コード例 #1
0
ファイル: partitions_.py プロジェクト: AStorus/sympy
def npartitions(n, verbose=False):
    """
    Calculate the partition function P(n), i.e. the number of ways that
    n can be written as a sum of positive integers.

    P(n) is computed using the Hardy-Ramanujan-Rademacher formula [1]_.


    The correctness of this implementation has been tested through 10**10.

    Examples
    ========

    >>> from sympy.ntheory import npartitions
    >>> npartitions(25)
    1958

    References
    ==========

    .. [1] http://mathworld.wolfram.com/PartitionFunctionP.html

    """
    n = int(n)
    if n < 0:
        return 0
    if n <= 5:
        return [1, 1, 2, 3, 5, 7][n]
    if '_factor' not in globals():
        _pre()
    # Estimate number of bits in p(n). This formula could be tidied
    pbits = int((
        math.pi*(2*n/3.)**0.5 -
        math.log(4*n))/math.log(10) + 1) * \
        math.log(10, 2)
    prec = p = int(pbits*1.1 + 100)
    s = fzero
    M = max(6, int(0.24*n**0.5 + 4))
    if M > 10**5:
        raise ValueError("Input too big") # Corresponds to n > 1.7e11
    sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p)
    sqrt8 = mpf_sqrt(from_int(8), p)
    for q in range(1, M):
        a = _a(n, q, p)
        d = _d(n, q, p, sq23pi, sqrt8)
        s = mpf_add(s, mpf_mul(a, d), prec)
        if verbose:
            print("step", q, "of", M, to_str(a, 10), to_str(d, 10))
        # On average, the terms decrease rapidly in magnitude.
        # Dynamically reducing the precision greatly improves
        # performance.
        p = bitcount(abs(to_int(d))) + 50
    return int(to_int(mpf_add(s, fhalf, prec)))
コード例 #2
0
def npartitions(n, verbose=False):
    """
    Calculate the partition function P(n), i.e. the number of ways that
    n can be written as a sum of positive integers.

    P(n) is computed using the Hardy-Ramanujan-Rademacher formula [1]_.


    The correctness of this implementation has been tested through 10**10.

    Examples
    ========

    >>> from sympy.ntheory import npartitions
    >>> npartitions(25)
    1958

    References
    ==========

    .. [1] http://mathworld.wolfram.com/PartitionFunctionP.html

    """
    n = int(n)
    if n < 0:
        return 0
    if n <= 5:
        return [1, 1, 2, 3, 5, 7][n]
    if '_factor' not in globals():
        _pre()
    # Estimate number of bits in p(n). This formula could be tidied
    pbits = int((
        math.pi*(2*n/3.)**0.5 -
        math.log(4*n))/math.log(10) + 1) * \
        math.log(10, 2)
    prec = p = int(pbits * 1.1 + 100)
    s = fzero
    M = max(6, int(0.24 * n**0.5 + 4))
    if M > 10**5:
        raise ValueError("Input too big")  # Corresponds to n > 1.7e11
    sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p)
    sqrt8 = mpf_sqrt(from_int(8), p)
    for q in range(1, M):
        a = _a(n, q, p)
        d = _d(n, q, p, sq23pi, sqrt8)
        s = mpf_add(s, mpf_mul(a, d), prec)
        if verbose:
            print("step", q, "of", M, to_str(a, 10), to_str(d, 10))
        # On average, the terms decrease rapidly in magnitude.
        # Dynamically reducing the precision greatly improves
        # performance.
        p = bitcount(abs(to_int(d))) + 50
    return int(to_int(mpf_add(s, fhalf, prec)))
コード例 #3
0
ファイル: partitions_.py プロジェクト: A-turing-machine/sympy
def _d(n, j, prec, sq23pi, sqrt8):
    """
    Compute the sinh term in the outer sum of the HRR formula.
    The constants sqrt(2/3*pi) and sqrt(8) must be precomputed.
    """
    j = from_int(j)
    pi = mpf_pi(prec)
    a = mpf_div(sq23pi, j, prec)
    b = mpf_sub(from_int(n), from_rational(1, 24, prec), prec)
    c = mpf_sqrt(b, prec)
    ch, sh = mpf_cosh_sinh(mpf_mul(a, c), prec)
    D = mpf_div(mpf_sqrt(j, prec), mpf_mul(mpf_mul(sqrt8, b), pi), prec)
    E = mpf_sub(mpf_mul(a, ch), mpf_div(sh, c, prec), prec)
    return mpf_mul(D, E)
コード例 #4
0
def _d(n, j, prec, sq23pi, sqrt8):
    """
    Compute the sinh term in the outer sum of the HRR formula.
    The constants sqrt(2/3*pi) and sqrt(8) must be precomputed.
    """
    j = from_int(j)
    pi = mpf_pi(prec)
    a = mpf_div(sq23pi, j, prec)
    b = mpf_sub(from_int(n), from_rational(1, 24, prec), prec)
    c = mpf_sqrt(b, prec)
    ch, sh = mpf_cosh_sinh(mpf_mul(a, c), prec)
    D = mpf_div(mpf_sqrt(j, prec), mpf_mul(mpf_mul(sqrt8, b), pi), prec)
    E = mpf_sub(mpf_mul(a, ch), mpf_div(sh, c, prec), prec)
    return mpf_mul(D, E)
コード例 #5
0
ファイル: partitions_.py プロジェクト: naveensaigit/diofant
def npartitions(n):
    """Calculate the partition function P(n), i.e. the number of ways that
    n can be written as a sum of positive integers.

