コード例 #1
0
def get_model(opt, pretrained=None, trn=True, weights_FIMs=None, alpha=1.):
    '''Getting model and initializing.
    Args:
        pretrained, None or path to pretrained model weights
        trn, True for training and False for evaluating'''
    # Model structure
    model = Darknet(opt.model_config_path, opt.img_size, weights_FIMs, alpha)
    print(model)
    # Initialize
    model.apply(weights_init_normal)
    # Pretrained or not
    coco_weights = True if pretrained == 'weights/yolov3.weights' else False
    try:
        model.load_weights(pretrained, use_coco=coco_weights)
    except TypeError:
        pass
    # Cuda or not
    if opt.cuda:
        model = model.cuda()
        cudnn.benchmark = True
    # Mode = train or eval
    if trn:
        model.train()
    else:
        model.eval()
    return model
コード例 #2
0
ファイル: eval.py プロジェクト: wasaCheney/FisherReg
def eval_flowchart(init_style, para_part, reg, alpha, ablation_type):
    '''Main body for evaluation'''
    args = all_args()
    # Storage path 'eval/'
    os.makedirs(args.save_folder, exist_ok=True)
    # Dataset
    dataset = get_data(args)
    # Load net
    net = Darknet(args.model_config_path, img_size=args.img_size)
    # Visdom
    viz, epoch_aps = init_viz(args, init_style, para_part, reg, alpha, dataset)
    # Evaluate
    ckpt_path, ckpts = get_ckpts(args, init_style, para_part, reg, alpha,
                                 ablation_type)

    mAP_max = 0
    for ckpt_idx, ckpt in enumerate(ckpts):
        # sample one for hyperparameter adjustment
        if ckpt_idx < 120:
            continue
        # Make output dir
        dir_name = '_'.join([
            ablation_type, args.arc, args.dataset, args.set_type, init_style,
            para_part, reg,
            str(alpha), ckpt,
            str(ckpt_idx)
        ])
        output_dir = get_output_dir(args.save_folder, dir_name)
        # Load weight
        args.weight_path = os.path.join(ckpt_path, ckpt)
        #  assert os.path.isfile(args.weight_path)
        try:
            net.load_weights(args.weight_path)
        except FileNotFoundError as err:
            print(err)
        # Cuda or not
        if args.cuda:
            net = net.cuda()
            cudnn.benchmark = True
        net.eval()
        print('Finished loading model!')
        # Evaluation, use_07_eval False
        aps, mAP = test_net(output_dir,
                            net,
                            args.cuda,
                            dataset,
                            args.score_thres,
                            args.nms_thres,
                            use_07_eval=False,
                            iou_thres=args.iou_thres)
        # If not greater than before, delete
        if mAP_max >= mAP:
            rmtree(output_dir)
        else:
            mAP_max = mAP
        # Visdom
        update_vis(viz, epoch_aps, ckpt_idx + 1, *aps, mAP)
コード例 #3
0
def main():
    # model
    model = Darknet(str(args.config), img_size=416)
    model_wts = torch.load(str(args.weight), map_location='cpu')
    model.load_state_dict(model_wts)
    if torch.cuda.is_available():
        print('gpu: available')
        model = model.cuda()
    else:
        print('gpu: not available')

    # read video
    print(">> reading video...")
    video, info = read_video(args.input)
    video = video[:, :, :, ::-1]
    print("  shape:", video.shape)
    print("  info: ", info)

    # forward
    print(">> predicting...")
    imgs, bboxes, ss, labels = [], [], [], []
    for i in tqdm(range(0, len(video))):
        img = video[i]

        bbox, max_s = model.predict(img, args.conf_thresh, args.nms_thresh)

        imgs.append(img)
        ss.append(max_s)
        if len(bbox) != 0:
            bboxes.append([bbox])
            labels.append([0])
        else:
            bboxes.append([])
            labels.append([])

    # draw bbox
    imgs = np.asarray(imgs)
    # imgs = imgs[:,:,::-1]
    for i in tqdm(range(len(imgs))):
        if len(bboxes[i]) != 0:
            ty, tx, by, bx = [int(n) for n in bboxes[i][0]]
            cv2.rectangle(imgs[i], (tx, ty), (bx, by), (255, 0, 0), 3)

    # save as video
    print(">> saving video...")
    imgs = imgs[:, :, :, ::-1]
    write_video(args.output, imgs, info)
コード例 #4
0
learning_rate = float(hyperparams['learning_rate'])
momentum = float(hyperparams['momentum'])
decay = float(hyperparams['decay'])
burn_in = int(hyperparams['burn_in'])

