コード例 #1
0
    def learn(self, total_timesteps, callback=None, log_interval=100, tb_log_name="A2C",
              reset_num_timesteps=True):

        new_tb_log = self._init_num_timesteps(reset_num_timesteps)
        callback = self._init_callback(callback)

        with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \
                as writer:
            self._setup_learn()
            self.learning_rate_schedule = Scheduler(initial_value=self.learning_rate, n_values=total_timesteps,
                                                    schedule=self.lr_schedule)

            t_start = time.time()
            callback.on_training_start(locals(), globals())

            for update in range(1, total_timesteps // self.n_batch + 1):

                callback.on_rollout_start()
                # true_reward is the reward without discount
                rollout = self.runner.run(callback)
                # unpack
                obs, states, rewards, masks, actions, values, ep_infos, true_reward = rollout
                callback.update_locals(locals())
                callback.on_rollout_end()

                # Early stopping due to the callback
                if not self.runner.continue_training:
                    break

                self.ep_info_buf.extend(ep_infos)
                _, value_loss, policy_entropy = self._train_step(obs, states, rewards, masks, actions, values,
                                                                 self.num_timesteps // self.n_batch, writer)
                n_seconds = time.time() - t_start
                fps = int((update * self.n_batch) / n_seconds)

                if writer is not None:
                    total_episode_reward_logger(self.episode_reward,
                                                true_reward.reshape((self.n_envs, self.n_steps)),
                                                masks.reshape((self.n_envs, self.n_steps)),
                                                writer, self.num_timesteps)

                if self.verbose >= 1 and (update % log_interval == 0 or update == 1):
                    explained_var = explained_variance(values, rewards)
                    logger.record_tabular("nupdates", update)
                    logger.record_tabular("total_timesteps", self.num_timesteps)
                    logger.record_tabular("fps", fps)
                    logger.record_tabular("policy_entropy", float(policy_entropy))
                    logger.record_tabular("value_loss", float(value_loss))
                    logger.record_tabular("explained_variance", float(explained_var))
                    if len(self.ep_info_buf) > 0 and len(self.ep_info_buf[0]) > 0:
                        logger.logkv('ep_reward_mean', safe_mean([ep_info['r'] for ep_info in self.ep_info_buf]))
                        logger.logkv('ep_len_mean', safe_mean([ep_info['l'] for ep_info in self.ep_info_buf]))
                    logger.dump_tabular()

        callback.on_training_end()
        return self
コード例 #2
0
ファイル: dqn.py プロジェクト: mradaideh/neorl
    def setup_model(self):

        with SetVerbosity(self.verbose):
            assert not isinstance(self.action_space, gym.spaces.Box), \
                "Error: DQN cannot output a gym.spaces.Box action space."

            # If the policy is wrap in functool.partial (e.g. to disable dueling)
            # unwrap it to check the class type
            if isinstance(self.policy, partial):
                test_policy = self.policy.func
            else:
                test_policy = self.policy
            assert issubclass(test_policy, DQNPolicy), "Error: the input policy for the DQN model must be " \
                                                       "an instance of DQNPolicy."

            self.graph = tf.Graph()
            with self.graph.as_default():
                self.set_random_seed(self.seed)
                self.sess = tf_util.make_session(num_cpu=self.n_cpu_tf_sess,
                                                 graph=self.graph)

                optimizer = tf.train.AdamOptimizer(
                    learning_rate=self.learning_rate)

                self.act, self._train_step, self.update_target, self.step_model = build_train(
                    q_func=partial(self.policy, **self.policy_kwargs),
                    ob_space=self.observation_space,
                    ac_space=self.action_space,
                    optimizer=optimizer,
                    gamma=self.gamma,
                    grad_norm_clipping=10,
                    param_noise=self.param_noise,
                    sess=self.sess,
                    full_tensorboard_log=self.full_tensorboard_log,
                    double_q=self.double_q)
                self.proba_step = self.step_model.proba_step
                self.params = tf_util.get_trainable_vars("deepq")

                # Initialize the parameters and copy them to the target network.
                tf_util.initialize(self.sess)
                self.update_target(sess=self.sess)

                self.summary = tf.summary.merge_all()
コード例 #3
0
    def setup_model(self):
        with SetVerbosity(self.verbose):

            assert issubclass(self.policy, ActorCriticPolicy), "Error: the input policy for the A2C model must be an " \
                                                                "instance of common.policies.ActorCriticPolicy."

            self.graph = tf.Graph()
            with self.graph.as_default():
                self.set_random_seed(self.seed)
                self.sess = tf_util.make_session(num_cpu=self.n_cpu_tf_sess,
                                                 graph=self.graph)

                self.n_batch = self.n_envs * self.n_steps

                n_batch_step = None
                n_batch_train = None
                if issubclass(self.policy, RecurrentActorCriticPolicy):
                    n_batch_step = self.n_envs
                    n_batch_train = self.n_envs * self.n_steps

                step_model = self.policy(self.sess,
                                         self.observation_space,
                                         self.action_space,
                                         self.n_envs,
                                         1,
                                         n_batch_step,
                                         reuse=False,
                                         **self.policy_kwargs)

                with tf.variable_scope(
                        "train_model",
                        reuse=True,
                        custom_getter=tf_util.outer_scope_getter(
                            "train_model")):
                    train_model = self.policy(self.sess,
                                              self.observation_space,
                                              self.action_space,
                                              self.n_envs,
                                              self.n_steps,
                                              n_batch_train,
                                              reuse=True,
                                              **self.policy_kwargs)

                with tf.variable_scope("loss", reuse=False):
                    self.actions_ph = train_model.pdtype.sample_placeholder(
                        [None], name="action_ph")
                    self.advs_ph = tf.placeholder(tf.float32, [None],
                                                  name="advs_ph")
                    self.rewards_ph = tf.placeholder(tf.float32, [None],
                                                     name="rewards_ph")
                    self.learning_rate_ph = tf.placeholder(
                        tf.float32, [], name="learning_rate_ph")

                    neglogpac = train_model.proba_distribution.neglogp(
                        self.actions_ph)
                    self.entropy = tf.reduce_mean(
                        train_model.proba_distribution.entropy())
                    self.pg_loss = tf.reduce_mean(self.advs_ph * neglogpac)
                    self.vf_loss = mse(tf.squeeze(train_model.value_flat),
                                       self.rewards_ph)
                    # https://arxiv.org/pdf/1708.04782.pdf#page=9, https://arxiv.org/pdf/1602.01783.pdf#page=4
                    # and https://github.com/dennybritz/reinforcement-learning/issues/34
                    # suggest to add an entropy component in order to improve exploration.
                    loss = self.pg_loss - self.entropy * self.ent_coef + self.vf_loss * self.vf_coef

                    tf.summary.scalar('entropy_loss', self.entropy)
                    tf.summary.scalar('policy_gradient_loss', self.pg_loss)
                    tf.summary.scalar('value_function_loss', self.vf_loss)
                    tf.summary.scalar('loss', loss)

                    self.params = tf_util.get_trainable_vars("model")
                    grads = tf.gradients(loss, self.params)
                    if self.max_grad_norm is not None:
                        grads, _ = tf.clip_by_global_norm(
                            grads, self.max_grad_norm)
                    grads = list(zip(grads, self.params))