    P(n) is computed using the Hardy-Ramanujan-Rademacher formula.

    The correctness of this implementation has been tested for 10**n
    up to n = 8.

    Examples
    ========

    >>> npartitions(25)
    1958

    References
    ==========

    * https://mathworld.wolfram.com/PartitionFunctionP.html

    """
    n = int(n)
    if n < 0:
        return 0
    if n <= 5:
        return [1, 1, 2, 3, 5, 7][n]
    # Estimate number of bits in p(n). This formula could be tidied
    pbits = int((math.pi*(2*n/3.)**0.5 - math.log(4*n))/math.log(10) + 1) * \
        math.log(10, 2)
    prec = p = int(pbits * 1.1 + 100)
    s = fzero
    M = max(6, int(0.24 * n**0.5 + 4))
    sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p)
    sqrt8 = mpf_sqrt(from_int(8), p)
    for q in range(1, M):
        a = _a(n, q, p)
        d = _d(n, q, p, sq23pi, sqrt8)
        s = mpf_add(s, mpf_mul(a, d), prec)
        debug('step', q, 'of', M, to_str(a, 10), to_str(d, 10))
        # On average, the terms decrease rapidly in magnitude. Dynamically
        # reducing the precision greatly improves performance.
        p = bitcount(abs(to_int(d))) + 50
    return int(to_int(mpf_add(s, fhalf, prec)))
コード例 #6
0
ファイル: partitions_.py プロジェクト: skirpichev/diofant
def npartitions(n):
    """Calculate the partition function P(n), i.e. the number of ways that
    n can be written as a sum of positive integers.

    P(n) is computed using the Hardy-Ramanujan-Rademacher formula.

    The correctness of this implementation has been tested for 10**n
    up to n = 8.

