コード例 #1
0
def main(config_file):
    #Greeting
    now_time('Beginning EndClip Prep run (v0.1.0)')
    print("-"*50)

    #Parse configure file
    now_time("Parsing configure file...")
    config_dict = Input_config_file(config_file)

    #Check configure file
    if not 'gene_gtf_file' in config_dict:
        sys.exit("ERROR: Gene GTF file does not exist...")
    if not 'gene_bed_file' in config_dict:
        sys.exit("ERROR: Gene BED file does not exist...")
    if not 'pA_site_file' in config_dict:
        sys.exit("ERROR: pA site file does not exist...")
    if not 'output_kfXref_file' in config_dict:
        sys.exit("ERROR: output_kfXref_file was not designated...")
    if not 'output_utr_file' in config_dict:
        sys.exit("ERROR: output_utr_file does not exist...")
    if not 'output_initial_UTR_database_file' in config_dict:
        sys.exit("ERROR: output_initial_UTR_database_file was not designated...")

    #Extract information
    gene_gtf_file = config_dict['gene_gtf_file']
    gene_bed_file = config_dict['gene_bed_file']
    pA_site_file = config_dict['pA_site_file']
    output_kfXref_file = config_dict['output_kfXref_file']
    output_utr_file = config_dict['output_utr_file']
    output_initial_UTR_database_file = config_dict['output_initial_UTR_database_file']

    #Prepare symbol_refid_map_file(kfXref file)
    '''
    now_time("Prepare kfXref file...")
    symbol_refid_map = Extract_gene_symbol_map_kfXref_file(gene_gtf_file)
    map_file = open(output_kfXref_file, 'w')
    for refid in symbol_refid_map.keys():
        symbol = symbol_refid_map[refid]
        print(refid, symbol, sep="\t", end="\n", file=map_file)
    '''

    #Make initial 3'UTR database
    now_time("Prepare initial 3'UTR database...")
    test = Extract_3UTR_from_bed(gene_bed_file, output_kfXref_file, output_utr_file)


    ##Prepare 3UTR database with pA site information
    #now_time("Prepare 3'UTR database with pA site information...")
    #temp_file = output_initial_UTR_database_file + '.tmp'
    #cmd = 'bedtools intersect -a %s -b %s -wa -wb > %s' % (output_utr_file, pA_site_file, temp_file)
    #os.system(cmd)

    #Merge_pA_site_infor(temp_file, output_initial_UTR_database_file)

    now_time("Completely finished!!")
コード例 #2
0
ファイル: EndSnip_run.py プロジェクト: Naoto-Imamachi/EndSnip
def main():
    '''Input_configure_file
    Annotated_3UTR=data/hg19_refseq_extracted_3UTR_PTEN_ELAVL1.bed
    PolyA_site_infor=data/polyA_DB_hg19.bed
    Group1_Tophat_aligned_Wig=data/siCTRL_S_accepted_hits_PTEN_ELAVL1.bam.wig
    Group2_Tophat_aligned_Wig=data/siCFIm25-1_accepted_hits_PTEN_ELAVL1.bam.wig
    Output_directory=DaPars_Test_data/
    Output_result_file=DaPars_Test_data

    #Parameters
    Num_least_in_group1=1
    Num_least_in_group2=1
    Coverage_cutoff=30
    FDR_cutoff=0.05
    PDUI_cutoff=0.5
    Fold_change_cutoff=0.59
    '''
    start_time = time.time()
    now_time("Beginning EndSnip run (v0.1.0)")
    print("-"*50)
    if len(sys.argv) == 1:
        sys.exit("ERROR: Please provide the configure file...")
    cfg_file = sys.argv[1]

    now_time("Parsing configure file...")
    config_dict = Input_config_file(cfg_file)

    #Check configure file
    if not 'Group1_Tophat_aligned_Wig' in config_dict:
        sys.exit("ERROR: No Tophat aligned BAM file for group 1...")
    if not 'Group2_Tophat_aligned_Wig' in config_dict:
        sys.exit("ERROR: No Tophat aligned BAM file for group 2...")
    if not 'Output_directory' in config_dict:
        sys.exit("ERROR: No output directory...")
    if not 'Annotated_3UTR' in config_dict:
        sys.exit("ERROR: No annotated 3'UTR file...")
    if not 'Output_result_file' in config_dict:
        sys.exit("ERROR: No result file name...")

