, 'initial point needs to be pytorch format'
    model.to(device).eval()
    tracker = PruneTracker()
    model(torch.rand(1, 3, img_size, img_size).to(device), tracker=tracker)
    return model, tracker
コード例 #27
0
ファイル: main.py プロジェクト: zihaozhang9/pytorch_yolo
def create_model(opt):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = Darknet(opt.cfg).to(device)
    #model.apply(weights_init_normal)
    if opt.pretrained_weights:
        if opt.pretrained_weights.endswith(".pth"):
            model.load_state_dict(torch.load(opt.pretrained_weights))
        else:
            model.load_darknet_weights(opt.pretrained_weights)
    model_cfg = parse_model_config(opt.cfg)
    return model, model_cfg
コード例 #28
0
ファイル: detector.py プロジェクト: vijirammech/Complex_YOLO
def setup_detector(opt):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    weights_path = os.path.join(
        opt.weights_path,
        "weights_RADAR.pth" if opt.radar else "weights_LIDAR.pth")
    # Set up model
    model = Darknet(opt.model_def, img_size=cnf.BEV_WIDTH).to(device)
    # Load checkpoint weights
    model.load_state_dict(torch.load(weights_path, map_location=device))
    # Eval mode
    model.eval()

    return model
コード例 #29
0
def main(image_uri,
         output_uri,
         weights_uri,
         model_cfg,
         img_size,
         bw,
         conf_thres,
         nms_thres):

    cuda = torch.cuda.is_available()
    device = torch.device('cuda:0' if cuda else 'cpu')
    random.seed(0)
    torch.manual_seed(0)
    if cuda:
        torch.cuda.manual_seed(0)
        torch.cuda.manual_seed_all(0)
        torch.backends.cudnn.benchmark = True
        torch.cuda.empty_cache()

    model = Darknet(model_cfg, img_size)

    # Load weights
    weights_path = storage_client.get_file(weights_uri)
    if weights_path.endswith('.weights'):  # darknet format
        model.load_weights(weights_path)
    elif weights_path.endswith('.pt'):  # pytorch format
        checkpoint = torch.load(weights_path, map_location='cpu')
        model.load_state_dict(checkpoint['model'])
    model.to(device, non_blocking=True)

    detect(image_uri,
           output_uri,
           model,
           img_size,
           bw,
           device=device,
           conf_thres=conf_thres,
           nms_thres=nms_thres)
コード例 #30
0
def main():
    # model
    model = Darknet(str(args.config), img_size=416)
    model_wts = torch.load(str(args.weight), map_location='cpu')
    model.load_state_dict(model_wts)
    if torch.cuda.is_available():
        print('gpu: available')
        model = model.cuda()
    else:
        print('gpu: not available')

    # read video
    print(">> reading video...")
    video, info = read_video(args.input)
    video = video[:, :, :, ::-1]
    print("  shape:", video.shape)
    print("  info: ", info)

    # forward
    print(">> predicting...")
    imgs, bboxes, ss, labels = [], [], [], []
    for i in tqdm(range(0, len(video))):
        img = video[i]

        bbox, max_s = model.predict(img, args.conf_thresh, args.nms_thresh)

        imgs.append(img)
        ss.append(max_s)
        if len(bbox) != 0:
            bboxes.append([bbox])
            labels.append([0])
        else:
            bboxes.append([])
            labels.append([])

    # draw bbox
    imgs = np.asarray(imgs)
    # imgs = imgs[:,:,::-1]
    for i in tqdm(range(len(imgs))):
        if len(bboxes[i]) != 0:
            ty, tx, by, bx = [int(n) for n in bboxes[i][0]]
            cv2.rectangle(imgs[i], (tx, ty), (bx, by), (255, 0, 0), 3)

    # save as video
    print(">> saving video...")
    imgs = imgs[:, :, :, ::-1]
    write_video(args.output, imgs, info)