# Initiate model

dirlist = os.listdir('./yolodata/')
dirlist.remove('showTruth.m')
for dir in sorted(dirlist):
    # Get dataloader
    model = Darknet(opt.model_config_path)
    model.load_weights(opt.weights_path)

    if cuda:
        model = model.cuda()

    model.train()
    train_path = './yolodata/' + dir + '/train/indextrain.txt'
    dataloader = torch.utils.data.DataLoader(ListDataset(train_path),
                                             batch_size=opt.batch_size,
                                             shuffle=False,
                                             num_workers=opt.n_cpu)

    Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor

    optimizer = optim.SGD(model.parameters(),
                          lr=learning_rate,
                          momentum=momentum,
                          dampening=0,
                          weight_decay=decay)
コード例 #5
0
ファイル: train.py プロジェクト: winterest/mot-transform
def train(
    cfg,
    data_cfg,
    weights_from="",
    weights_to="",
    save_every=10,
    img_size=(1088, 608),
    resume=False,
    epochs=100,
    batch_size=16,
    accumulated_batches=1,
    freeze_backbone=False,
    opt=None,
):
    # The function starts
    NUM_WORKERS = opt.num_workers

    timme = strftime("%Y-%d-%m %H:%M:%S", gmtime())
    timme = timme[5:-3].replace('-', '_')
    timme = timme.replace(' ', '_')
    timme = timme.replace(':', '_')
    weights_to = osp.join(weights_to, 'run' + timme)
    mkdir_if_missing(weights_to)
    mkdir_if_missing(weights_to + '/cfg/')
    if resume:
        latest_resume = osp.join(weights_from, 'latest.pt')

    torch.backends.cudnn.benchmark = True  # unsuitable for multiscale

    # Configure run
    f = open(data_cfg)
    data_config = json.load(f)
    trainset_paths = data_config['train']
    dataset_root = data_config['root']
    f.close()

    transforms = T.Compose([T.ToTensor()])
    # Get dataloader
    dataset = JointDataset(dataset_root,
                           trainset_paths,
                           img_size,
                           augment=True,
                           transforms=transforms)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=batch_size,
                                             shuffle=True,
                                             num_workers=NUM_WORKERS,
                                             pin_memory=True,
                                             drop_last=True,
                                             collate_fn=collate_fn)
    # Initialize model
    model = Darknet(cfg, dataset.nID)

    cutoff = -1  # backbone reaches to cutoff layer
    start_epoch = 0
    if resume:
        checkpoint = torch.load(latest_resume, map_location='cpu')

        # Load weights to resume from
        model.load_state_dict(checkpoint['model'])
        model.cuda().train()

        # Set optimizer
        optimizer = torch.optim.SGD(filter(lambda x: x.requires_grad,
                                           model.parameters()),
                                    lr=opt.lr,
                                    momentum=.9)

        start_epoch = checkpoint['epoch'] + 1
        if checkpoint['optimizer'] is not None:
            optimizer.load_state_dict(checkpoint['optimizer'])

        del checkpoint  # current, saved

    else:
        # Initialize model with backbone (optional)
        if cfg.endswith('yolov3.cfg'):
            load_darknet_weights(model,
                                 osp.join(weights_from, 'darknet53.conv.74'))
            cutoff = 75
        elif cfg.endswith('yolov3-tiny.cfg'):
            load_darknet_weights(model,
                                 osp.join(weights_from, 'yolov3-tiny.conv.15'))
            cutoff = 15

        model.cuda().train()

        # Set optimizer
        optimizer = torch.optim.SGD(filter(lambda x: x.requires_grad,
                                           model.parameters()),
                                    lr=opt.lr,
                                    momentum=.9,
                                    weight_decay=1e-4)

    model = torch.nn.DataParallel(model)
    # Set scheduler
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer,
        milestones=[int(0.5 * opt.epochs),
                    int(0.75 * opt.epochs)],
        gamma=0.1)

    # An important trick for detection: freeze bn during fine-tuning
    if not opt.unfreeze_bn:
        for i, (name, p) in enumerate(model.named_parameters()):
            p.requires_grad = False if 'batch_norm' in name else True

    # model_info(model)
    t0 = time.time()
    for epoch in range(epochs):
        epoch += start_epoch
        logger.info(
            ('%8s%12s' + '%10s' * 6) % ('Epoch', 'Batch', 'box', 'conf', 'id',
                                        'total', 'nTargets', 'time'))