    #File/Directory
    Group1_Tophat_aligned_file = config_dict['Group1_Tophat_aligned_Wig'].split(',')
    Group2_Tophat_aligned_file = config_dict['Group2_Tophat_aligned_Wig'].split(',')
    output_directory = config_dict['Output_directory']
    if output_directory[-1] != '/':
        output_directory += '/'
    Annotated_3UTR_file = config_dict['Annotated_3UTR']
    Output_result_file = config_dict['Output_result_file']

    #Default parameters
    global Num_least_in_group1
    global Num_least_in_group2
    global Coverage_cutoff
    global FDR_cutoff
    global Fold_change_cutoff
    global PDUI_cutoff
    global Coverage_pPAS_cutoff

    Num_least_in_group1 = 1
    Num_least_in_group2 = 1
    Coverage_cutoff = 30
    FDR_cutoff = 0.05
    Fold_change_cutoff = 0.59 #1.5-fold change
    PDUI_cutoff = 0.2
    Coverage_pPAS_cutoff = 5.0
    
    #Check parameters
    if not 'Num_least_in_group1' in config_dict:
        print("  Num_least_in_group1: Default parameter(1) was designated.")
    else:
        Num_least_in_group1 = float(config_dict['Num_least_in_group1'])

    if not 'Num_least_in_group2' in config_dict:
        print("  Num_least_in_group2: Default parameter(1) was designated.")
    else:
        Num_least_in_group2 = float(config_dict['Num_least_in_group2'])

    if not 'Coverage_cutoff' in config_dict:
        print("  Coverage_cutoff: Default parameter(30) was designated.")
    else:
        Coverage_cutoff = float(config_dict['Coverage_cutoff'])

    if not 'FDR_cutoff' in config_dict:
        print("  FDR_cutoff: Default parameter(0.05) was designated.")
    else:
        FDR_cutoff = float(config_dict['FDR_cutoff'])
    
    if not 'Fold_change_cutoff' in config_dict:
        print("  Fold_change_cutoff: Default parameter(0.59[log2]/1.5-fold) was designated.")
    else:
        Fold_change_cutoff = config_dict['Fold_change_cutoff']

    if not 'PDUI_cutoff' in config_dict:
        print("  PDUI_cutoff: Default parameter(0.2) was designated.")
    else:
        PDUI_cutoff = float(config_dict['PDUI_cutoff'])

    if not 'Coverage_pPAS_cutoff' in config_dict:
        print("  Coverage_pPAS_cutoff: Default parameter(5.0) was designated.")
    else:
        Coverage_pPAS_cutoff = float(config_dict['Coverage_pPAS_cutoff'])

    #Collect sample files
    num_group_1 = len(Group1_Tophat_aligned_file)
    num_group_2 = len(Group2_Tophat_aligned_file)

    All_Sample_files = Group1_Tophat_aligned_file[:]
    All_Sample_files.extend(Group2_Tophat_aligned_file)

    num_samples = len(All_Sample_files)

    #Prepare output directory
    d = os.path.dirname(output_directory)
    if not os.path.exists(d):
        os.makedirs(d)
    
    #Prepare temp directory
    temp_dir = d + '/tmp/'
    if not os.path.exists(temp_dir):
        os.makedirs(temp_dir)

    Output_all_prediction_file = output_directory + Output_result_file + '_result_temp.txt'
    Output_result = open(Output_all_prediction_file, 'w')

    #Load coverage
    now_time("Loading coverage...")
    All_samples_Target_3UTR_coverages, All_samples_sequencing_depths, UTR_events_dict = Load_Target_Wig_files(All_Sample_files, Annotated_3UTR_file)

    #Depth(Coverage) weight for each sample
    All_sample_coverage_weights = All_samples_sequencing_depths / np.mean(All_samples_sequencing_depths)
    now_time("Loading coverage finished.")