                with tf.variable_scope("input_info", reuse=False):
                    tf.summary.scalar('discounted_rewards',
                                      tf.reduce_mean(self.rewards_ph))
                    tf.summary.scalar('learning_rate',
                                      tf.reduce_mean(self.learning_rate_ph))
                    tf.summary.scalar('advantage',
                                      tf.reduce_mean(self.advs_ph))
                    if self.full_tensorboard_log:
                        tf.summary.histogram('discounted_rewards',
                                             self.rewards_ph)
                        tf.summary.histogram('learning_rate',
                                             self.learning_rate_ph)
                        tf.summary.histogram('advantage', self.advs_ph)
                        if tf_util.is_image(self.observation_space):
                            tf.summary.image('observation', train_model.obs_ph)
                        else:
                            tf.summary.histogram('observation',
                                                 train_model.obs_ph)

                trainer = tf.train.RMSPropOptimizer(
                    learning_rate=self.learning_rate_ph,
                    decay=self.alpha,
                    epsilon=self.epsilon,
                    momentum=self.momentum)
                self.apply_backprop = trainer.apply_gradients(grads)

                self.train_model = train_model
                self.step_model = step_model
                self.step = step_model.step
                self.proba_step = step_model.proba_step
                self.value = step_model.value
                self.initial_state = step_model.initial_state
                tf.global_variables_initializer().run(session=self.sess)

                self.summary = tf.summary.merge_all()
コード例 #4
0
ファイル: acktr.py プロジェクト: mradaideh/neorl
    def learn(self,
              total_timesteps,
              callback=None,
              log_interval=100,
              tb_log_name="ACKTR",
              reset_num_timesteps=True):

        new_tb_log = self._init_num_timesteps(reset_num_timesteps)
        callback = self._init_callback(callback)

        with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \
                as writer:
            self._setup_learn()
            self.n_batch = self.n_envs * self.n_steps

            self.learning_rate_schedule = Scheduler(
                initial_value=self.learning_rate,
                n_values=total_timesteps,
                schedule=self.lr_schedule)

            # FIFO queue of the q_runner thread is closed at the end of the learn function.
            # As a result, it needs to be redefinied at every call
            with self.graph.as_default():
                with tf.variable_scope(
                        "kfac_apply",
                        reuse=self.trained,
                        custom_getter=tf_util.outer_scope_getter(
                            "kfac_apply")):
                    # Some of the variables are not in a scope when they are create
                    # so we make a note of any previously uninitialized variables
                    tf_vars = tf.global_variables()
                    is_uninitialized = self.sess.run(
                        [tf.is_variable_initialized(var) for var in tf_vars])
                    old_uninitialized_vars = [
                        v for (v, f) in zip(tf_vars, is_uninitialized) if not f
                    ]

                    self.train_op, self.q_runner = self.optim.apply_gradients(
                        list(zip(self.grads_check, self.params)))

                    # then we check for new uninitialized variables and initialize them
                    tf_vars = tf.global_variables()
                    is_uninitialized = self.sess.run(
                        [tf.is_variable_initialized(var) for var in tf_vars])
                    new_uninitialized_vars = [
                        v for (v, f) in zip(tf_vars, is_uninitialized)
                        if not f and v not in old_uninitialized_vars
                    ]

                    if len(new_uninitialized_vars) != 0:
                        self.sess.run(
                            tf.variables_initializer(new_uninitialized_vars))

            self.trained = True

            t_start = time.time()
            coord = tf.train.Coordinator()
            if self.q_runner is not None:
                enqueue_threads = self.q_runner.create_threads(self.sess,
                                                               coord=coord,
                                                               start=True)
            else:
                enqueue_threads = []

            callback.on_training_start(locals(), globals())

            for update in range(1, total_timesteps // self.n_batch + 1):

                callback.on_rollout_start()

                # pytype:disable=bad-unpacking
                # true_reward is the reward without discount
                if isinstance(self.runner, PPO2Runner):
                    # We are using GAE
                    rollout = self.runner.run(callback)
                    obs, returns, masks, actions, values, _, states, ep_infos, true_reward = rollout
                else:
                    rollout = self.runner.run(callback)
                    obs, states, returns, masks, actions, values, ep_infos, true_reward = rollout
                # pytype:enable=bad-unpacking
                callback.update_locals(locals())
                callback.on_rollout_end()

                # Early stopping due to the callback
                if not self.runner.continue_training:
                    break

                self.ep_info_buf.extend(ep_infos)
                policy_loss, value_loss, policy_entropy = self._train_step(
                    obs, states, returns, masks, actions, values,
                    self.num_timesteps // (self.n_batch + 1), writer)
                n_seconds = time.time() - t_start
                fps = int((update * self.n_batch) / n_seconds)

                if writer is not None:
                    total_episode_reward_logger(
                        self.episode_reward,
                        true_reward.reshape((self.n_envs, self.n_steps)),
                        masks.reshape((self.n_envs, self.n_steps)), writer,
                        self.num_timesteps)

                if self.verbose >= 1 and (update % log_interval == 0
                                          or update == 1):
                    explained_var = explained_variance(values, returns)
                    logger.record_tabular("nupdates", update)
                    logger.record_tabular("total_timesteps",
                                          self.num_timesteps)
                    logger.record_tabular("fps", fps)
                    logger.record_tabular("policy_entropy",
                                          float(policy_entropy))
                    logger.record_tabular("policy_loss", float(policy_loss))
                    logger.record_tabular("value_loss", float(value_loss))
                    logger.record_tabular("explained_variance",
                                          float(explained_var))
                    if len(self.ep_info_buf) > 0 and len(
                            self.ep_info_buf[0]) > 0:
                        logger.logkv(
                            'ep_reward_mean',
                            safe_mean([
                                ep_info['r'] for ep_info in self.ep_info_buf
                            ]))
                        logger.logkv(
                            'ep_len_mean',
                            safe_mean([
                                ep_info['l'] for ep_info in self.ep_info_buf
                            ]))
                    logger.dump_tabular()

            coord.request_stop()
            coord.join(enqueue_threads)

        callback.on_training_end()
        return self
コード例 #5
0
ファイル: acktr.py プロジェクト: mradaideh/neorl
    def setup_model(self):
        with SetVerbosity(self.verbose):

            assert issubclass(self.policy, ActorCriticPolicy), "Error: the input policy for the ACKTR model must be " \
                                                               "an instance of common.policies.ActorCriticPolicy."