        # Freeze darknet53.conv.74 for first epoch
        if freeze_backbone and (epoch < 2):
            for i, (name, p) in enumerate(model.named_parameters()):
                if int(name.split('.')[2]) < cutoff:  # if layer < 75
                    p.requires_grad = False if (epoch == 0) else True

        ui = -1
        rloss = defaultdict(float)  # running loss

        ## training schedule
        optimizer.zero_grad()

        for i, (imgs, targets, _, _, targets_len) in enumerate(dataloader):
            if sum([len(x) for x in targets]) < 1:  # if no targets continue
                continue

            # SGD burn-in
            burnin = min(1000, len(dataloader))
            if (epoch == 0) & (i <= burnin):
                lr = opt.lr * (i / burnin)**4
                for g in optimizer.param_groups:
                    g['lr'] = lr

            # Compute loss, compute gradient, update parameters
            loss, components = model(imgs.cuda(), targets.cuda(),
                                     targets_len.cuda())
            components = torch.mean(components.view(-1, 5), dim=0)
            loss = torch.mean(loss)
            loss.backward()

            # accumulate gradient for x batches before optimizing
            if ((i + 1) % accumulated_batches
                    == 0) or (i == len(dataloader) - 1):
                optimizer.step()
                optimizer.zero_grad()

            # Running epoch-means of tracked metrics
            ui += 1

            for ii, key in enumerate(model.module.loss_names):
                rloss[key] = (rloss[key] * ui + components[ii]) / (ui + 1)

            # rloss indicates running loss values with mean updated at every epoch
            s = ('%8s%12s' + '%10.3g' * 6) % (
                '%g/%g' % (epoch, epochs - 1), '%g/%g' %
                (i, len(dataloader) - 1), rloss['box'], rloss['conf'],
                rloss['id'], rloss['loss'], rloss['nT'], time.time() - t0)
            t0 = time.time()
            if i % opt.print_interval == 0:
                logger.info(s)

        # Save latest checkpoint
        checkpoint = {
            'epoch': epoch,
            'model': model.module.state_dict(),
            'optimizer': optimizer.state_dict()
        }

        copyfile(cfg, weights_to + '/cfg/yolo3.cfg')
        copyfile(data_cfg, weights_to + '/cfg/ccmcpe.json')

        latest = osp.join(weights_to, 'latest.pt')
        torch.save(checkpoint, latest)
        if epoch % save_every == 0 and epoch != 0:
            # making the checkpoint lite
            checkpoint["optimizer"] = []
            torch.save(
                checkpoint,
                osp.join(weights_to, "weights_epoch_" + str(epoch) + ".pt"))

        # Calculate mAP
        '''
        if epoch % opt.test_interval == 0:
            with torch.no_grad():
                mAP, R, P = test.test(cfg, data_cfg, weights=latest, batch_size=batch_size, img_size=img_size,
                                      print_interval=40, nID=dataset.nID)
                test.test_emb(cfg, data_cfg, weights=latest, batch_size=batch_size, img_size=img_size,
                              print_interval=40, nID=dataset.nID)
        '''

        # Call scheduler.step() after opimizer.step() with pytorch > 1.1.0
        scheduler.step()
コード例 #6
0
class YOLOV4(object):
    if CWD == THIS_DIR:
        _defaults = {
            "weights": "weights/yolov4.weights",
            "config": "cfg/yolov4.cfg",
            "classes_path": 'cfg/coco.names',
            "thresh": 0.5,
            "nms_thresh": 0.4,
            "model_image_size": (608, 608),
            "max_batch_size": 4,
            "half": True
        }
    else:
        _defaults = {
            "weights": "yolov4_pytorch/weights/yolov4.weights",
            "config": "yolov4_pytorch/cfg/yolov4.cfg",
            "classes_path": 'yolov4_pytorch/cfg/coco.names',
            "thresh": 0.5,
            "nms_thresh": 0.4,
            "model_image_size": (608, 608),
            "max_batch_size": 4,
            "half": True
        }

    def __init__(self, bgr=True, gpu_device=0, **kwargs):
        self.__dict__.update(self._defaults)  # set up default values
        # for portability between keras-yolo3/yolo.py and this
        if 'model_path' in kwargs:
            kwargs['weights'] = kwargs['model_path']
        if 'score' in kwargs:
            kwargs['thresh'] = kwargs['score']
        self.__dict__.update(kwargs)  # update with user overrides

        self.class_names = self._get_class()
        self.model = Darknet(self.config)
        self.model.load_darknet_weights(self.weights)

        self.device = gpu_device
        self.model.cuda(self.device)
        self.model.eval()

        self.bgr = bgr

        if self.half:
            self.model.half()

