def extract(rcol: monetdbe_column, r: int, text_factory: Optional[Callable[[str], Any]] = None): """ Extracts values from a monetdbe_column. The text_factory is optional, and wraps the value with a custom user supplied text function. """ type_info = monet_c_type_map[rcol.type] col = ffi.cast(f"monetdbe_column_{type_info.c_string_type} *", rcol) if col.is_null(col.data + r): return None else: col_data = col.data[r] if rcol.sql_type.name != ffi.NULL and ffi.string( rcol.sql_type.name).decode() == 'decimal': col_data = Decimal(col_data) / (Decimal(10)** rcol.sql_type.scale) if type_info.py_converter: result = type_info.py_converter(col_data) if rcol.type == lib.monetdbe_str and text_factory: return text_factory(result) return result return col_data
def append(self, table: str, data: Mapping[str, np.ndarray], schema: str = 'sys') -> None: """ Directly append an array structure """ n_columns = len(data) existing_columns = list(self.get_columns(schema=schema, table=table)) existing_names, existing_types = zip(*existing_columns) if not set(existing_names) == set(data.keys()): error = f"Appended column names ({', '.join(str(i) for i in data.keys())}) " \ f"don't match existing column names ({', '.join(existing_names)})" raise exceptions.ProgrammingError(error) work_columns = ffi.new(f'monetdbe_column * [{n_columns}]') work_objs = [] for column_num, (column_name, existing_type) in enumerate(existing_columns): column_values = data[column_name] work_column = ffi.new('monetdbe_column *') work_type_string, work_type = numpy_monetdb_map(column_values.dtype) if not work_type == existing_type: existing_type_string = monet_numpy_map[existing_type][0] error = f"Type '{work_type_string}' for appended column '{column_name}' " \ f"does not match table type '{existing_type_string}'" raise exceptions.ProgrammingError(error) work_column.type = work_type work_column.count = column_values.shape[0] work_column.name = ffi.new('char[]', column_name.encode()) work_column.data = ffi.cast(f"{work_type_string} *", ffi.from_buffer(column_values)) work_columns[column_num] = work_column work_objs.append(work_column) check_error(lib.monetdbe_append(self._connection, schema.encode(), table.encode(), work_columns, n_columns))
def extract(rcol: monetdbe_column, r: int, text_factory: Optional[Callable[[str], Any]] = None): """ Extracts values from a monetdbe_column. The text_factory is optional, and wraps the value with a custom user supplied text function. """ type_info = monet_c_type_map[rcol.type] col = ffi.cast(f"monetdbe_column_{type_info.c_string_type} *", rcol) if col.is_null(col.data + r): return None else: if type_info.py_converter: result = type_info.py_converter(col.data[r]) if rcol.type == lib.monetdbe_str and text_factory: return text_factory(result) return result return col.data[r]
def extract(rcol, r: int, text_factory: Optional[Callable[[str], Any]] = None): """ Extracts values from a monetdbe_column. The text_factory is optional, and wraps the value with a custom user supplied text function. """ cast_string, cast_function, numpy_type, monetdbe_null = type_map[rcol.type] col = ffi.cast(f"monetdbe_column_{cast_string} *", rcol) if col.is_null(col.data[r]): return None else: if cast_function: result = cast_function(col.data[r]) if rcol.type == lib.monetdbe_str and text_factory: return text_factory(result) else: return result else: return col.data[r]
def get_null_value(rcol: monetdbe_column): type_info = monet_c_type_map[rcol.type] col = ffi.cast(f"monetdbe_column_{type_info.c_string_type} *", rcol) return col.null_value
def append(self, table: str, data: Mapping[str, np.ndarray], schema: str = 'sys') -> None: """ Directly append an array structure """ self._switch() n_columns = len(data) existing_columns = list(self.get_columns(schema=schema, table=table)) existing_names, existing_types = zip(*existing_columns) if not set(existing_names) == set(data.keys()): error = f"Appended column names ({', '.join(str(i) for i in data.keys())}) " \ f"don't match existing column names ({', '.join(existing_names)})" raise exceptions.ProgrammingError(error) work_columns = ffi.new(f'monetdbe_column * [{n_columns}]') work_objs = [] # cffi_objects assists to keep all in-memory native data structure alive during the execution of this call cffi_objects = list() for column_num, (column_name, existing_type) in enumerate(existing_columns): column_values = data[column_name] work_column = ffi.new('monetdbe_column *') type_info = numpy_monetdb_map(column_values.dtype) # try to convert the values if types don't match if type_info.c_type != existing_type: if type_info.c_type == lib.monetdbe_timestamp and existing_type == lib.monetdbe_date and np.issubdtype( column_values.dtype, np.datetime64): """ We are going to cast to a monetdbe_date and consider monetdbe_timestamp as a 'base type' to signal this. """ type_info = timestamp_to_date() else: precision_warning(type_info.c_type, existing_type) to_numpy_type = monet_c_type_map[existing_type].numpy_type try: column_values = column_values.astype(to_numpy_type) type_info = numpy_monetdb_map(column_values.dtype) except Exception as e: existing_type_string = monet_c_type_map[ existing_type].c_string_type error = f"Can't convert '{type_info.c_string_type}' " \ f"to type '{existing_type_string}' for column '{column_name}': {e} " raise ValueError(error) work_column.type = type_info.c_type work_column.count = column_values.shape[0] work_column.name = ffi.new('char[]', column_name.encode()) if type_info.numpy_type.kind == 'M': t = ffi.new('monetdbe_data_timestamp[]', work_column.count) cffi_objects.append(t) unit = np.datetime_data(column_values.dtype)[0].encode() p = ffi.from_buffer("int64_t*", column_values) lib.initialize_timestamp_array_from_numpy( self._monetdbe_database, t, work_column.count, p, unit, existing_type) work_column.data = t elif type_info.numpy_type.kind == 'U': # first massage the numpy array of unicode into a matrix of null terminated rows of bytes. m = ffi.from_buffer( "bool*", column_values.mask) if np.ma.isMaskedArray( column_values) else 0 # type: ignore[attr-defined] cffi_objects.append(m) v = np.char.encode(column_values).view('b').reshape( (work_column.count, -1)) v = np.c_[v, np.zeros(work_column.count, dtype=np.int8)] stride_length = v.shape[1] cffi_objects.append(v) t = ffi.new('char*[]', work_column.count) cffi_objects.append(t) p = ffi.from_buffer("char*", v) cffi_objects.append(p) lib.initialize_string_array_from_numpy(t, work_column.count, p, stride_length, ffi.cast("bool*", m)) work_column.data = t else: p = ffi.from_buffer(f"{type_info.c_string_type}*", column_values) cffi_objects.append(p) work_column.data = p work_columns[column_num] = work_column work_objs.append(work_column) check_error( lib.monetdbe_append(self._monetdbe_database, schema.encode(), table.encode(), work_columns, n_columns))