コード例 #1
0
  def place_agents_along_linestring(self,
                                    world,
                                    linestring,
                                    s_start,
                                    s_end,
                                    agent_params,
                                    goal_definition):
    s = s_start
    if s_end < s_start:
      linestring.reverse()
      s = s_end
      s_end = s_start
    agent_list = []
    while s < s_end:
      # set agent state on linestring with random velocity
      xy_point =  get_point_at_s(linestring, s)
      angle = get_tangent_angle_at_s(linestring, s)
      
      velocity = self.sample_velocity_uniform(self._other_velocity_range)
      agent_state = np.array([0, xy_point.x(), xy_point.y(), angle, velocity ])

      agent_params = self._agent_params.copy()
      agent_params["state"] = agent_state
      agent_params["goal_definition"] = goal_definition
      agent_params["map_interface"] = world.map

      converter = ModelJsonConversion()
      bark_agent = converter.agent_from_json(agent_params, self._params)
      agent_list.append(bark_agent)

      # move forward on linestring based on vehicle size and max/min distance
      s += bark_agent.shape.front_dist + bark_agent.shape.rear_dist + \
                  self.sample_distance_uniform(self._vehicle_distance_range)
    return agent_list
コード例 #2
0
ファイル: drone_challenge.py プロジェクト: klemense1/bark
    def initialize_params(self, params):
        self._local_params = \
          self._params["Scenario"]["Generation"]["DeterministicScenarioGeneration"]

        self.goal_frame_center = self._local_params["goal_frame"][
            "center_pose", "Center pose of the goal frames", [0, 0, 0]]
        self.goal_frame_points = self._local_params["goal_frame"][
            "polygon_points", "Points of the goal frame polygon",
            [[-0.2, 1], [0.2, 1], [0.2, -1], [-0.2, -1], [-0.2, 1]]]
        self.goal_frame_poses = self._local_params[
            "goal_poses",
            "A list with x,y, theta specyfing the sequence of the goal frames",
            [[5, 10, 3.14 / 2 + 0.01], [10, 15, 3.14 /
                                        4], [20, 10, 3.14 /
                                             2], [15, 2, 3.14 / 2 - 0.7]]]

        json_converter = ModelJsonConversion()
        _agent_params = json_converter.agent_to_json(
            self.default_drone_model())
        if not isinstance(_agent_params, dict):
            _agent_params = _agent_params.convert_to_dict()

        self.drone_params = self._local_params[
            "drones", "list of dictionaries with drone definitions",
            [{
                "drone_model": _agent_params
            }]]
        self.ego_agent_id = self._local_params["ego_agent_id",
                                               "ID of the ego-agent", 0]
コード例 #3
0
ファイル: deterministic.py プロジェクト: AKreutz/bark
    def initialize_params(self, params):
        self._local_params = \
          self._params["Scenario"]["Generation"]["DeterministicScenarioGeneration"]