        # warm up
        self._detect([np.zeros((10, 10, 3), dtype=np.uint8)])
        print('Warmed up!')

    def _get_class(self):
        with open(self.classes_path) as f:
            class_names = f.readlines()
        class_names = [c.strip() for c in class_names]
        return class_names

    def _detect(self, list_of_imgs):
        inputs = []
        for img in list_of_imgs:
            if self.bgr:
                img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
                # print('bgr: {}'.format(img.shape))
            # print('size: {}'.format(self.model_image_size))
            image = cv2.resize(img, self.model_image_size)
            # print('image: {}'.format(image.shape))
            inputs.append(np.expand_dims(np.array(image), axis=0))

        images = np.concatenate(inputs, 0)

        # print('images: {}'.format(images.shape))
        images = torch.from_numpy(images.transpose(0, 3, 1,
                                                   2)).float().div(255.0)

        images = images.cuda()
        images = torch.autograd.Variable(images)

        if self.half:
            images = images.half()

        batches = []
        for i in range(0, len(images), self.max_batch_size):
            these_imgs = images[i:i + self.max_batch_size]
            batches.append(these_imgs)

        feature_list = None
        with torch.no_grad():
            for batch in batches:
                img = batch.cuda(self.device)
                features = self.model(img)

                if feature_list is None:
                    feature_list = features
                else:
                    feature_list = torch.cat((feature_list, features))

        # feature_list: (batch, height * width * num_anchors, 5 + num_classes)
        return feature_list

    def detect_get_box_in(self,
                          images,
                          box_format='ltrb',
                          classes=None,
                          buffer_ratio=0.0):
        '''
        Params
        ------
        - images : ndarray-like or list of ndarray-like
        - box_format : string of characters representing format order, where l = left, t = top, r = right, b = bottom, w = width and h = height
        - classes : list of string, classes to focus on
        - buffer : float, proportion of buffer around the width and height of the bounding box

        Returns
        -------
        if one ndarray given, this returns a list (boxes in one image) of tuple (box_infos, score, predicted_class),
        
        else if a list of ndarray given, this return a list (batch) containing the former as the elements,

        where,
            - box_infos : list of floats in the given box format
            - score : float, confidence level of prediction
            - predicted_class : string

        '''
        single = False
        if isinstance(images, list):
            if len(images) <= 0:
                return None
            else:
                assert all(isinstance(im, np.ndarray) for im in images)
        elif isinstance(images, np.ndarray):
            images = [images]
            single = True

        res = self._detect(images)
        frame_shapes = [image.shape for image in images]
        all_dets = self._postprocess(res,
                                     shapes=frame_shapes,
                                     box_format=box_format,
                                     classes=classes,
                                     buffer_ratio=buffer_ratio)

        if single:
            return all_dets[0]
        else:
            return all_dets

    def get_detections_dict(self, frames, classes=None, buffer_ratio=0.0):
        '''
        Params: frames, list of ndarray-like
        Returns: detections, list of dict, whose key: label, confidence, t, l, w, h
        '''
        if frames is None or len(frames) == 0:
            return None
        all_dets = self.detect_get_box_in(frames,
                                          box_format='tlbrwh',
                                          classes=classes,
                                          buffer_ratio=buffer_ratio)

        all_detections = []
        for dets in all_dets:
            detections = []
            for tlbrwh, confidence, label in dets:
                top, left, bot, right, width, height = tlbrwh
                detections.append({
                    'label': label,
                    'confidence': confidence,
                    't': top,
                    'l': left,
                    'b': bot,
                    'r': right,
                    'w': width,
                    'h': height
                })
            all_detections.append(detections)
        return all_detections

    def _nms(self, predictions):
        predictions[..., :4] = self.xywh2p1p2(predictions[..., :4])
        outputs = [None for _ in range(len(predictions))]

        for i, image_pred in enumerate(predictions):
            image_pred = image_pred[image_pred[:, 4] >= self.thresh]