            # Enable continuous actions tricks (normalized advantage)
            self.continuous_actions = isinstance(self.action_space, Box)

            self.graph = tf.Graph()
            with self.graph.as_default():
                self.set_random_seed(self.seed)
                self.sess = tf_util.make_session(num_cpu=self.n_cpu_tf_sess,
                                                 graph=self.graph)

                n_batch_step = None
                n_batch_train = None
                if issubclass(self.policy, RecurrentActorCriticPolicy):
                    n_batch_step = self.n_envs
                    n_batch_train = self.n_envs * self.n_steps

                step_model = self.policy(self.sess,
                                         self.observation_space,
                                         self.action_space,
                                         self.n_envs,
                                         1,
                                         n_batch_step,
                                         reuse=False,
                                         **self.policy_kwargs)

                self.params = params = tf_util.get_trainable_vars("model")

                with tf.variable_scope(
                        "train_model",
                        reuse=True,
                        custom_getter=tf_util.outer_scope_getter(
                            "train_model")):
                    train_model = self.policy(self.sess,
                                              self.observation_space,
                                              self.action_space,
                                              self.n_envs,
                                              self.n_steps,
                                              n_batch_train,
                                              reuse=True,
                                              **self.policy_kwargs)

                with tf.variable_scope(
                        "loss",
                        reuse=False,
                        custom_getter=tf_util.outer_scope_getter("loss")):
                    self.advs_ph = advs_ph = tf.placeholder(tf.float32, [None])
                    self.rewards_ph = rewards_ph = tf.placeholder(
                        tf.float32, [None])
                    self.learning_rate_ph = learning_rate_ph = tf.placeholder(
                        tf.float32, [])
                    self.actions_ph = train_model.pdtype.sample_placeholder(
                        [None])

                    neg_log_prob = train_model.proba_distribution.neglogp(
                        self.actions_ph)

                    # training loss
                    pg_loss = tf.reduce_mean(advs_ph * neg_log_prob)
                    self.entropy = entropy = tf.reduce_mean(
                        train_model.proba_distribution.entropy())
                    self.pg_loss = pg_loss = pg_loss - self.ent_coef * entropy
                    self.vf_loss = vf_loss = mse(
                        tf.squeeze(train_model.value_fn), rewards_ph)
                    train_loss = pg_loss + self.vf_coef * vf_loss

                    # Fisher loss construction
                    self.pg_fisher = pg_fisher_loss = -tf.reduce_mean(
                        neg_log_prob)
                    sample_net = train_model.value_fn + tf.random_normal(
                        tf.shape(train_model.value_fn))
                    self.vf_fisher = vf_fisher_loss = -self.vf_fisher_coef * tf.reduce_mean(
                        tf.pow(
                            train_model.value_fn -
                            tf.stop_gradient(sample_net), 2))
                    self.joint_fisher = pg_fisher_loss + vf_fisher_loss

                    tf.summary.scalar('entropy_loss', self.entropy)
                    tf.summary.scalar('policy_gradient_loss', pg_loss)
                    tf.summary.scalar('policy_gradient_fisher_loss',
                                      pg_fisher_loss)
                    tf.summary.scalar('value_function_loss', self.vf_loss)
                    tf.summary.scalar('value_function_fisher_loss',
                                      vf_fisher_loss)
                    tf.summary.scalar('loss', train_loss)

                    self.grads_check = tf.gradients(train_loss, params)

                with tf.variable_scope("input_info", reuse=False):
                    tf.summary.scalar('discounted_rewards',
                                      tf.reduce_mean(self.rewards_ph))
                    tf.summary.scalar('learning_rate',
                                      tf.reduce_mean(self.learning_rate_ph))
                    tf.summary.scalar('advantage',
                                      tf.reduce_mean(self.advs_ph))

                    if self.full_tensorboard_log:
                        tf.summary.histogram('discounted_rewards',
                                             self.rewards_ph)
                        tf.summary.histogram('learning_rate',
                                             self.learning_rate_ph)
                        tf.summary.histogram('advantage', self.advs_ph)
                        if tf_util.is_image(self.observation_space):
                            tf.summary.image('observation', train_model.obs_ph)
                        else:
                            tf.summary.histogram('observation',
                                                 train_model.obs_ph)

                with tf.variable_scope(
                        "kfac",
                        reuse=False,
                        custom_getter=tf_util.outer_scope_getter("kfac")):
                    with tf.device('/gpu:0'):
                        self.optim = optim = kfac.KfacOptimizer(
                            learning_rate=learning_rate_ph,
                            clip_kl=self.kfac_clip,
                            momentum=0.9,
                            kfac_update=self.kfac_update,
                            epsilon=0.01,
                            stats_decay=0.99,
                            async_eigen_decomp=self.async_eigen_decomp,
                            cold_iter=10,
                            max_grad_norm=self.max_grad_norm,
                            verbose=self.verbose)

                        optim.compute_and_apply_stats(self.joint_fisher,
                                                      var_list=params)

                self.train_model = train_model
                self.step_model = step_model
                self.step = step_model.step
                self.proba_step = step_model.proba_step
                self.value = step_model.value
                self.initial_state = step_model.initial_state
                tf.global_variables_initializer().run(session=self.sess)

                self.summary = tf.summary.merge_all()
コード例 #6
0
ファイル: dqn.py プロジェクト: mradaideh/neorl
    def learn(self,
              total_timesteps,
              callback=None,
              log_interval=100,
              tb_log_name="DQN",
              reset_num_timesteps=True,
              replay_wrapper=None):

        new_tb_log = self._init_num_timesteps(reset_num_timesteps)
        callback = self._init_callback(callback)

        with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \
                as writer:
            self._setup_learn()

            # Create the replay buffer
            if self.prioritized_replay:
                self.replay_buffer = PrioritizedReplayBuffer(
                    self.buffer_size, alpha=self.prioritized_replay_alpha)
                if self.prioritized_replay_beta_iters is None:
                    prioritized_replay_beta_iters = total_timesteps
                else:
                    prioritized_replay_beta_iters = self.prioritized_replay_beta_iters
                self.beta_schedule = LinearSchedule(
                    prioritized_replay_beta_iters,
                    initial_p=self.prioritized_replay_beta0,
                    final_p=1.0)
            else:
                self.replay_buffer = ReplayBuffer(self.buffer_size)
                self.beta_schedule = None

            if replay_wrapper is not None:
                assert not self.prioritized_replay, "Prioritized replay buffer is not supported by HER"
                self.replay_buffer = replay_wrapper(self.replay_buffer)

            # Create the schedule for exploration starting from 1.
            self.exploration = LinearSchedule(
                schedule_timesteps=int(self.exploration_fraction *
                                       total_timesteps),
                initial_p=self.exploration_initial_eps,
                final_p=self.exploration_final_eps)

            episode_rewards = [0.0]
            episode_successes = []

            callback.on_training_start(locals(), globals())
            callback.on_rollout_start()

            reset = True
            obs = self.env.reset()
            # Retrieve unnormalized observation for saving into the buffer
            if self._vec_normalize_env is not None:
                obs_ = self._vec_normalize_env.get_original_obs().squeeze()

            for _ in range(total_timesteps):
                # Take action and update exploration to the newest value
                kwargs = {}
                if not self.param_noise:
                    update_eps = self.exploration.value(self.num_timesteps)
                    update_param_noise_threshold = 0.
                else:
                    update_eps = 0.
                    # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                    # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                    # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                    # for detailed explanation.
                    update_param_noise_threshold = \
                        -np.log(1. - self.exploration.value(self.num_timesteps) +
                                self.exploration.value(self.num_timesteps) / float(self.env.action_space.n))
                    kwargs['reset'] = reset
                    kwargs[
                        'update_param_noise_threshold'] = update_param_noise_threshold
                    kwargs['update_param_noise_scale'] = True
                with self.sess.as_default():
                    action = self.act(np.array(obs)[None],
                                      update_eps=update_eps,
                                      **kwargs)[0]
                env_action = action
                reset = False
                new_obs, rew, done, info = self.env.step(env_action)

                self.num_timesteps += 1

                # Stop training if return value is False
                callback.update_locals(locals())
                if callback.on_step() is False:
                    break