    Examples
    ========

    >>> npartitions(25)
    1958

    References
    ==========

    * http://mathworld.wolfram.com/PartitionFunctionP.html

    """
    n = int(n)
    if n < 0:
        return 0
    if n <= 5:
        return [1, 1, 2, 3, 5, 7][n]
    # Estimate number of bits in p(n). This formula could be tidied
    pbits = int((math.pi*(2*n/3.)**0.5 - math.log(4*n))/math.log(10) + 1) * \
        math.log(10, 2)
    prec = p = int(pbits*1.1 + 100)
    s = fzero
    M = max(6, int(0.24*n**0.5 + 4))
    sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p)
    sqrt8 = mpf_sqrt(from_int(8), p)
    for q in range(1, M):
        a = _a(n, q, p)
        d = _d(n, q, p, sq23pi, sqrt8)
        s = mpf_add(s, mpf_mul(a, d), prec)
        debug("step", q, "of", M, to_str(a, 10), to_str(d, 10))
        # On average, the terms decrease rapidly in magnitude. Dynamically
        # reducing the precision greatly improves performance.
        p = bitcount(abs(to_int(d))) + 50
    return int(to_int(mpf_add(s, fhalf, prec)))
コード例 #7
0
 def _make_tol(ctx):
     hundred = (0, 25, 2, 5)
     eps = (0, MPZ_ONE, 1-ctx.prec, 1)
     return mpf_mul(hundred, eps)
コード例 #8
0
ファイル: evalf.py プロジェクト: hridog00/Proyecto
def evalf_mul(v, prec, options):
    res = pure_complex(v)
    if res:
        # the only pure complex that is a mul is h*I
        _, h = res
        im, _, im_acc, _ = evalf(h, prec, options)
        return None, im, None, im_acc
    args = list(v.args)

    # see if any argument is NaN or oo and thus warrants a special return
    special = []
    from sympy.core.numbers import Float
    for arg in args:
        arg = evalf(arg, prec, options)
        if arg[0] is None:
            continue
        arg = Float._new(arg[0], 1)
        if arg is S.NaN or arg.is_infinite:
            special.append(arg)
    if special:
        from sympy.core.mul import Mul
        special = Mul(*special)
        return evalf(special, prec + 4, {})

    # With guard digits, multiplication in the real case does not destroy
    # accuracy. This is also true in the complex case when considering the
    # total accuracy; however accuracy for the real or imaginary parts
    # separately may be lower.
    acc = prec

    # XXX: big overestimate
    working_prec = prec + len(args) + 5

    # Empty product is 1
    start = man, exp, bc = MPZ(1), 0, 1

    # First, we multiply all pure real or pure imaginary numbers.
    # direction tells us that the result should be multiplied by
    # I**direction; all other numbers get put into complex_factors
    # to be multiplied out after the first phase.
    last = len(args)
    direction = 0
    args.append(S.One)
    complex_factors = []

    for i, arg in enumerate(args):
        if i != last and pure_complex(arg):
            args[-1] = (args[-1] * arg).expand()
            continue
        elif i == last and arg is S.One:
            continue
        re, im, re_acc, im_acc = evalf(arg, working_prec, options)
        if re and im:
            complex_factors.append((re, im, re_acc, im_acc))
            continue
        elif re:
            (s, m, e, b), w_acc = re, re_acc
        elif im:
            (s, m, e, b), w_acc = im, im_acc
            direction += 1
        else:
            return None, None, None, None
        direction += 2 * s
        man *= m
        exp += e
        bc += b
        if bc > 3 * working_prec:
            man >>= working_prec
            exp += working_prec
        acc = min(acc, w_acc)
    sign = (direction & 2) >> 1
    if not complex_factors:
        v = normalize(sign, man, exp, bitcount(man), prec, rnd)
        # multiply by i
        if direction & 1:
            return None, v, None, acc
        else:
            return v, None, acc, None
    else:
        # initialize with the first term
        if (man, exp, bc) != start:
            # there was a real part; give it an imaginary part
            re, im = (sign, man, exp, bitcount(man)), (0, MPZ(0), 0, 0)
            i0 = 0
        else:
            # there is no real part to start (other than the starting 1)
            wre, wim, wre_acc, wim_acc = complex_factors[0]
            acc = min(acc, complex_accuracy((wre, wim, wre_acc, wim_acc)))
            re = wre
            im = wim
            i0 = 1

        for wre, wim, wre_acc, wim_acc in complex_factors[i0:]:
            # acc is the overall accuracy of the product; we aren't
            # computing exact accuracies of the product.
            acc = min(acc, complex_accuracy((wre, wim, wre_acc, wim_acc)))

            use_prec = working_prec
            A = mpf_mul(re, wre, use_prec)
            B = mpf_mul(mpf_neg(im), wim, use_prec)
            C = mpf_mul(re, wim, use_prec)
            D = mpf_mul(im, wre, use_prec)
            re = mpf_add(A, B, use_prec)
            im = mpf_add(C, D, use_prec)
        if options.get('verbose'):
            print("MUL: wanted", prec, "accurate bits, got", acc)
        # multiply by I
        if direction & 1:
            re, im = mpf_neg(im), re
        return re, im, acc, acc
コード例 #9
0
ファイル: partitions_.py プロジェクト: AStorus/sympy
def _a(n, k, prec):
    """ Compute the inner sum in HRR formula [1]_

