コード例 #1
0
    def extract(rcol: monetdbe_column,
                r: int,
                text_factory: Optional[Callable[[str], Any]] = None):
        """
        Extracts values from a monetdbe_column.

        The text_factory is optional, and wraps the value with a custom user supplied text function.
        """

        type_info = monet_c_type_map[rcol.type]
        col = ffi.cast(f"monetdbe_column_{type_info.c_string_type} *", rcol)
        if col.is_null(col.data + r):
            return None
        else:
            col_data = col.data[r]
            if rcol.sql_type.name != ffi.NULL and ffi.string(
                    rcol.sql_type.name).decode() == 'decimal':
                col_data = Decimal(col_data) / (Decimal(10)**
                                                rcol.sql_type.scale)
            if type_info.py_converter:
                result = type_info.py_converter(col_data)
                if rcol.type == lib.monetdbe_str and text_factory:
                    return text_factory(result)
                return result
            return col_data
コード例 #2
0
    def append(self, table: str, data: Mapping[str, np.ndarray], schema: str = 'sys') -> None:
        """
        Directly append an array structure
        """
        n_columns = len(data)
        existing_columns = list(self.get_columns(schema=schema, table=table))
        existing_names, existing_types = zip(*existing_columns)
        if not set(existing_names) == set(data.keys()):
            error = f"Appended column names ({', '.join(str(i) for i in data.keys())}) " \
                    f"don't match existing column names ({', '.join(existing_names)})"
            raise exceptions.ProgrammingError(error)

        work_columns = ffi.new(f'monetdbe_column * [{n_columns}]')
        work_objs = []
        for column_num, (column_name, existing_type) in enumerate(existing_columns):
            column_values = data[column_name]
            work_column = ffi.new('monetdbe_column *')
            work_type_string, work_type = numpy_monetdb_map(column_values.dtype)
            if not work_type == existing_type:
                existing_type_string = monet_numpy_map[existing_type][0]
                error = f"Type '{work_type_string}' for appended column '{column_name}' " \
                        f"does not match table type '{existing_type_string}'"
                raise exceptions.ProgrammingError(error)
            work_column.type = work_type
            work_column.count = column_values.shape[0]
            work_column.name = ffi.new('char[]', column_name.encode())
            work_column.data = ffi.cast(f"{work_type_string} *", ffi.from_buffer(column_values))
            work_columns[column_num] = work_column
            work_objs.append(work_column)
        check_error(lib.monetdbe_append(self._connection, schema.encode(), table.encode(), work_columns, n_columns))
コード例 #3
0
 def extract(rcol: monetdbe_column,
             r: int,
             text_factory: Optional[Callable[[str], Any]] = None):
     """
     Extracts values from a monetdbe_column.
     The text_factory is optional, and wraps the value with a custom user supplied text function.
     """
     type_info = monet_c_type_map[rcol.type]
     col = ffi.cast(f"monetdbe_column_{type_info.c_string_type} *", rcol)
     if col.is_null(col.data + r):
         return None
     else:
         if type_info.py_converter:
             result = type_info.py_converter(col.data[r])
             if rcol.type == lib.monetdbe_str and text_factory:
                 return text_factory(result)
             return result
         return col.data[r]
コード例 #4
0
def extract(rcol, r: int, text_factory: Optional[Callable[[str], Any]] = None):
    """
    Extracts values from a monetdbe_column.