                # Store only the unnormalized version
                if self._vec_normalize_env is not None:
                    new_obs_ = self._vec_normalize_env.get_original_obs(
                    ).squeeze()
                    reward_ = self._vec_normalize_env.get_original_reward(
                    ).squeeze()
                else:
                    # Avoid changing the original ones
                    obs_, new_obs_, reward_ = obs, new_obs, rew
                # Store transition in the replay buffer.
                self.replay_buffer_add(obs_, action, reward_, new_obs_, done,
                                       info)
                obs = new_obs
                # Save the unnormalized observation
                if self._vec_normalize_env is not None:
                    obs_ = new_obs_

                if writer is not None:
                    ep_rew = np.array([reward_]).reshape((1, -1))
                    ep_done = np.array([done]).reshape((1, -1))
                    tf_util.total_episode_reward_logger(
                        self.episode_reward, ep_rew, ep_done, writer,
                        self.num_timesteps)

                episode_rewards[-1] += reward_
                if done:
                    maybe_is_success = info.get('is_success')
                    if maybe_is_success is not None:
                        episode_successes.append(float(maybe_is_success))
                    if not isinstance(self.env, VecEnv):
                        obs = self.env.reset()
                    episode_rewards.append(0.0)
                    reset = True

                # Do not train if the warmup phase is not over
                # or if there are not enough samples in the replay buffer
                can_sample = self.replay_buffer.can_sample(self.batch_size)
                if can_sample and self.num_timesteps > self.learning_starts \
                        and self.num_timesteps % self.train_freq == 0:

                    callback.on_rollout_end()
                    # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                    # pytype:disable=bad-unpacking
                    if self.prioritized_replay:
                        assert self.beta_schedule is not None, \
                               "BUG: should be LinearSchedule when self.prioritized_replay True"
                        experience = self.replay_buffer.sample(
                            self.batch_size,
                            beta=self.beta_schedule.value(self.num_timesteps),
                            env=self._vec_normalize_env)
                        (obses_t, actions, rewards, obses_tp1, dones, weights,
                         batch_idxes) = experience
                    else:
                        obses_t, actions, rewards, obses_tp1, dones = self.replay_buffer.sample(
                            self.batch_size, env=self._vec_normalize_env)
                        weights, batch_idxes = np.ones_like(rewards), None
                    # pytype:enable=bad-unpacking

                    if writer is not None:
                        # run loss backprop with summary, but once every 100 steps save the metadata
                        # (memory, compute time, ...)
                        if (1 + self.num_timesteps) % 100 == 0:
                            run_options = tf.RunOptions(
                                trace_level=tf.RunOptions.FULL_TRACE)
                            run_metadata = tf.RunMetadata()
                            summary, td_errors = self._train_step(
                                obses_t,
                                actions,
                                rewards,
                                obses_tp1,
                                obses_tp1,
                                dones,
                                weights,
                                sess=self.sess,
                                options=run_options,
                                run_metadata=run_metadata)
                            writer.add_run_metadata(
                                run_metadata, 'step%d' % self.num_timesteps)
                        else:
                            summary, td_errors = self._train_step(
                                obses_t,
                                actions,
                                rewards,
                                obses_tp1,
                                obses_tp1,
                                dones,
                                weights,
                                sess=self.sess)
                        writer.add_summary(summary, self.num_timesteps)
                    else:
                        _, td_errors = self._train_step(obses_t,
                                                        actions,
                                                        rewards,
                                                        obses_tp1,
                                                        obses_tp1,
                                                        dones,
                                                        weights,
                                                        sess=self.sess)

                    if self.prioritized_replay:
                        new_priorities = np.abs(
                            td_errors) + self.prioritized_replay_eps
                        assert isinstance(self.replay_buffer,
                                          PrioritizedReplayBuffer)
                        self.replay_buffer.update_priorities(
                            batch_idxes, new_priorities)

                    callback.on_rollout_start()

                if can_sample and self.num_timesteps > self.learning_starts and \
                        self.num_timesteps % self.target_network_update_freq == 0:
                    # Update target network periodically.
                    self.update_target(sess=self.sess)

                if len(episode_rewards[-101:-1]) == 0:
                    mean_100ep_reward = -np.inf
                else:
                    mean_100ep_reward = round(
                        float(np.mean(episode_rewards[-101:-1])), 1)

                num_episodes = len(episode_rewards)
                if self.verbose >= 1 and done and log_interval is not None and len(
                        episode_rewards) % log_interval == 0:
                    logger.record_tabular("steps", self.num_timesteps)
                    logger.record_tabular("episodes", num_episodes)
                    if len(episode_successes) > 0:
                        logger.logkv("success rate",
                                     np.mean(episode_successes[-100:]))
                    logger.record_tabular("mean 100 episode reward",
                                          mean_100ep_reward)
                    logger.record_tabular(
                        "% time spent exploring",
                        int(100 * self.exploration.value(self.num_timesteps)))
                    logger.dump_tabular()

        callback.on_training_end()
        return self
コード例 #7
0
ファイル: ppo2.py プロジェクト: mradaideh/neorl
    def learn(self,
              total_timesteps,
              callback=None,
              log_interval=1,
              tb_log_name="PPO2",
              reset_num_timesteps=True):
        # Transform to callable if needed
        self.learning_rate = get_schedule_fn(self.learning_rate)
        self.cliprange = get_schedule_fn(self.cliprange)
        cliprange_vf = get_schedule_fn(self.cliprange_vf)

        new_tb_log = self._init_num_timesteps(reset_num_timesteps)
        callback = self._init_callback(callback)

        with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \
                as writer:
            self._setup_learn()

            t_first_start = time.time()
            n_updates = total_timesteps // self.n_batch

            callback.on_training_start(locals(), globals())

            for update in range(1, n_updates + 1):
                assert self.n_batch % self.nminibatches == 0, (
                    "The number of minibatches (`nminibatches`) "
                    "is not a factor of the total number of samples "
                    "collected per rollout (`n_batch`), "
                    "some samples won't be used.")
                batch_size = self.n_batch // self.nminibatches
                t_start = time.time()
                frac = 1.0 - (update - 1.0) / n_updates
                lr_now = self.learning_rate(frac)
                cliprange_now = self.cliprange(frac)
                cliprange_vf_now = cliprange_vf(frac)

                callback.on_rollout_start()
                # true_reward is the reward without discount
                rollout = self.runner.run(callback)
                # Unpack
                obs, returns, masks, actions, values, neglogpacs, states, ep_infos, true_reward = rollout

                callback.on_rollout_end()