    #Prepare header information for output file
    first_line = ['Gene','Predicted_Proximal_APA','loci']
    for i in range(num_group_1):
        curr_long_exp = 'A_%s_long_exp' % str(i+1)
        curr_short_exp = 'A_%s_short_exp' % str(i+1)
        curr_ratio = 'A_%s_PDUI' % str(i+1)
        curr_score = 'A_%s_EndClip_Score' % str(i+1)
        first_line.extend([curr_long_exp, curr_short_exp, curr_ratio, curr_score])
    for i in range(num_group_2):
        curr_long_exp = 'B_%s_long_exp' % str(i+1)
        curr_short_exp = 'B_%s_short_exp' % str(i+1)
        curr_ratio = 'B_%s_PDUI' % str(i+1)
        curr_score = 'B_%s_EndClip_Score' % str(i+1)
        first_line.extend([curr_long_exp, curr_short_exp, curr_ratio, curr_score])
    first_line.extend(['A_PDUI_mean','B_PDUI_mean','PDUI_Group_diff[B_PDUI_mean - A_PDUI_mean]','Fold-change[A_PDUI_mean/B_PDUI_mean]','Fold-change[B_short_exp_mean / A_short_exp_mean]','Fold-change[B_score_mean / A_score_mean]'])

    print("\t".join(first_line), end="\n", file=Output_result)

    #Test APA event for each 3UTR
    now_time("Testing APA events for each 3UTR region...")

    #Wig file preparation
    Wig_sample_files = []
    for name in All_Sample_files:
        #name = 'data/NoCTRL_accepted_hits_PTEN_ELAVL1.bam.wig'
        name = os.path.basename(name)
        name = str(os.path.splitext(name)[0])
        name = str(os.path.splitext(name)[0])
        name += ".bg"
        name_file = open(name, 'w')
        print_write = "track type=bedGraph name=EndSnip_test_%s description=EndSnip_test_%s visibility=2 maxHeightPixels=40:40:20" % (name, name)
        print(print_write, end="\n",file=name_file)
        Wig_sample_files.append(name_file)

    #Bed file preparation
    Bed_sample_files = []
    for name in All_Sample_files:
        #name = 'data/NoCTRL_accepted_hits_PTEN_ELAVL1.bam.wig'
        name = os.path.basename(name)
        name = str(os.path.splitext(name)[0])
        name = str(os.path.splitext(name)[0])
        name += ".bed"
        name_file = open(name, 'w')
        print_write = "track type=bed name=EndSnip_UTRIsoform_%s description=EndSnip_UTRIsoform_%s" % (name, name)
        print(print_write, end="\n",file=name_file)
        Bed_sample_files.append(name_file)

    for curr_3UTR_id in UTR_events_dict:
        #3UTR region information for each gene
        curr_3UTR_structure = UTR_events_dict[curr_3UTR_id]
        chrom = curr_3UTR_structure[0]
        region_start = curr_3UTR_structure[1] #region start
        region_end = curr_3UTR_structure[2] #region end
        curr_strand = curr_3UTR_structure[3] #strand
        UTR_pos = curr_3UTR_structure[4] #UTR position information
        #pA_site = curr_3UTR_structure[5].split('|') #pA_site list
        #pA_site = list(map(int,pA_site))
        print(curr_3UTR_id)

