def initialize_params(self, params): self._local_params = \ self._params["Scenario"]["Generation"]["DeterministicScenarioGeneration"] self.goal_frame_center = self._local_params["goal_frame"][ "center_pose", "Center pose of the goal frames", [0, 0, 0]] self.goal_frame_points = self._local_params["goal_frame"][ "polygon_points", "Points of the goal frame polygon", [[-0.2, 1], [0.2, 1], [0.2, -1], [-0.2, -1], [-0.2, 1]]] self.goal_frame_poses = self._local_params[ "goal_poses", "A list with x,y, theta specyfing the sequence of the goal frames", [[5, 10, 3.14 / 2 + 0.01], [10, 15, 3.14 / 4], [20, 10, 3.14 / 2], [15, 2, 3.14 / 2 - 0.7]]] json_converter = ModelJsonConversion() _agent_params = json_converter.agent_to_json( self.default_drone_model()) if not isinstance(_agent_params, dict): _agent_params = _agent_params.convert_to_dict() self.drone_params = self._local_params[ "drones", "list of dictionaries with drone definitions", [{ "drone_model": _agent_params }]] self.ego_agent_id = self._local_params["ego_agent_id", "ID of the ego-agent", 0]
def initialize_params(self, params): params_temp = \ self._params["Scenario"]["Generation"]["UniformVehicleDistribution"] self._random_seed = 1000 # since ScenarioGeneration UniformVehicleDistribution # will soon be deprecated we introduce this hack self._map_file_name = params_temp[ "MapFilename", "Path to the open drive map", "modules/runtime/tests/data/city_highway_straight.xodr", ] self._ego_goal_end = params_temp[ "EgoGoalEnd", "The center of the ego agent's goal region polygon", [5117, 5200]] self._ego_goal_start = params_temp[ "EgoGoalStart", "The coordinates of the start of the ego goal,\ if empty only ego goal end is used as center of polygon ", []] self._ego_goal_state_limits = params_temp[ "EgoGoalStateLimits", "x,y and theta limits around center line of lane between start and end applied to both lateral sides \ (only valid if start and end goal of ego are given)", [0.1, 0, 0.08]] self._ego_route = params_temp[ "EgoRoute", "A list of two points defining start and end point of initial ego driving corridor. \ If empty, then one of the other agents is selected as ego agents.", [[5117.5, 5100], [5117.5, 5200]]] self._others_source = params_temp[ "OthersSource", "A list of points around which other vehicles spawn. \ Points should be on different lanes. XodrLanes must be near these points \ (<0.5m) Provide a list of lists with x,y-coordinates", [[5114.626, 5061.8305]]] self._others_sink = params_temp[ "OthersSink", "A list of points defining end of other vehicles routes.\ Points should be on different lanes and match the order of the\ source points. XodrLanes must be near these points (<0.5m) \ Provide a list of lists with x,y-coordinates", [[5114.626, 5193.1725]]] assert len(self._others_sink) == len(self._others_source) self._vehicle_distance_range = params_temp["VehicleDistanceRange", "Distance range between vehicles in meter given as tuple from which" + \ "distances are sampled uniformly", (10, 20)] self._other_velocity_range = params_temp["OtherVehicleVelocityRange", "Lower and upper bound of velocity in km/h given as tuple from which" + \ " velocities are sampled uniformly", (20,30)] self._ego_velocity_range = params_temp["EgoVehicleVelocityRange", "Lower and upper bound of velocity in km/h given as tuple from which" + \ " velocities are sampled uniformly", (20,30)] json_converter = ModelJsonConversion() self._agent_params = params_temp[ "VehicleModel", "How to model the other agents", json_converter.agent_to_json(self.default_agent_model())] if not isinstance(self._agent_params, dict): self._agent_params = self._agent_params.convert_to_dict() np.random.seed(self._random_seed)
def initialize_params(self, params): params_temp = self.params["Scenario"]["Generation"][ "UniformVehicleDistribution"] self.map_file_name = params_temp[ "MapFilename", "Path to the open drive map", "modules/runtime/tests/data/Crossing8Course.xodr"] self.ego_goal = params_temp[ "EgoGoal", "The center of the ego agent's goal region polygon", [-191.789, -50.1725]] self.others_source = params_temp[ "OthersSource", "A list of points around which other vehicles spawn. \ Points should be on different lanes. Lanes must be near these points (<0.5m) \ Provide a list of lists with x,y-coordinates", [[-16.626, -14.8305]]] self.others_sink = params_temp[ "OthersSink", "A list of points around which other vehicles are deleted. \ Points should be on different lanes and match the order of the source points. \ Lanes must be near these points (<0.5m) \ Provide a list of lists with x,y-coordinates", [[-191.789, -50.1725]]] assert len(self.others_sink) == len(self.others_source) self.vehicle_distance_range = params_temp[ "VehicleDistanceRange", "Distance range between vehicles in meter given as tuple from which distances are sampled uniformly", (40, 50)] self.velocity_range = params_temp[ "VehicleVelocityRange", "Lower and upper bound of velocity in km/h given as tuple from which velocities are sampled uniformly", (20, 30)] json_converter = ModelJsonConversion() self.agent_params = params_temp["VehicleModel", "How to model the agent", \ json_converter.agent_to_json(self.default_agent_model())] if not isinstance(self.agent_params, dict): self.agent_params = self.agent_params.convert_to_dict() np.random.seed(self.random_seed)