                # Early stopping due to the callback
                if not self.runner.continue_training:
                    break

                self.ep_info_buf.extend(ep_infos)
                mb_loss_vals = []
                if states is None:  # nonrecurrent version
                    update_fac = max(
                        self.n_batch // self.nminibatches // self.noptepochs,
                        1)
                    inds = np.arange(self.n_batch)
                    for epoch_num in range(self.noptepochs):
                        np.random.shuffle(inds)
                        for start in range(0, self.n_batch, batch_size):
                            timestep = self.num_timesteps // update_fac + (
                                (epoch_num * self.n_batch + start) //
                                batch_size)
                            end = start + batch_size
                            mbinds = inds[start:end]
                            slices = (arr[mbinds]
                                      for arr in (obs, returns, masks, actions,
                                                  values, neglogpacs))
                            mb_loss_vals.append(
                                self._train_step(
                                    lr_now,
                                    cliprange_now,
                                    *slices,
                                    writer=writer,
                                    update=timestep,
                                    cliprange_vf=cliprange_vf_now))
                else:  # recurrent version
                    update_fac = max(
                        self.n_batch // self.nminibatches // self.noptepochs //
                        self.n_steps, 1)
                    assert self.n_envs % self.nminibatches == 0
                    env_indices = np.arange(self.n_envs)
                    flat_indices = np.arange(self.n_envs *
                                             self.n_steps).reshape(
                                                 self.n_envs, self.n_steps)
                    envs_per_batch = batch_size // self.n_steps
                    for epoch_num in range(self.noptepochs):
                        np.random.shuffle(env_indices)
                        for start in range(0, self.n_envs, envs_per_batch):
                            timestep = self.num_timesteps // update_fac + (
                                (epoch_num * self.n_envs + start) //
                                envs_per_batch)
                            end = start + envs_per_batch
                            mb_env_inds = env_indices[start:end]
                            mb_flat_inds = flat_indices[mb_env_inds].ravel()
                            slices = (arr[mb_flat_inds]
                                      for arr in (obs, returns, masks, actions,
                                                  values, neglogpacs))
                            mb_states = states[mb_env_inds]
                            mb_loss_vals.append(
                                self._train_step(
                                    lr_now,
                                    cliprange_now,
                                    *slices,
                                    update=timestep,
                                    writer=writer,
                                    states=mb_states,
                                    cliprange_vf=cliprange_vf_now))

                loss_vals = np.mean(mb_loss_vals, axis=0)
                t_now = time.time()
                fps = int(self.n_batch / (t_now - t_start))

                if writer is not None:
                    total_episode_reward_logger(
                        self.episode_reward,
                        true_reward.reshape((self.n_envs, self.n_steps)),
                        masks.reshape((self.n_envs, self.n_steps)), writer,
                        self.num_timesteps)

                if self.verbose >= 1 and (update % log_interval == 0
                                          or update == 1):
                    explained_var = explained_variance(values, returns)
                    logger.logkv("serial_timesteps", update * self.n_steps)
                    logger.logkv("n_updates", update)
                    logger.logkv("total_timesteps", self.num_timesteps)
                    logger.logkv("fps", fps)
                    logger.logkv("explained_variance", float(explained_var))
                    if len(self.ep_info_buf) > 0 and len(
                            self.ep_info_buf[0]) > 0:
                        logger.logkv(
                            'ep_reward_mean',
                            safe_mean([
                                ep_info['r'] for ep_info in self.ep_info_buf
                            ]))
                        logger.logkv(
                            'ep_len_mean',
                            safe_mean([
                                ep_info['l'] for ep_info in self.ep_info_buf
                            ]))
                    logger.logkv('time_elapsed', t_start - t_first_start)
                    for (loss_val, loss_name) in zip(loss_vals,
                                                     self.loss_names):
                        logger.logkv(loss_name, loss_val)
                    logger.dumpkvs()

            callback.on_training_end()
            return self
コード例 #8
0
ファイル: ppo2.py プロジェクト: mradaideh/neorl
    def setup_model(self):
        with SetVerbosity(self.verbose):

            assert issubclass(self.policy, ActorCriticPolicy), "Error: the input policy for the PPO2 model must be " \
                                                               "an instance of common.policies.ActorCriticPolicy."

            self.n_batch = self.n_envs * self.n_steps

            self.graph = tf.Graph()
            with self.graph.as_default():
                self.set_random_seed(self.seed)
                self.sess = tf_util.make_session(num_cpu=self.n_cpu_tf_sess,
                                                 graph=self.graph)

                n_batch_step = None
                n_batch_train = None
                if issubclass(self.policy, RecurrentActorCriticPolicy):
                    assert self.n_envs % self.nminibatches == 0, "For recurrent policies, "\
                        "the number of environments run in parallel should be a multiple of nminibatches."
                    n_batch_step = self.n_envs
                    n_batch_train = self.n_batch // self.nminibatches

                act_model = self.policy(self.sess,
                                        self.observation_space,
                                        self.action_space,
                                        self.n_envs,
                                        1,
                                        n_batch_step,
                                        reuse=False,
                                        **self.policy_kwargs)
                with tf.variable_scope(
                        "train_model",
                        reuse=True,
                        custom_getter=tf_util.outer_scope_getter(
                            "train_model")):
                    train_model = self.policy(self.sess,
                                              self.observation_space,
                                              self.action_space,
                                              self.n_envs // self.nminibatches,
                                              self.n_steps,
                                              n_batch_train,
                                              reuse=True,
                                              **self.policy_kwargs)

                with tf.variable_scope("loss", reuse=False):
                    self.action_ph = train_model.pdtype.sample_placeholder(
                        [None], name="action_ph")
                    self.advs_ph = tf.placeholder(tf.float32, [None],
                                                  name="advs_ph")
                    self.rewards_ph = tf.placeholder(tf.float32, [None],
                                                     name="rewards_ph")
                    self.old_neglog_pac_ph = tf.placeholder(
                        tf.float32, [None], name="old_neglog_pac_ph")
                    self.old_vpred_ph = tf.placeholder(tf.float32, [None],
                                                       name="old_vpred_ph")
                    self.learning_rate_ph = tf.placeholder(
                        tf.float32, [], name="learning_rate_ph")
                    self.clip_range_ph = tf.placeholder(tf.float32, [],
                                                        name="clip_range_ph")

                    neglogpac = train_model.proba_distribution.neglogp(
                        self.action_ph)
                    self.entropy = tf.reduce_mean(
                        train_model.proba_distribution.entropy())

                    vpred = train_model.value_flat

                    # Value function clipping: not present in the original PPO
                    if self.cliprange_vf is None:
                        # Default behavior (legacy from OpenAI baselines):
                        # use the same clipping as for the policy
                        self.clip_range_vf_ph = self.clip_range_ph
                        self.cliprange_vf = self.cliprange
                    elif isinstance(self.cliprange_vf,
                                    (float, int)) and self.cliprange_vf < 0:
                        # Original PPO implementation: no value function clipping
                        self.clip_range_vf_ph = None
                    else:
                        # Last possible behavior: clipping range
                        # specific to the value function
                        self.clip_range_vf_ph = tf.placeholder(
                            tf.float32, [], name="clip_range_vf_ph")