        #If gene names exist in coverage dict(for each gene)
        if curr_3UTR_id in All_samples_Target_3UTR_coverages:
            #3UTR coverage for each gene
            curr_3UTR_coverage_wig = All_samples_Target_3UTR_coverages[curr_3UTR_id] #List of 3UTR coverage for each sample
            curr_3UTR_all_samples_bp_coverage = []
            curr_3UTR_all_samples_bp_chrom_site = []
            for curr_sample_curr_3UTR_coverage_wig in curr_3UTR_coverage_wig: #3UTR coverage for each sample
                bp_resolution_data = Convert_wig_into_bp_coverage(curr_sample_curr_3UTR_coverage_wig[0], #List of coverage
                                                                  curr_sample_curr_3UTR_coverage_wig[1], #List of 3UTR region(1-base)
                                                                  curr_strand) #strand
                #test = Convert_wig_into_bp_coverage(curr_sample_curr_3UTR_coverage_wig[0],curr_sample_curr_3UTR_coverage_wig[1],curr_strand) #test
                curr_3UTR_curr_samples_bp_coverage = bp_resolution_data[0]
                curr_3UTR_curr_samples_bp_chrom_site = bp_resolution_data[1]
                curr_3UTR_all_samples_bp_coverage.append(curr_3UTR_curr_samples_bp_coverage) #List of bp_coverage for each sample
                curr_3UTR_all_samples_bp_chrom_site.append(curr_3UTR_curr_samples_bp_chrom_site) #List of bp chromosome site for each sample
                
                #TODO: TEST: Coverage in 3'UTR region for PTEN, ELAVL1
            #    plt.plot(curr_3UTR_curr_samples_bp_coverage)
            #    #plt.show()
                global test_name
                test_name = curr_3UTR_id.split('|')[1]
            #    filename = "data/output_coverage_" + test_name + ".png"
            #    plt.savefig(filename)

            #TODO: TEST: Coverage in 3'UTR region for PTEN, ELAVL1
            #plt.close()
            
            #De novo identification of APA event for each 3UTR region
            curr_3UTR_all_samples_bp_coverage = np.array(curr_3UTR_all_samples_bp_coverage)
            #select_mean_squared_error, selected_break_point, UTR_abundance = De_Novo_3UTR_all_samples_bp_extimation(curr_3UTR_all_samples_bp_coverage,
            #                                                                                                        region_start,
            #                                                                                                        region_end,
            #                                                                                                        curr_strand,
            #                                                                                                        All_sample_coverage_weights,
            #                                                                                                        Coverage_pPAS_cutoff,
            #                                                                                                        test_name) 
            #coverage_comparison_with_pA_site(curr_3UTR_all_samples_bp_coverage, curr_3UTR_all_samples_bp_chrom_site, region_start, region_end, curr_strand, All_sample_coverage_weights, Coverage_pPAS_cutoff, pA_site,test_name)
            de_novo_coverage_comparison_with_windows(curr_3UTR_all_samples_bp_coverage, curr_3UTR_all_samples_bp_chrom_site, region_start, region_end, curr_strand, All_sample_coverage_weights, Coverage_pPAS_cutoff, test_name, chrom, Wig_sample_files, Bed_sample_files, curr_3UTR_id, Output_result, num_group_1, num_group_2, UTR_pos)

    #Elapsed time
    end_time = time.time() - start_time

    end_h = int(end_time/3600)
    end_time -= 3600 * end_h
    if end_h < 10:
        end_h = "0" + str(end_h)
    else:
        end_h = str(end_h)

    end_m = int(end_time/60)
    end_time -= 60 * end_m
    if end_m < 10:
        end_m = "0" + str(end_m)
    else:
        end_m = str(end_m)

    end_s = int(end_time)
    if end_s < 10:
        end_s = "0" + str(end_s)
    else:
        end_s = str(end_s)

    run_time = "Completely finished: %s:%s:%s elapsed" % (end_h, end_m, end_s)
    now_time(run_time)
コード例 #3
0
def Load_Target_Wig_files(All_Wig_files, UTR_Annotation_file):
    UTR_events_dict = {}
    All_Samples_Total_depth = []