        self._map_file_name = self._local_params[
            "MapFilename", "Path to the open drive map",
            "modules/runtime/tests/data/Crossing8Course.xodr"]
        self._json_converter = ModelJsonConversion()
コード例 #4
0
 def initialize_params(self, params):
     params_temp = \
       self._params["Scenario"]["Generation"]["UniformVehicleDistribution"]
     self._random_seed = 1000  # since ScenarioGeneration UniformVehicleDistribution
     # will soon be deprecated we introduce this hack
     self._map_file_name = params_temp[
         "MapFilename", "Path to the open drive map",
         "modules/runtime/tests/data/city_highway_straight.xodr", ]
     self._ego_goal_end = params_temp[
         "EgoGoalEnd", "The center of the ego agent's goal region polygon",
         [5117, 5200]]
     self._ego_goal_start = params_temp[
         "EgoGoalStart", "The coordinates of the start of the ego goal,\
        if empty only ego goal end is used as center of polygon ", []]
     self._ego_goal_state_limits = params_temp[
         "EgoGoalStateLimits",
         "x,y and theta limits around center line of lane between start and end applied to both lateral sides \
    (only valid if start and end goal of ego are given)", [0.1, 0, 0.08]]
     self._ego_route = params_temp[
         "EgoRoute",
         "A list of two points defining start and end point of initial ego driving corridor. \
        If empty, then one of the other agents is selected as ego agents.",
         [[5117.5, 5100], [5117.5, 5200]]]
     self._others_source = params_temp[
         "OthersSource",
         "A list of points around which other vehicles spawn. \
     Points should be on different lanes. XodrLanes must be near these points \
   (<0.5m) Provide a list of lists with x,y-coordinates",
         [[5114.626, 5061.8305]]]
     self._others_sink = params_temp[
         "OthersSink",
         "A list of points defining end of other vehicles routes.\
     Points should be on different lanes and match the order of the\
     source points. XodrLanes must be near these points (<0.5m) \
     Provide a list of lists with x,y-coordinates", [[5114.626, 5193.1725]]]
     assert len(self._others_sink) == len(self._others_source)
     self._vehicle_distance_range = params_temp["VehicleDistanceRange",
       "Distance range between vehicles in meter given as tuple from which" + \
       "distances are sampled uniformly",
       (10, 20)]
     self._other_velocity_range = params_temp["OtherVehicleVelocityRange",
       "Lower and upper bound of velocity in km/h given as tuple from which" + \
       " velocities are sampled uniformly",
       (20,30)]
     self._ego_velocity_range = params_temp["EgoVehicleVelocityRange",
       "Lower and upper bound of velocity in km/h given as tuple from which" + \
       " velocities are sampled uniformly",
       (20,30)]
     json_converter = ModelJsonConversion()
     self._agent_params = params_temp[
         "VehicleModel", "How to model the other agents",
         json_converter.agent_to_json(self.default_agent_model())]
     if not isinstance(self._agent_params, dict):
         self._agent_params = self._agent_params.convert_to_dict()
     np.random.seed(self._random_seed)
コード例 #5
0
ファイル: drone_challenge.py プロジェクト: klemense1/bark
    def create_single_scenario(self):
        scenario = Scenario(map_file_name=None,
                            json_params=self._params.convert_to_dict())
        scenario._agent_list = []
        for agent_json in self.drone_params:
            agent_json["drone_model"]["map_interface"] = None
            agent_json["drone_model"][
                "goal_definition"] = self._build_sequential_goal_definition()
            json_converter = ModelJsonConversion()
            agent = json_converter.agent_from_json(
                agent_json["drone_model"], param_server=self._local_params)
            agent.set_agent_id(agent_json["drone_model"]["id"])
            scenario._agent_list.append(agent)

        scenario._eval_agent_ids = [
            self._local_params["EgoAgentId", "ID of the ego-agent", 0]
        ]
        return scenario
コード例 #6
0
    def initialize_params(self, params):
        self._local_params = \
          self._params["Scenario"]["Generation"]["DeterministicDroneChallengeGeneration"]

        self.goal_frame_center = self._local_params["goal_frame"][
            "center_pose", "Center pose of the goal frames", [1, 0, 0]]
        self.goal_frame_points = self._local_params["goal_frame"][
            "polygon_points", "Points of the goal frame polygon",
            [[0., 0.], [2., 0.], [2., 0.5], [0., 0.5], [0., 0.]]]
        self.goal_frame_poses = self._local_params[
            "goal_poses",
            "A list with x,y, theta specyfing the sequence of the goal frames",
            [[5, 10, -0.3], [10, 15, -1.2], [20, 10, -2.9], [15, 2, -3.9]]]

        self._map_file_name = self._local_params[
            "MapFilename", "Path to the open drive map",
            "modules/runtime/tests/data/Crossing8Course.xodr"]
        self._json_converter = ModelJsonConversion()
コード例 #7
0
    def initialize_params(self, params):
        params_temp = self.params["Scenario"]["Generation"][
            "UniformVehicleDistribution"]

