コード例 #1
0
    def create_predictor(
        self, transformation: Transformation, trained_network: HybridBlock
    ) -> Predictor:
        prediction_network = DeepStatePredictionNetwork(
            num_sample_paths=self.num_sample_paths,
            num_layers=self.num_layers,
            num_cells=self.num_cells,
            cell_type=self.cell_type,
            past_length=self.past_length,
            prediction_length=self.prediction_length,
            issm=self.issm,
            dropout_rate=self.dropout_rate,
            cardinality=self.cardinality,
            embedding_dimension=self.embedding_dimension,
            scaling=self.scaling,
            params=trained_network.collect_params(),
        )

        copy_parameters(trained_network, prediction_network)

        return RepresentableBlockPredictor(
            input_transform=transformation,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx,
        )
コード例 #2
0
ファイル: _estimator.py プロジェクト: vishalbelsare/gluon-ts
    def create_predictor(self, transformation: Transformation,
                         trained_network: HybridBlock) -> Predictor:
        prediction_splitter = self._create_instance_splitter("test")

        prediction_network = DeepStatePredictionNetwork(
            num_layers=self.num_layers,
            num_cells=self.num_cells,
            cell_type=self.cell_type,
            past_length=self.past_length,
            prediction_length=self.prediction_length,
            issm=self.issm,
            dropout_rate=self.dropout_rate,
            cardinality=self.cardinality,
            embedding_dimension=self.embedding_dimension,
            scaling=self.scaling,
            num_parallel_samples=self.num_parallel_samples,
            noise_std_bounds=self.noise_std_bounds,
            prior_cov_bounds=self.prior_cov_bounds,
            innovation_bounds=self.innovation_bounds,
            params=trained_network.collect_params(),
        )

        copy_parameters(trained_network, prediction_network)

        return RepresentableBlockPredictor(
            input_transform=transformation + prediction_splitter,
            prediction_net=prediction_network,
            batch_size=self.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx,
        )
コード例 #3
0
    def create_predictor(self, transformation: Transformation,
                         trained_network: HybridBlock) -> Predictor:
        prediction_network = GaussianProcessPredictionNetwork(
            prediction_length=self.prediction_length,
            context_length=self.context_length,
            cardinality=self.cardinality,
            num_samples=self.num_eval_samples,
            params=trained_network.collect_params(),
            kernel_output=self.kernel_output,
            params_scaling=self.params_scaling,
            ctx=self.trainer.ctx,
            float_type=self.float_type,
            max_iter_jitter=self.max_iter_jitter,
            jitter_method=self.jitter_method,
            sample_noise=self.sample_noise,
        )

        copy_parameters(net_source=trained_network,
                        net_dest=prediction_network)

        return RepresentableBlockPredictor(
            input_transform=transformation,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx,
            float_type=self.float_type,
        )
コード例 #4
0
    def create_predictor(self, transformation: Transformation,
                         trained_network: HybridBlock) -> Predictor:
        prediction_splitter = self._create_instance_splitter("test")

        prediction_network = NBEATSPredictionNetwork(
            prediction_length=self.prediction_length,
            context_length=self.context_length,
            num_stacks=self.num_stacks,
            widths=self.widths,
            num_blocks=self.num_blocks,
            num_block_layers=self.num_block_layers,
            expansion_coefficient_lengths=self.expansion_coefficient_lengths,
            sharing=self.sharing,
            stack_types=self.stack_types,
            params=trained_network.collect_params(),
            scale=self.scale,
        )

        return RepresentableBlockPredictor(
            input_transform=transformation + prediction_splitter,
            prediction_net=prediction_network,
            batch_size=self.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx,
        )
コード例 #5
0
 def __init__(self, nn: HybridBlock, freq: int):
     """
     :param nn: Model to plot parameters of.
     :param freq: Plotting frequency.
     """
     self._params = nn.collect_params()
     self._freq = freq
     self._last_call = 0
コード例 #6
0
ファイル: viz.py プロジェクト: troyliu0105/mxdetection
def print_summary(net: gluon.HybridBlock, ipt_shape=(1, 3, 416, 416)):
    ctx = net.collect_params().list_ctx()[0]
    ipt = mx.random.uniform(shape=ipt_shape, ctx=ctx)
    net.summary(ipt)
    table = compute_net_params(net)
    logging.info("Parameter Statistics\n" + table.table)
    if wandb.run:
        headers = table.table_data[0]
        data = table.table_data[1:]
        wandb_table = wandb.Table(columns=headers, data=data)
        wandb.log({"Parameters Statistics": wandb_table}, commit=False)
コード例 #7
0
ファイル: optimizers.py プロジェクト: troyliu0105/mxdetection
def build_optimizer(cfg: dict, net: gluon.HybridBlock):
    lrs = build_lr_scheduler(cfg.pop('lr_scheduler', None))
    cfg['optimizer_params']['lr_scheduler'] = lrs

    net.backbone.collect_params().setattr('lr_mult',
                                          cfg.pop('backbone_lr_mult', 1.0))
    net.backbone.collect_params().setattr('wd_mult',
                                          cfg.pop('backbone_wd_mult', 1.0))
    if cfg.pop('no_wd', False):
        net.collect_params('.*beta|.*gamma|.*bias').setattr('wd_mult', 0.0)

    opt = cfg.pop('type', 'sgd')
    optimizer_params = cfg.pop('optimizer_params', {})
    if amp._amp_initialized:
        cfg['update_on_kvstore'] = False
    trainer = gluon.Trainer(net.collect_params(),
                            opt,
                            optimizer_params=optimizer_params,
                            **cfg)
    if amp._amp_initialized:
        amp.init_trainer(trainer)
    return trainer
コード例 #8
0
    def create_predictor(self, transformation: Transformation,
                         trained_network: HybridBlock) -> Predictor:
        prediction_network = SimpleFeedForwardPredictionNetwork(
            num_hidden_dimensions=self.num_hidden_dimensions,
            prediction_length=self.prediction_length,
            context_length=self.context_length,
            distr_output=self.distr_output,
            batch_normalization=self.batch_normalization,
            mean_scaling=self.mean_scaling,
            params=trained_network.collect_params(),
            num_parallel_samples=self.num_parallel_samples,
        )

        return RepresentableBlockPredictor(
            input_transform=transformation,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx,
        )
コード例 #9
0
 def __init__(self, name: str, model: gluon.HybridBlock,
              input_shapes: List[List[int]]):
     self._name = name
     self._sym = self._get_onnx_sym(model, len(input_shapes))
     self._param_dict = model.collect_params()
     self._input_shapes = input_shapes