    #Load UTR Annotation file
    for line in open(UTR_Annotation_file, 'r'):
        fields = line.rstrip().split("\t")
        curr_chr = fields[0]
        region_start = fields[1]
        region_end = fields[2]
        name = fields[3]
        curr_strand = fields[5]
        #pA_site = fields[6]
        UTR_pos = "%s:%s-%s" % (curr_chr, region_start, region_end)
        
        #Define 3'UTR Annotation regions
        #end_shift = int(round(abs(int(region_start) - int(region_end)) * 0.2)) # TODO: 2割の領域でいいか確認する。
        end_shift = 0
        if curr_strand == '+':
            region_end = str(int(region_end) - end_shift)
        elif curr_strand == '-':
            region_start = str(int(region_start) + end_shift)
        else:
            sys.exit("ERROR: Strand column in your UTR annotation file is wrong...")
        
        region_start = int(region_start) + 1 #0-base => 1-base
        region_end = int(region_end)

        if (region_end - region_start) >= 500: #Min 3UTR length(Default: 500bp)
            #UTR_events_dict => [chrom, start, end, strand, UTR_position(chrom:start-end)]
            UTR_events_dict[name] = [curr_chr, region_start, region_end, curr_strand, UTR_pos]
            # TODO: Isoformごとに判断する場合を考慮に入れる
            # 終止コドンが異なるケースでは、Isoformごとに判断する。
            # 3'UTR中でスプライシングを受けている場合も考慮する。

    #Load coverage for all samples
    All_samples_extracted_3UTR_coverage_dict = {}
    for curr_wig_file in All_Wig_files:
        curr_sample_All_chroms_coverage_dict = {}
        num_line = 0
        curr_sample_total_depth = 0
        for line in open(curr_wig_file, 'r'):
            if '#' in line and line[0:3] != 'chr':
                continue
            fields = line.strip().split("\t")
            #Load wig file
            chrom_name = fields[0]
            region_start = int(fields[1])
            region_end = int(fields[2])
            read_depth = int(float(fields[-1]))
            
            #Initialize coverage data in each chromosome
            if chrom_name not in curr_sample_All_chroms_coverage_dict:
                curr_sample_All_chroms_coverage_dict[chrom_name] = [[0],[0]] #[[region_site], [depth]]

            #Add coverage data in each region on each chromosome
            if region_start > curr_sample_All_chroms_coverage_dict[chrom_name][0][-1]: #if gap region exists
                curr_sample_All_chroms_coverage_dict[chrom_name][0].append(region_start) #Region end => Region start #1-based
                curr_sample_All_chroms_coverage_dict[chrom_name][1].append(0)            #Read depth => 0
            curr_sample_All_chroms_coverage_dict[chrom_name][0].append(region_end)       #Region end
            curr_sample_All_chroms_coverage_dict[chrom_name][1].append(read_depth)       #Read depth
             
            #Total coverage and read count in each sample
            curr_sample_total_depth += read_depth * (region_end - region_start)
            num_line += 1

        #Collect total depth for each sample
        curr_sample_All_chroms_coverage_dict[chrom_name][1].append(0) #slicing your list(extracted_coverage): 185 line
        All_Samples_Total_depth.append(curr_sample_total_depth) #Collection of total depth for each sample
        
        #print(curr_sample_All_chroms_coverage_dict[chrom_name][0][1:20])
        #print(curr_sample_All_chroms_coverage_dict[chrom_name][1][1:20])
        #print(len(curr_sample_All_chroms_coverage_dict[chrom_name][0]))
        #print(len(curr_sample_All_chroms_coverage_dict[chrom_name][1]))

        now_time(curr_wig_file + ": Total depth were loaded.")