            # If none anchor are remaining => process next image
            if not image_pred.size(0):
                continue

            # Object confidence times class confidence  (n, ) * (n, )
            score = image_pred[:, 4] * image_pred[:, 5:].max(1)[0]
            class_confs, class_preds = image_pred[:, 5:].max(1, keepdim=True)

            detections = torch.cat(
                (image_pred[:, :5], class_confs.type(
                    predictions.dtype), class_preds.type(predictions.dtype)),
                dim=1)

            keep = batched_nms(image_pred[:, :4].float(), score,
                               class_preds[:, 0], self.nms_thresh)
            outputs[i] = detections[keep]

        return outputs

    @staticmethod
    def xywh2p1p2(x):
        y = x.new(x.shape)
        y[..., 0] = x[..., 0] - x[..., 2] / 2.
        y[..., 1] = x[..., 1] - x[..., 3] / 2.
        y[..., 2] = x[..., 0] + x[..., 2] / 2.
        y[..., 3] = x[..., 1] + x[..., 3] / 2.
        return y

    @staticmethod
    def p1p2Toxywh(x):
        y = x.new(x.shape)
        y[..., 0] = x[..., 0]
        y[..., 1] = x[..., 1]
        y[..., 2] = x[..., 2] - x[..., 0]
        y[..., 3] = x[..., 3] - x[..., 1]
        return y

    def _postprocess(self,
                     outputs,
                     shapes,
                     box_format='ltrb',
                     classes=None,
                     buffer_ratio=0.0):
        outputs = self._nms(outputs)

        detections = []
        for i, frame_bbs in enumerate(outputs):
            im_height, im_width, _ = shapes[i]
            if frame_bbs is None:
                detections.append([])
                continue

            frame_bbs = self._resize_boxes(frame_bbs, self.model_image_size,
                                           (im_height, im_width))
            frame_dets = []
            for box in frame_bbs:
                pred_box = self.p1p2Toxywh(box[:4]).data.cpu().numpy()
                # box = box.data.cpu().numpy()
                cls_conf = box[4].item()
                cls_id = box[-1]
                cls_name = self.class_names[int(cls_id)]

                if classes is not None and cls_name not in classes:
                    continue

                left, top, w, h = pred_box
                right = left + w
                bottom = top + h

                width = right - left + 1
                height = bottom - top + 1
                width_buffer = width * buffer_ratio
                height_buffer = height * buffer_ratio

                top = max(0.0, top - 0.5 * height_buffer)
                left = max(0.0, left - 0.5 * width_buffer)
                bottom = min(im_height - 1.0, bottom + 0.5 * height_buffer)
                right = min(im_width - 1.0, right + 0.5 * width_buffer)

                box_infos = []
                for c in box_format:
                    if c == 't':
                        box_infos.append(int(round(top)))
                    elif c == 'l':
                        box_infos.append(int(round(left)))
                    elif c == 'b':
                        box_infos.append(int(round(bottom)))
                    elif c == 'r':
                        box_infos.append(int(round(right)))
                    elif c == 'w':
                        box_infos.append(int(round(width + width_buffer)))
                    elif c == 'h':
                        box_infos.append(int(round(height + height_buffer)))
                    else:
                        assert False, 'box_format given in detect unrecognised!'
                assert len(box_infos) > 0, 'box infos is blank'

                detection = (box_infos, cls_conf, cls_name)
                frame_dets.append(detection)
            detections.append(frame_dets)

        return detections

    @staticmethod
    def _resize_boxes(boxes, current_dim, original_shape):
        h_ratio = original_shape[0] / current_dim[0]
        w_ratio = original_shape[1] / current_dim[1]
        boxes[..., 0] *= w_ratio
        boxes[..., 1] *= h_ratio
        boxes[..., 2] *= w_ratio
        boxes[..., 3] *= h_ratio
        return boxes
コード例 #7
0
from PIL import Image
import cv2

config_path = 'config/yolov3.cfg'
weights_path = 'config/yolov3.weights'
class_path = 'config/coco.names'

img_size = 416
conf_thres = 0.8
nms_thres = 0.4

# Load model and weights
model = Darknet(config_path, img_size=img_size)
model.load_weights(weights_path)
model.cuda()
model.eval()
classes = load_classes(class_path)
Tensor = torch.cuda.FloatTensor


def detect_image(img):
    # Scale and pad image
    ratio = min(img_size / img.size[0], img_size / img.size[1])
    imw = round(img.size[0] * ratio)
    imh = round(img.size[1] * ratio)
    img_transforms = transforms.Compose([
        transforms.Resize((imh, imw)),
        transforms.Pad((max(int(
            (imh - imw) / 2), 0), max(int(
                (imw - imh) / 2), 0), max(int(