    References
    ==========

    .. [1] http://msp.org/pjm/1956/6-1/pjm-v6-n1-p18-p.pdf

    """
    if k == 1:
        return fone

    k1 = k
    e = 0
    p = _factor[k]
    while k1 % p == 0:
        k1 //= p
        e += 1
    k2 = k//k1 # k2 = p^e
    v = 1 - 24*n
    pi = mpf_pi(prec)

    if k1 == 1:
        # k  = p^e
        if p == 2:
            mod = 8*k
            v = mod + v % mod
            v = (v*pow(9, k - 1, mod)) % mod
            m = _sqrt_mod_prime_power(v, 2, e + 3)[0]
            arg = mpf_div(mpf_mul(
                from_int(4*m), pi, prec), from_int(mod), prec)
            return mpf_mul(mpf_mul(
                from_int((-1)**e*jacobi_symbol(m - 1, m)),
                mpf_sqrt(from_int(k), prec), prec),
                mpf_sin(arg, prec), prec)
        if p == 3:
            mod = 3*k
            v = mod + v % mod
            if e > 1:
                v = (v*pow(64, k//3 - 1, mod)) % mod
            m = _sqrt_mod_prime_power(v, 3, e + 1)[0]
            arg = mpf_div(mpf_mul(from_int(4*m), pi, prec),
                from_int(mod), prec)
            return mpf_mul(mpf_mul(
                from_int(2*(-1)**(e + 1)*legendre_symbol(m, 3)),
                mpf_sqrt(from_int(k//3), prec), prec),
                mpf_sin(arg, prec), prec)
        v = k + v % k
        if v % p == 0:
            if e == 1:
                return mpf_mul(
                    from_int(jacobi_symbol(3, k)),
                    mpf_sqrt(from_int(k), prec), prec)
            return fzero
        if not is_quad_residue(v, p):
            return fzero
        _phi = p**(e - 1)*(p - 1)
        v = (v*pow(576, _phi - 1, k))
        m = _sqrt_mod_prime_power(v, p, e)[0]
        arg = mpf_div(
            mpf_mul(from_int(4*m), pi, prec),
            from_int(k), prec)
        return mpf_mul(mpf_mul(
            from_int(2*jacobi_symbol(3, k)),
            mpf_sqrt(from_int(k), prec), prec),
            mpf_cos(arg, prec), prec)

    if p != 2 or e >= 3:
        d1, d2 = igcd(k1, 24), igcd(k2, 24)
        e = 24//(d1*d2)
        n1 = ((d2*e*n + (k2**2 - 1)//d1)*
            pow(e*k2*k2*d2, _totient[k1] - 1, k1)) % k1
        n2 = ((d1*e*n + (k1**2 - 1)//d2)*
            pow(e*k1*k1*d1, _totient[k2] - 1, k2)) % k2
        return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)
    if e == 2:
        n1 = ((8*n + 5)*pow(128, _totient[k1] - 1, k1)) % k1
        n2 = (4 + ((n - 2 - (k1**2 - 1)//8)*(k1**2)) % 4) % 4
        return mpf_mul(mpf_mul(
            from_int(-1),
            _a(n1, k1, prec), prec),
            _a(n2, k2, prec))
    n1 = ((8*n + 1)*pow(32, _totient[k1] - 1, k1)) % k1
    n2 = (2 + (n - (k1**2 - 1)//8) % 2) % 2
    return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)
コード例 #10
0
 def _make_tol(self):
     hundred = (0, 25, 2, 5)
     eps = (0, MPZ_ONE, 1 - self.prec, 1)
     return mpf_mul(hundred, eps)
コード例 #11
0
def _a(n, k, prec):
    """ Compute the inner sum in HRR formula [1]_