        self.map_file_name = params_temp[
            "MapFilename", "Path to the open drive map",
            "modules/runtime/tests/data/Crossing8Course.xodr"]
        self.ego_goal = params_temp[
            "EgoGoal", "The center of the ego agent's goal region polygon",
            [-191.789, -50.1725]]
        self.others_source = params_temp[
            "OthersSource",
            "A list of points around which other vehicles spawn. \
                                         Points should be on different lanes. Lanes must be near these points (<0.5m) \
                                         Provide a list of lists with x,y-coordinates",
            [[-16.626, -14.8305]]]
        self.others_sink = params_temp[
            "OthersSink",
            "A list of points around which other vehicles are deleted. \
                                        Points should be on different lanes and match the order of the source points. \
                                        Lanes must be near these points (<0.5m) \
                                        Provide a list of lists with x,y-coordinates",
            [[-191.789, -50.1725]]]
        assert len(self.others_sink) == len(self.others_source)

        self.vehicle_distance_range = params_temp[
            "VehicleDistanceRange",
            "Distance range between vehicles in meter given as tuple from which distances are sampled uniformly",
            (40, 50)]
        self.velocity_range = params_temp[
            "VehicleVelocityRange",
            "Lower and upper bound of velocity in km/h given as tuple from which velocities are sampled uniformly",
            (20, 30)]

        json_converter = ModelJsonConversion()
        self.agent_params = params_temp["VehicleModel", "How to model the agent", \
             json_converter.agent_to_json(self.default_agent_model())]
        if not isinstance(self.agent_params, dict):
            self.agent_params = self.agent_params.convert_to_dict()

        np.random.seed(self.random_seed)
コード例 #8
0
def agent_from_trackfile(track_params, param_server, agent_id):
    fname = track_params["filename"]
    track_id = track_params["track_id"]
    track = track_from_trackfile(fname, track_id)
    start = track_params["start_offset",
                         "The timestamp in ms when to start the trajectory",
                         None]
    end = track_params["end_offset",
                       "The timestamp in ms when to end the trajectory", None]
    behavior_model = track_params["behavior_model"]
    if start is None:
        start = track.time_stamp_ms_first
    if end is None:
        end = track.time_stamp_ms_last
    model_converter = ModelJsonConversion()
    if behavior_model is None:
        # each agent need's its own param server
        behavior = behavior_from_track(
            track, param_server.addChild("agent{}".format(agent_id)), start,
            end)
    else:
        behavior = model_converter.convert_model(behavior_model, param_server)
    bark_agent = Agent(
        init_state_from_track(track, start), behavior,
        model_converter.convert_model(track_params["dynamic_model"],
                                      param_server),
        model_converter.convert_model(track_params["execution_model"],
                                      param_server),
        shape_from_track(
            track, param_server["DynamicModel"]
            ["wheel_base", "Distance between front and rear wheel center",
             2.7]), param_server.addChild("agent{}".format(agent_id)),
        goal_definition_from_track(track, end), track_params["map_interface"])
    # set agent id from track
    bark_agent.SetAgentId(track_id)
    return bark_agent
コード例 #9
0
  def create_single_scenario(self):
    scenario = Scenario(map_file_name=self._map_file_name,
                        json_params=self._params.convert_to_dict())
    world = scenario.get_world_state()
    agent_list = []
    # OTHER AGENTS
    for idx, source in enumerate(self._others_source):
      connecting_center_line, s_start, s_end, _, lane_id_end = \
        self.center_line_between_source_and_sink(world.map,
                                                 source,
                                                 self._others_sink[idx])
      goal_polygon = Polygon2d([0, 0, 0],
                               [Point2d(-1.5,0),
                                Point2d(-1.5,8),
                                Point2d(1.5,8),
                                Point2d(1.5,0)])
      goal_polygon = goal_polygon.translate(Point2d(self._others_sink[idx][0],
                                                    self._others_sink[idx][1]))
      goal_definition = GoalDefinitionPolygon(goal_polygon)
      agent_list.extend(
        self.place_agents_along_linestring(world,
                                           connecting_center_line,
                                           s_start,
                                           s_end,
                                           self._agent_params,
                                           goal_definition))

    description=self._params.convert_to_dict()
    description["ScenarioGenerator"] = "UniformVehicleDistribution"
    