    The text_factory is optional, and wraps the value with a custom user supplied text function.
    """
    cast_string, cast_function, numpy_type, monetdbe_null = type_map[rcol.type]
    col = ffi.cast(f"monetdbe_column_{cast_string} *", rcol)
    if col.is_null(col.data[r]):
        return None
    else:
        if cast_function:
            result = cast_function(col.data[r])
            if rcol.type == lib.monetdbe_str and text_factory:
                return text_factory(result)
            else:
                return result
        else:
            return col.data[r]
コード例 #5
0
def get_null_value(rcol: monetdbe_column):
    type_info = monet_c_type_map[rcol.type]
    col = ffi.cast(f"monetdbe_column_{type_info.c_string_type} *", rcol)
    return col.null_value
コード例 #6
0
    def append(self,
               table: str,
               data: Mapping[str, np.ndarray],
               schema: str = 'sys') -> None:
        """
        Directly append an array structure
        """
        self._switch()
        n_columns = len(data)
        existing_columns = list(self.get_columns(schema=schema, table=table))
        existing_names, existing_types = zip(*existing_columns)
        if not set(existing_names) == set(data.keys()):
            error = f"Appended column names ({', '.join(str(i) for i in data.keys())}) " \
                    f"don't match existing column names ({', '.join(existing_names)})"
            raise exceptions.ProgrammingError(error)

        work_columns = ffi.new(f'monetdbe_column * [{n_columns}]')
        work_objs = []
        # cffi_objects assists to keep all in-memory native data structure alive during the execution of this call
        cffi_objects = list()
        for column_num, (column_name,
                         existing_type) in enumerate(existing_columns):
            column_values = data[column_name]
            work_column = ffi.new('monetdbe_column *')
            type_info = numpy_monetdb_map(column_values.dtype)

            # try to convert the values if types don't match
            if type_info.c_type != existing_type:
                if type_info.c_type == lib.monetdbe_timestamp and existing_type == lib.monetdbe_date and np.issubdtype(
                        column_values.dtype, np.datetime64):
                    """
                    We are going to cast to a monetdbe_date and
                    consider monetdbe_timestamp as a 'base type' to signal this.
                    """
                    type_info = timestamp_to_date()
                else:
                    precision_warning(type_info.c_type, existing_type)
                    to_numpy_type = monet_c_type_map[existing_type].numpy_type
                    try:
                        column_values = column_values.astype(to_numpy_type)
                        type_info = numpy_monetdb_map(column_values.dtype)
                    except Exception as e:
                        existing_type_string = monet_c_type_map[
                            existing_type].c_string_type
                        error = f"Can't convert '{type_info.c_string_type}' " \
                                f"to type '{existing_type_string}' for column '{column_name}': {e} "
                        raise ValueError(error)

            work_column.type = type_info.c_type
            work_column.count = column_values.shape[0]
            work_column.name = ffi.new('char[]', column_name.encode())
            if type_info.numpy_type.kind == 'M':
                t = ffi.new('monetdbe_data_timestamp[]', work_column.count)
                cffi_objects.append(t)
                unit = np.datetime_data(column_values.dtype)[0].encode()
                p = ffi.from_buffer("int64_t*", column_values)

                lib.initialize_timestamp_array_from_numpy(
                    self._monetdbe_database, t, work_column.count, p, unit,
                    existing_type)
                work_column.data = t
            elif type_info.numpy_type.kind == 'U':
                # first massage the numpy array of unicode into a matrix of null terminated rows of bytes.
                m = ffi.from_buffer(
                    "bool*", column_values.mask) if np.ma.isMaskedArray(
                        column_values) else 0  # type: ignore[attr-defined]
                cffi_objects.append(m)
                v = np.char.encode(column_values).view('b').reshape(
                    (work_column.count, -1))
                v = np.c_[v, np.zeros(work_column.count, dtype=np.int8)]
                stride_length = v.shape[1]
                cffi_objects.append(v)
                t = ffi.new('char*[]', work_column.count)
                cffi_objects.append(t)
                p = ffi.from_buffer("char*", v)
                cffi_objects.append(p)
                lib.initialize_string_array_from_numpy(t, work_column.count, p,
                                                       stride_length,
                                                       ffi.cast("bool*", m))
                work_column.data = t
            else:
                p = ffi.from_buffer(f"{type_info.c_string_type}*",
                                    column_values)
                cffi_objects.append(p)
                work_column.data = p
            work_columns[column_num] = work_column
            work_objs.append(work_column)
        check_error(
            lib.monetdbe_append(self._monetdbe_database, schema.encode(),
                                table.encode(), work_columns, n_columns))