                    if self.clip_range_vf_ph is None:
                        # No clipping
                        vpred_clipped = train_model.value_flat
                    else:
                        # Clip the different between old and new value
                        # NOTE: this depends on the reward scaling
                        vpred_clipped = self.old_vpred_ph + \
                            tf.clip_by_value(train_model.value_flat - self.old_vpred_ph,
                                             - self.clip_range_vf_ph, self.clip_range_vf_ph)

                    vf_losses1 = tf.square(vpred - self.rewards_ph)
                    vf_losses2 = tf.square(vpred_clipped - self.rewards_ph)
                    self.vf_loss = .5 * tf.reduce_mean(
                        tf.maximum(vf_losses1, vf_losses2))

                    ratio = tf.exp(self.old_neglog_pac_ph - neglogpac)
                    pg_losses = -self.advs_ph * ratio
                    pg_losses2 = -self.advs_ph * tf.clip_by_value(
                        ratio, 1.0 - self.clip_range_ph,
                        1.0 + self.clip_range_ph)
                    self.pg_loss = tf.reduce_mean(
                        tf.maximum(pg_losses, pg_losses2))
                    self.approxkl = .5 * tf.reduce_mean(
                        tf.square(neglogpac - self.old_neglog_pac_ph))
                    self.clipfrac = tf.reduce_mean(
                        tf.cast(
                            tf.greater(tf.abs(ratio - 1.0),
                                       self.clip_range_ph), tf.float32))
                    loss = self.pg_loss - self.entropy * self.ent_coef + self.vf_loss * self.vf_coef

                    tf.summary.scalar('entropy_loss', self.entropy)
                    tf.summary.scalar('policy_gradient_loss', self.pg_loss)
                    tf.summary.scalar('value_function_loss', self.vf_loss)
                    tf.summary.scalar('approximate_kullback-leibler',
                                      self.approxkl)
                    tf.summary.scalar('clip_factor', self.clipfrac)
                    tf.summary.scalar('loss', loss)

                    with tf.variable_scope('model'):
                        self.params = tf.trainable_variables()
                        if self.full_tensorboard_log:
                            for var in self.params:
                                tf.summary.histogram(var.name, var)
                    grads = tf.gradients(loss, self.params)
                    if self.max_grad_norm is not None:
                        grads, _grad_norm = tf.clip_by_global_norm(
                            grads, self.max_grad_norm)
                    grads = list(zip(grads, self.params))
                trainer = tf.train.AdamOptimizer(
                    learning_rate=self.learning_rate_ph, epsilon=1e-5)
                self._train = trainer.apply_gradients(grads)

                self.loss_names = [
                    'policy_loss', 'value_loss', 'policy_entropy', 'approxkl',
                    'clipfrac'
                ]

                with tf.variable_scope("input_info", reuse=False):
                    tf.summary.scalar('discounted_rewards',
                                      tf.reduce_mean(self.rewards_ph))
                    tf.summary.scalar('learning_rate',
                                      tf.reduce_mean(self.learning_rate_ph))
                    tf.summary.scalar('advantage',
                                      tf.reduce_mean(self.advs_ph))
                    tf.summary.scalar('clip_range',
                                      tf.reduce_mean(self.clip_range_ph))
                    if self.clip_range_vf_ph is not None:
                        tf.summary.scalar(
                            'clip_range_vf',
                            tf.reduce_mean(self.clip_range_vf_ph))

                    tf.summary.scalar('old_neglog_action_probability',
                                      tf.reduce_mean(self.old_neglog_pac_ph))
                    tf.summary.scalar('old_value_pred',
                                      tf.reduce_mean(self.old_vpred_ph))

                    if self.full_tensorboard_log:
                        tf.summary.histogram('discounted_rewards',
                                             self.rewards_ph)
                        tf.summary.histogram('learning_rate',
                                             self.learning_rate_ph)
                        tf.summary.histogram('advantage', self.advs_ph)
                        tf.summary.histogram('clip_range', self.clip_range_ph)
                        tf.summary.histogram('old_neglog_action_probability',
                                             self.old_neglog_pac_ph)
                        tf.summary.histogram('old_value_pred',
                                             self.old_vpred_ph)
                        if tf_util.is_image(self.observation_space):
                            tf.summary.image('observation', train_model.obs_ph)
                        else:
                            tf.summary.histogram('observation',
                                                 train_model.obs_ph)

                self.train_model = train_model
                self.act_model = act_model
                self.step = act_model.step
                self.proba_step = act_model.proba_step
                self.value = act_model.value
                self.initial_state = act_model.initial_state
                tf.global_variables_initializer().run(session=self.sess)  # pylint: disable=E1101

                self.summary = tf.summary.merge_all()
コード例 #9
0
    def learn(self, total_timesteps, callback=None, log_interval=100, tb_log_name="ACER",
              reset_num_timesteps=True):

        new_tb_log = self._init_num_timesteps(reset_num_timesteps)
        callback = self._init_callback(callback)

        with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \
                as writer:
            self._setup_learn()

            self.learning_rate_schedule = Scheduler(initial_value=self.learning_rate, n_values=total_timesteps,
                                                    schedule=self.lr_schedule)

            episode_stats = EpisodeStats(self.n_steps, self.n_envs)

            if self.replay_ratio > 0:
                buffer = Buffer(env=self.env, n_steps=self.n_steps, size=self.buffer_size)
            else:
                buffer = None

            t_start = time.time()
            callback.on_training_start(locals(), globals())

            # n_batch samples, 1 on_policy call and multiple off-policy calls
            for steps in range(0, total_timesteps, self.n_batch):

                callback.on_rollout_start()

                enc_obs, obs, actions, rewards, mus, dones, masks = self.runner.run(callback)
                callback.update_locals(locals())
                callback.on_rollout_end()

                # Early stopping due to the callback
                if not self.runner.continue_training:
                    break

                episode_stats.feed(rewards, dones)

                if buffer is not None:
                    buffer.put(enc_obs, actions, rewards, mus, dones, masks)

                if writer is not None:
                    total_episode_reward_logger(self.episode_reward,
                                                rewards.reshape((self.n_envs, self.n_steps)),
                                                dones.reshape((self.n_envs, self.n_steps)),
                                                writer, self.num_timesteps)

                # reshape stuff correctly
                obs = obs.reshape(self.runner.batch_ob_shape)
                actions = actions.reshape([self.n_batch])
                rewards = rewards.reshape([self.n_batch])
                mus = mus.reshape([self.n_batch, self.n_act])
                dones = dones.reshape([self.n_batch])
                masks = masks.reshape([self.runner.batch_ob_shape[0]])

                names_ops, values_ops = self._train_step(obs, actions, rewards, dones, mus, self.initial_state, masks,
                                                         self.num_timesteps, writer)

                if self.verbose >= 1 and (int(steps / self.n_batch) % log_interval == 0):
                    logger.record_tabular("total_timesteps", self.num_timesteps)
                    logger.record_tabular("fps", int(steps / (time.time() - t_start)))
                    # IMP: In EpisodicLife env, during training, we get done=True at each loss of life,
                    # not just at the terminal state. Thus, this is mean until end of life, not end of episode.
                    # For true episode rewards, see the monitor files in the log folder.
                    logger.record_tabular("mean_episode_length", episode_stats.mean_length())
                    logger.record_tabular("mean_episode_reward", episode_stats.mean_reward())
                    for name, val in zip(names_ops, values_ops):
                        logger.record_tabular(name, float(val))
                    logger.dump_tabular()

                if (self.replay_ratio > 0 and
                    buffer is not None and
                    buffer.has_atleast(self.replay_start)):
                    samples_number = np.random.poisson(self.replay_ratio)
                    for _ in range(samples_number):
                        # get obs, actions, rewards, mus, dones from buffer.
                        obs, actions, rewards, mus, dones, masks = buffer.get()