    # EGO AGENT
    ego_agent=None
    if len(self._ego_route) == 0:
        # take agent in the middle of list 
        num_agents = len(agent_list)
        ego_agent = agent_list[math.floor(num_agents/4)] 
    else:
        connecting_center_line, s_start, s_end, _, lane_id_end = \
        self.center_line_between_source_and_sink(world.map,
                                                 self._ego_route[0],
                                                 self._ego_route[1])

        sego = self.sample_srange_uniform([s_start, s_end])
        xy_point =  get_point_at_s(connecting_center_line, sego)
        angle = get_tangent_angle_at_s(connecting_center_line, sego)
        velocity = self.sample_velocity_uniform(self._ego_velocity_range)
        agent_state = np.array([0, xy_point.x(), xy_point.y(), angle, velocity ])

        agent_params = self._agent_params.copy()
        agent_params["state"] = agent_state
        # goal for driving corridor generation
        goal_polygon = Polygon2d([0, 0, 0],
                               [Point2d(-1.5,0),
                                Point2d(-1.5,8),
                                Point2d(1.5,8),
                                Point2d(1.5,0)])
        goal_polygon = goal_polygon.translate(Point2d(self._ego_route[1][0],
                                                    self._ego_route[1][1]))
        goal_definition = GoalDefinitionPolygon(goal_polygon)
        agent_params["goal_definition"] = goal_definition
        agent_params["map_interface"] = world.map

        converter = ModelJsonConversion()
        ego_agent = converter.agent_from_json(agent_params, self._params)
        # TODO(@bernhard): ensure that ego agent not collides with others
    
    agent_list.append(ego_agent)


    
    # EGO Agent Goal Definition
    if  len(self._ego_goal_start) == 0:
        if len(self._ego_route) == 0:
          # ego agent is one of the random agents, so the goal definition is
          # already set
          pass
        else:
          goal_polygon = Polygon2d([0, 0, 0],
                                   [Point2d(-1.5,0),
                                    Point2d(-1.5,8),
                                    Point2d(1.5,8),
                                    Point2d(1.5,0)])
          goal_polygon = goal_polygon.translate(Point2d(self._ego_goal_end[0],
                                                      self._ego_goal_end[1]))
          ego_agent.goal_definition = GoalDefinitionPolygon(goal_polygon)
        ego_agent.generate_local_map()
    else:
        connecting_center_line, s_start, s_end, _, lane_id_end = \
        self.center_line_between_source_and_sink(world.map,
                                                 self._ego_goal_start,
                                                 self._ego_goal_end)

        goal_center_line = get_line_from_s_interval(connecting_center_line, s_start, s_end)

        # build polygon representing state limits
        lims = self._ego_goal_state_limits
        goal_limits_left = goal_center_line.translate(Point2d(-lims[0], -lims[1]))
        goal_limits_right = goal_center_line.translate(Point2d(lims[0], lims[1]))
        goal_limits_right.reverse()
        goal_limits_left.append_linestring(goal_limits_right)
        polygon = Polygon2d([0,0,0], goal_limits_left)

        ego_agent.goal_definition = GoalDefinitionStateLimits(polygon, (1.57-0.08, 1.57+0.08))

    # only one agent is ego in the middle of all other agents
    scenario._agent_list = agent_list
    scenario._eval_agent_ids = [ego_agent.id]
    return scenario