    References
    ==========

    .. [1] http://msp.org/pjm/1956/6-1/pjm-v6-n1-p18-p.pdf

    """
    if k == 1:
        return fone

    k1 = k
    e = 0
    p = _factor[k]
    while k1 % p == 0:
        k1 //= p
        e += 1
    k2 = k // k1  # k2 = p^e
    v = 1 - 24 * n
    pi = mpf_pi(prec)

    if k1 == 1:
        # k  = p^e
        if p == 2:
            mod = 8 * k
            v = mod + v % mod
            v = (v * pow(9, k - 1, mod)) % mod
            m = _sqrt_mod_prime_power(v, 2, e + 3)[0]
            arg = mpf_div(mpf_mul(from_int(4 * m), pi, prec), from_int(mod),
                          prec)
            return mpf_mul(
                mpf_mul(from_int((-1)**e * jacobi_symbol(m - 1, m)),
                        mpf_sqrt(from_int(k), prec), prec), mpf_sin(arg, prec),
                prec)
        if p == 3:
            mod = 3 * k
            v = mod + v % mod
            if e > 1:
                v = (v * pow(64, k // 3 - 1, mod)) % mod
            m = _sqrt_mod_prime_power(v, 3, e + 1)[0]
            arg = mpf_div(mpf_mul(from_int(4 * m), pi, prec), from_int(mod),
                          prec)
            return mpf_mul(
                mpf_mul(from_int(2 * (-1)**(e + 1) * legendre_symbol(m, 3)),
                        mpf_sqrt(from_int(k // 3), prec), prec),
                mpf_sin(arg, prec), prec)
        v = k + v % k
        if v % p == 0:
            if e == 1:
                return mpf_mul(from_int(jacobi_symbol(3, k)),
                               mpf_sqrt(from_int(k), prec), prec)
            return fzero
        if not is_quad_residue(v, p):
            return fzero
        _phi = p**(e - 1) * (p - 1)
        v = (v * pow(576, _phi - 1, k))
        m = _sqrt_mod_prime_power(v, p, e)[0]
        arg = mpf_div(mpf_mul(from_int(4 * m), pi, prec), from_int(k), prec)
        return mpf_mul(
            mpf_mul(from_int(2 * jacobi_symbol(3, k)),
                    mpf_sqrt(from_int(k), prec), prec), mpf_cos(arg, prec),
            prec)

    if p != 2 or e >= 3:
        d1, d2 = igcd(k1, 24), igcd(k2, 24)
        e = 24 // (d1 * d2)
        n1 = ((d2 * e * n + (k2**2 - 1) // d1) *
              pow(e * k2 * k2 * d2, _totient[k1] - 1, k1)) % k1
        n2 = ((d1 * e * n + (k1**2 - 1) // d2) *
              pow(e * k1 * k1 * d1, _totient[k2] - 1, k2)) % k2
        return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)
    if e == 2:
        n1 = ((8 * n + 5) * pow(128, _totient[k1] - 1, k1)) % k1
        n2 = (4 + ((n - 2 - (k1**2 - 1) // 8) * (k1**2)) % 4) % 4
        return mpf_mul(mpf_mul(from_int(-1), _a(n1, k1, prec), prec),
                       _a(n2, k2, prec))
    n1 = ((8 * n + 1) * pow(32, _totient[k1] - 1, k1)) % k1
    n2 = (2 + (n - (k1**2 - 1) // 8) % 2) % 2
    return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)
コード例 #12
0
ファイル: evalf.py プロジェクト: arghdos/sympy
def evalf_mul(v, prec, options):
    res = pure_complex(v)
    if res:
        # the only pure complex that is a mul is h*I
        _, h = res
        im, _, im_acc, _ = evalf(h, prec, options)
        return None, im, None, im_acc
    args = list(v.args)