                        # reshape stuff correctly
                        obs = obs.reshape(self.runner.batch_ob_shape)
                        actions = actions.reshape([self.n_batch])
                        rewards = rewards.reshape([self.n_batch])
                        mus = mus.reshape([self.n_batch, self.n_act])
                        dones = dones.reshape([self.n_batch])
                        masks = masks.reshape([self.runner.batch_ob_shape[0]])

                        self._train_step(obs, actions, rewards, dones, mus, self.initial_state, masks,
                                         self.num_timesteps)

        callback.on_training_end()

        return self
コード例 #10
0
    def setup_model(self):
        with SetVerbosity(self.verbose):

            assert issubclass(self.policy, ActorCriticPolicy), "Error: the input policy for the ACER model must be " \
                                                               "an instance of common.policies.ActorCriticPolicy."

            if isinstance(self.action_space, Discrete):
                self.n_act = self.action_space.n
                continuous = False
            elif isinstance(self.action_space, Box):
                # self.n_act = self.action_space.shape[-1]
                # continuous = True
                raise NotImplementedError("WIP: Acer does not support Continuous actions yet.")
            else:
                raise ValueError("Error: ACER does not work with {} actions space.".format(self.action_space))

            self.n_batch = self.n_envs * self.n_steps

            self.graph = tf.Graph()
            with self.graph.as_default():
                self.sess = tf_util.make_session(num_cpu=self.n_cpu_tf_sess, graph=self.graph)
                self.set_random_seed(self.seed)
                n_batch_step = None
                if issubclass(self.policy, RecurrentActorCriticPolicy):
                    n_batch_step = self.n_envs
                n_batch_train = self.n_envs * (self.n_steps + 1)

                step_model = self.policy(self.sess, self.observation_space, self.action_space, self.n_envs, 1,
                                         n_batch_step, reuse=False, **self.policy_kwargs)

                self.params = tf_util.get_trainable_vars("model")

                with tf.variable_scope("train_model", reuse=True,
                                       custom_getter=tf_util.outer_scope_getter("train_model")):
                    train_model = self.policy(self.sess, self.observation_space, self.action_space, self.n_envs,
                                              self.n_steps + 1, n_batch_train, reuse=True, **self.policy_kwargs)

                with tf.variable_scope("moving_average"):
                    # create averaged model
                    ema = tf.train.ExponentialMovingAverage(self.alpha)
                    ema_apply_op = ema.apply(self.params)

                    def custom_getter(getter, name, *args, **kwargs):
                        name = name.replace("polyak_model/", "")
                        val = ema.average(getter(name, *args, **kwargs))
                        return val

                with tf.variable_scope("polyak_model", reuse=True, custom_getter=custom_getter):
                    self.polyak_model = polyak_model = self.policy(self.sess, self.observation_space, self.action_space,
                                                                   self.n_envs, self.n_steps + 1,
                                                                   self.n_envs * (self.n_steps + 1), reuse=True,
                                                                   **self.policy_kwargs)

                with tf.variable_scope("loss", reuse=False):
                    self.done_ph = tf.placeholder(tf.float32, [self.n_batch])  # dones
                    self.reward_ph = tf.placeholder(tf.float32, [self.n_batch])  # rewards, not returns
                    self.mu_ph = tf.placeholder(tf.float32, [self.n_batch, self.n_act])  # mu's
                    self.action_ph = train_model.pdtype.sample_placeholder([self.n_batch])
                    self.learning_rate_ph = tf.placeholder(tf.float32, [])
                    eps = 1e-6

                    # Notation: (var) = batch variable, (var)s = sequence variable,
                    # (var)_i = variable index by action at step i
                    # shape is [n_envs * (n_steps + 1)]
                    if continuous:
                        value = train_model.value_flat
                    else:
                        value = tf.reduce_sum(train_model.policy_proba * train_model.q_value, axis=-1)

                    rho, rho_i_ = None, None
                    if continuous:
                        action_ = strip(train_model.proba_distribution.sample(), self.n_envs, self.n_steps)
                        distribution_f = tf.contrib.distributions.MultivariateNormalDiag(
                            loc=strip(train_model.proba_distribution.mean, self.n_envs, self.n_steps),
                            scale_diag=strip(train_model.proba_distribution.logstd, self.n_envs, self.n_steps))
                        f_polyak = tf.contrib.distributions.MultivariateNormalDiag(
                            loc=strip(polyak_model.proba_distribution.mean, self.n_envs, self.n_steps),
                            scale_diag=strip(polyak_model.proba_distribution.logstd, self.n_envs, self.n_steps))

                        f_i = distribution_f.prob(self.action_ph)
                        f_i_ = distribution_f.prob(action_)
                        f_polyak_i = f_polyak.prob(self.action_ph)
                        phi_i = strip(train_model.proba_distribution.mean, self.n_envs, self.n_steps)

                        q_value = strip(train_model.value_fn, self.n_envs, self.n_steps)
                        q_i = q_value[:, 0]

                        rho_i = tf.reshape(f_i, [-1, 1]) / (self.mu_ph + eps)
                        rho_i_ = tf.reshape(f_i_, [-1, 1]) / (self.mu_ph + eps)

                        qret = q_retrace(self.reward_ph, self.done_ph, q_i, value, tf.pow(rho_i, 1 / self.n_act),
                                         self.n_envs, self.n_steps, self.gamma)
                    else:
                        # strip off last step
                        # f is a distribution, chosen to be Gaussian distributions
                        # with fixed diagonal covariance and mean \phi(x)
                        # in the paper
                        distribution_f, f_polyak, q_value = \
                            map(lambda variables: strip(variables, self.n_envs, self.n_steps),
                                [train_model.policy_proba, polyak_model.policy_proba, train_model.q_value])

                        # Get pi and q values for actions taken
                        f_i = get_by_index(distribution_f, self.action_ph)
                        f_i_ = distribution_f
                        phi_i = distribution_f
                        f_polyak_i = f_polyak

                        q_i = get_by_index(q_value, self.action_ph)

                        # Compute ratios for importance truncation
                        rho = distribution_f / (self.mu_ph + eps)
                        rho_i = get_by_index(rho, self.action_ph)

                        # Calculate Q_retrace targets
                        qret = q_retrace(self.reward_ph, self.done_ph, q_i, value, rho_i, self.n_envs, self.n_steps,
                                         self.gamma)

                    # Calculate losses
                    # Entropy
                    entropy = tf.reduce_sum(train_model.proba_distribution.entropy())