        #Define each depth for each 3'UTR
        for curr_3UTR_event_id in UTR_events_dict.keys():
            #Each transcript information
            curr_3UTR_structure = UTR_events_dict[curr_3UTR_event_id]
            curr_chr = curr_3UTR_structure[0] #Chromosome number
            region_start = curr_3UTR_structure[1] #3'UTR region start
            region_end = curr_3UTR_structure[2] #3'UTR region end

            #Call current chromosome from dictionary
            if curr_chr in curr_sample_All_chroms_coverage_dict.keys():
                #Region and Depth for current chromosome
                curr_chr_coverage = curr_sample_All_chroms_coverage_dict[curr_chr]

                #TEST:
                #Raw_data
                #chrom_site   = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
                #chr_coverage = [1, 4, 4, 0, 0, 0, 1, 2, 2, 0]
                #Input_data
                #chrom_site   = [0, 1, 3, 6, 7, 9, 10]
                #chr_coverage = [0, 1, 4, 0, 1, 2, 0]
                #from bisect import bisect
                #curr_chr_coverage = [[0, 1, 3, 6, 7, 9, 10], [0, 1, 4, 0, 1, 2, 0]]

                #from bisect import bisect
                #curr_chr_coverage = [[1,10,20,30,40,50,60], [1,10,10,10,30,30,50]] #[[Chrom_site],[Coverage]]
                #NO1:
                #region_start = 1
                #region_end = 60
                #NO2:
                #region_start = 1
                #region_end = 55
                #NO3:
                #region_start = 5
                #region_end = 60
                #NO4:
                #region_start = 5
                #region_end = 55
                #NO5:
                #region_start = 70
                #region_end = 90
                left_region_index = bisect(curr_chr_coverage[0], region_start) #Insertion site(index) of region start
                right_region_index = bisect(curr_chr_coverage[0], region_end) #Insertion site(index) of region end

                extracted_3UTR_region = []
                extracted_coverage = []

                #In the case of 0 coverage,
                if left_region_index == right_region_index:
                    extracted_3UTR_region = [region_start, region_end]
                    extracted_coverage = [0, 0]
                elif int(curr_chr_coverage[0][left_region_index-1]) == int(region_start) and int(curr_chr_coverage[0][right_region_index-1]) == int(region_end):
                    #print("1")
                    #List of 3UTR region
                    extracted_3UTR_region = curr_chr_coverage[0][left_region_index-1:right_region_index]
                    #List of depth(coverage) in 3'UTR region
                    extracted_coverage = curr_chr_coverage[1][left_region_index-1:right_region_index]
                elif int(curr_chr_coverage[0][left_region_index-1]) == int(region_start):
                    #print("2")
                    #List of 3UTR region
                    extracted_3UTR_region = curr_chr_coverage[0][left_region_index-1:right_region_index]
                    extracted_3UTR_region.append(region_end)
                    #List of depth(coverage) in 3'UTR region
                    extracted_coverage = curr_chr_coverage[1][left_region_index-1:right_region_index+1]
                elif int(curr_chr_coverage[0][right_region_index-1]) == int(region_end):
                    #print("3")
                    #List of 3UTR region
                    extracted_3UTR_region = curr_chr_coverage[0][left_region_index:right_region_index]
                    extracted_3UTR_region.insert(0,region_start)
                    #List of depth(coverage) in 3'UTR region
                    extracted_coverage = curr_chr_coverage[1][left_region_index:right_region_index]
                    extracted_coverage.insert(0,curr_chr_coverage[1][left_region_index])
                else:
                    #print("4")
                    #List of 3UTR region
                    extracted_3UTR_region = curr_chr_coverage[0][left_region_index:right_region_index]
                    extracted_3UTR_region.insert(0,region_start)
                    extracted_3UTR_region.append(region_end)
                    #List of depth(coverage) in 3'UTR region
                    extracted_coverage = curr_chr_coverage[1][left_region_index:right_region_index+1]
                    extracted_coverage.insert(0,curr_chr_coverage[1][left_region_index])