    # see if any argument is NaN or oo and thus warrants a special return
    special = []
    from sympy.core.numbers import Float
    for arg in args:
        arg = evalf(arg, prec, options)
        if arg[0] is None:
            continue
        arg = Float._new(arg[0], 1)
        if arg is S.NaN or arg.is_infinite:
            special.append(arg)
    if special:
        from sympy.core.mul import Mul
        special = Mul(*special)
        return evalf(special, prec + 4, {})

    # With guard digits, multiplication in the real case does not destroy
    # accuracy. This is also true in the complex case when considering the
    # total accuracy; however accuracy for the real or imaginary parts
    # separately may be lower.
    acc = prec

    # XXX: big overestimate
    working_prec = prec + len(args) + 5

    # Empty product is 1
    start = man, exp, bc = MPZ(1), 0, 1

    # First, we multiply all pure real or pure imaginary numbers.
    # direction tells us that the result should be multiplied by
    # I**direction; all other numbers get put into complex_factors
    # to be multiplied out after the first phase.
    last = len(args)
    direction = 0
    args.append(S.One)
    complex_factors = []

    for i, arg in enumerate(args):
        if i != last and pure_complex(arg):
            args[-1] = (args[-1]*arg).expand()
            continue
        elif i == last and arg is S.One:
            continue
        re, im, re_acc, im_acc = evalf(arg, working_prec, options)
        if re and im:
            complex_factors.append((re, im, re_acc, im_acc))
            continue
        elif re:
            (s, m, e, b), w_acc = re, re_acc
        elif im:
            (s, m, e, b), w_acc = im, im_acc
            direction += 1
        else:
            return None, None, None, None
        direction += 2*s
        man *= m
        exp += e
        bc += b
        if bc > 3*working_prec:
            man >>= working_prec
            exp += working_prec
        acc = min(acc, w_acc)
    sign = (direction & 2) >> 1
    if not complex_factors:
        v = normalize(sign, man, exp, bitcount(man), prec, rnd)
        # multiply by i
        if direction & 1:
            return None, v, None, acc
        else:
            return v, None, acc, None
    else:
        # initialize with the first term
        if (man, exp, bc) != start:
            # there was a real part; give it an imaginary part
            re, im = (sign, man, exp, bitcount(man)), (0, MPZ(0), 0, 0)
            i0 = 0
        else:
            # there is no real part to start (other than the starting 1)
            wre, wim, wre_acc, wim_acc = complex_factors[0]
            acc = min(acc,
                      complex_accuracy((wre, wim, wre_acc, wim_acc)))
            re = wre
            im = wim
            i0 = 1

        for wre, wim, wre_acc, wim_acc in complex_factors[i0:]:
            # acc is the overall accuracy of the product; we aren't
            # computing exact accuracies of the product.
            acc = min(acc,
                      complex_accuracy((wre, wim, wre_acc, wim_acc)))

            use_prec = working_prec
            A = mpf_mul(re, wre, use_prec)
            B = mpf_mul(mpf_neg(im), wim, use_prec)
            C = mpf_mul(re, wim, use_prec)
            D = mpf_mul(im, wre, use_prec)
            re = mpf_add(A, B, use_prec)
            im = mpf_add(C, D, use_prec)
        if options.get('verbose'):
            print("MUL: wanted", prec, "accurate bits, got", acc)
        # multiply by I
        if direction & 1:
            re, im = mpf_neg(im), re
        return re, im, acc, acc
コード例 #13
0
ファイル: mpelements.py プロジェクト: asmeurer/sympy
 def _make_tol(ctx):
     hundred = (0, 25, 2, 5)
     eps = (0, MPZ_ONE, 1-ctx.prec, 1)
     return mpf_mul(hundred, eps)
コード例 #14
0
ファイル: mpelements.py プロジェクト: skirpichev/diofant
 def _make_tol(self):
     hundred = (0, 25, 2, 5)
     eps = (0, MPZ_ONE, 1 - self.prec, 1)
     return mpf_mul(hundred, eps)