                    # Policy Gradient loss, with truncated importance sampling & bias correction
                    value = strip(value, self.n_envs, self.n_steps, True)
                    # check_shape([qret, value, rho_i, f_i], [[self.n_envs * self.n_steps]] * 4)
                    # check_shape([rho, distribution_f, q_value], [[self.n_envs * self.n_steps, self.n_act]] * 2)

                    # Truncated importance sampling
                    adv = qret - value
                    log_f = tf.log(f_i + eps)
                    # [n_envs * n_steps]
                    gain_f = log_f * tf.stop_gradient(adv * tf.minimum(self.correction_term, rho_i))
                    loss_f = -tf.reduce_mean(gain_f)

                    # Bias correction for the truncation
                    adv_bc = (q_value - tf.reshape(value, [self.n_envs * self.n_steps, 1]))  # [n_envs * n_steps, n_act]

                    # check_shape([adv_bc, log_f_bc], [[self.n_envs * self.n_steps, self.n_act]] * 2)
                    if continuous:
                        gain_bc = tf.stop_gradient(adv_bc *
                                                   tf.nn.relu(1.0 - (self.correction_term / (rho_i_ + eps))) *
                                                   f_i_)
                    else:
                        log_f_bc = tf.log(f_i_ + eps)  # / (f_old + eps)
                        gain_bc = tf.reduce_sum(log_f_bc *
                                                tf.stop_gradient(
                                                    adv_bc *
                                                    tf.nn.relu(1.0 - (self.correction_term / (rho + eps))) *
                                                    f_i_),
                                                axis=1)
                    # IMP: This is sum, as expectation wrt f
                    loss_bc = -tf.reduce_mean(gain_bc)

                    loss_policy = loss_f + loss_bc

                    # Value/Q function loss, and explained variance
                    check_shape([qret, q_i], [[self.n_envs * self.n_steps]] * 2)
                    explained_variance = q_explained_variance(tf.reshape(q_i, [self.n_envs, self.n_steps]),
                                                              tf.reshape(qret, [self.n_envs, self.n_steps]))
                    loss_q = tf.reduce_mean(tf.square(tf.stop_gradient(qret) - q_i) * 0.5)

                    # Net loss
                    check_shape([loss_policy, loss_q, entropy], [[]] * 3)
                    loss = loss_policy + self.q_coef * loss_q - self.ent_coef * entropy

                    tf.summary.scalar('entropy_loss', entropy)
                    tf.summary.scalar('policy_gradient_loss', loss_policy)
                    tf.summary.scalar('value_function_loss', loss_q)
                    tf.summary.scalar('loss', loss)

                    norm_grads_q, norm_grads_policy, avg_norm_grads_f = None, None, None
                    avg_norm_k, avg_norm_g, avg_norm_k_dot_g, avg_norm_adj = None, None, None, None
                    if self.trust_region:
                        # [n_envs * n_steps, n_act]
                        grad = tf.gradients(- (loss_policy - self.ent_coef * entropy) * self.n_steps * self.n_envs,
                                            phi_i)
                        # [n_envs * n_steps, n_act] # Directly computed gradient of KL divergence wrt f
                        kl_grad = - f_polyak_i / (f_i_ + eps)
                        k_dot_g = tf.reduce_sum(kl_grad * grad, axis=-1)
                        adj = tf.maximum(0.0, (tf.reduce_sum(kl_grad * grad, axis=-1) - self.delta) / (
                                tf.reduce_sum(tf.square(kl_grad), axis=-1) + eps))  # [n_envs * n_steps]

                        # Calculate stats (before doing adjustment) for logging.
                        avg_norm_k = avg_norm(kl_grad)
                        avg_norm_g = avg_norm(grad)
                        avg_norm_k_dot_g = tf.reduce_mean(tf.abs(k_dot_g))
                        avg_norm_adj = tf.reduce_mean(tf.abs(adj))

                        grad = grad - tf.reshape(adj, [self.n_envs * self.n_steps, 1]) * kl_grad
                        # These are turst region adjusted gradients wrt f ie statistics of policy pi
                        grads_f = -grad / (self.n_envs * self.n_steps)
                        grads_policy = tf.gradients(f_i_, self.params, grads_f)
                        grads_q = tf.gradients(loss_q * self.q_coef, self.params)
                        grads = [gradient_add(g1, g2, param, verbose=self.verbose)
                                 for (g1, g2, param) in zip(grads_policy, grads_q, self.params)]

                        avg_norm_grads_f = avg_norm(grads_f) * (self.n_steps * self.n_envs)
                        norm_grads_q = tf.global_norm(grads_q)
                        norm_grads_policy = tf.global_norm(grads_policy)
                    else:
                        grads = tf.gradients(loss, self.params)

                    norm_grads = None
                    if self.max_grad_norm is not None:
                        grads, norm_grads = tf.clip_by_global_norm(grads, self.max_grad_norm)
                    grads = list(zip(grads, self.params))

                with tf.variable_scope("input_info", reuse=False):
                    tf.summary.scalar('rewards', tf.reduce_mean(self.reward_ph))
                    tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate))
                    tf.summary.scalar('advantage', tf.reduce_mean(adv))
                    tf.summary.scalar('action_probability', tf.reduce_mean(self.mu_ph))

                    if self.full_tensorboard_log:
                        tf.summary.histogram('rewards', self.reward_ph)
                        tf.summary.histogram('learning_rate', self.learning_rate)
                        tf.summary.histogram('advantage', adv)
                        tf.summary.histogram('action_probability', self.mu_ph)
                        if tf_util.is_image(self.observation_space):
                            tf.summary.image('observation', train_model.obs_ph)
                        else:
                            tf.summary.histogram('observation', train_model.obs_ph)

                trainer = tf.train.RMSPropOptimizer(learning_rate=self.learning_rate_ph, decay=self.rprop_alpha,
                                                    epsilon=self.rprop_epsilon)
                _opt_op = trainer.apply_gradients(grads)

                # so when you call _train, you first do the gradient step, then you apply ema
                with tf.control_dependencies([_opt_op]):
                    _train = tf.group(ema_apply_op)

                # Ops/Summaries to run, and their names for logging
                assert norm_grads is not None
                run_ops = [_train, loss, loss_q, entropy, loss_policy, loss_f, loss_bc, explained_variance, norm_grads]
                names_ops = ['loss', 'loss_q', 'entropy', 'loss_policy', 'loss_f', 'loss_bc', 'explained_variance',
                             'norm_grads']
                if self.trust_region:
                    self.run_ops = run_ops + [norm_grads_q, norm_grads_policy, avg_norm_grads_f, avg_norm_k, avg_norm_g,
                                              avg_norm_k_dot_g, avg_norm_adj]
                    self.names_ops = names_ops + ['norm_grads_q', 'norm_grads_policy', 'avg_norm_grads_f', 'avg_norm_k',
                                                  'avg_norm_g', 'avg_norm_k_dot_g', 'avg_norm_adj']

                self.train_model = train_model
                self.step_model = step_model
                self.step = step_model.step
                self.proba_step = step_model.proba_step
                self.initial_state = step_model.initial_state

                tf.global_variables_initializer().run(session=self.sess)

                self.summary = tf.summary.merge_all()