                '''
                #Example
                #Index:        0  1  2  3  4  5  6
                #chrom_site = [1,10,20,30,40,50,60]
                #coverage   = [1,10,10,10,30,30,50]
                #1bp => 1
                #2-10bp => 10
                #11-20bp => 10
                #21-30bp => 10
                #31-40bp => 30
                #41-50bp => 30
                #51-60bp => 50

                ###1-60[1,7]###
                #bisect(chrom_site,1) => 1 => 0/0
                #bisect(chrom_site,60) => 7 => 7/7
                #chrom_site: [1,10,20,30,40,50,60] => [1,10,20,30,40,50,60]
                #coverage:   [1,10,10,10,30,30,50] => [1,10,10,10,30,30,50]

                ###1-55[1,6]###
                #bisect(chrom_site,1) => 1 => 0/0
                #bisect(chrom_site,55) => 6 => 6/7
                #chrom_site: [1,10,20,30,40,50]    => [1,10,20,30,40,50,"55"]
                #coverage:   [1,10,10,10,30,30,50] => [1,10,10,10,30,30, 50]

                ###5-60[1,7]###
                #bisect(chrom_site,5) => 1 => 1/1
                #bisect(chrom_site,60) => 7 => 7/7
                #chrom_site: [10,20,30,40,50,60] => [ "5",10,20,30,40,50,60]
                #coverage:   [10,10,10,30,30,50] => ["10",10,10,10,30,30,50]

                ###5-55[1,7]###
                #bisect(chrom_site,5) => 1 => 1/1
                #bisect(chrom_site,55) => 6 => 6/7
                #chrom_site: [10,20,30,40,50]    => [ "5",10,20,30,40,50,"55"]
                #coverage:   [10,10,10,30,30,50] => ["10",10,10,10,30,30, 50 ]
                '''

                #List of depth(coverage) in 3'UTR region
                #extracted_coverage = curr_chr_coverage[1][left_region_index:right_region_index+1]
                
                #List of 3UTR region
                #extracted_3UTR_region = curr_chr_coverage[0][left_region_index:right_region_index]
                #extracted_3UTR_region.insert(0, region_start)
                #extracted_3UTR_region.append(region_end)

                ###Example:
                ###chrom_site = [0,10,20,30,40,50,60,70,80,90,100]
                ###trx_exp =[0,5,5,5,5,5,1,1,0,0,0]
                ###bisect(chrom_site, 15)
                ###[2] => [0,10 | 20,30,40,50,60,70,80,90,100]
                ###bisect(chrom_site, 85)
                ###[9] => [0,10,20,30,40,50,60,70,80 | 90,100]
                ###chrom_site[2:9] => [20,30,40,50,60,70,80] (7 items) => [15,20,30,40,50,60,70,80,85] (8 items)
                ###trx_exp[2:9+1] => [5,5,5,5,1,1,0,0] (8 items)

                #Initiate current 3UTR event id in All_samples_extracted_3UTR_coverage_dict
                if not curr_3UTR_event_id in All_samples_extracted_3UTR_coverage_dict:
                    All_samples_extracted_3UTR_coverage_dict[curr_3UTR_event_id] = []

                #Reserve Depth(Coverage) and 3UTR region information for each sample in dictonary
                All_samples_extracted_3UTR_coverage_dict[curr_3UTR_event_id].append([extracted_coverage, extracted_3UTR_region]) 
                #Gene information(curr_3UTR_event_id) =>
                #[ [[Coverage list 1], [3UTR region list 1]], [[Coverage list 2], [3UTR region list 2]], ... , [[Coverage list N], [3UTR region list N]] ]

        now_time(curr_wig_file + ": Each depth for each 3'UTR was loaded.")

    #Reserve Depth(Coverage) and 3UTR region information for each 3UTR region | Total depth in samples | 3UTR region information
    return All_samples_extracted_3UTR_coverage_dict, np.array(All_Samples_Total_depth), UTR_events_dict