def learn(self, total_timesteps, callback=None, log_interval=100, tb_log_name="A2C", reset_num_timesteps=True): new_tb_log = self._init_num_timesteps(reset_num_timesteps) callback = self._init_callback(callback) with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \ as writer: self._setup_learn() self.learning_rate_schedule = Scheduler(initial_value=self.learning_rate, n_values=total_timesteps, schedule=self.lr_schedule) t_start = time.time() callback.on_training_start(locals(), globals()) for update in range(1, total_timesteps // self.n_batch + 1): callback.on_rollout_start() # true_reward is the reward without discount rollout = self.runner.run(callback) # unpack obs, states, rewards, masks, actions, values, ep_infos, true_reward = rollout callback.update_locals(locals()) callback.on_rollout_end() # Early stopping due to the callback if not self.runner.continue_training: break self.ep_info_buf.extend(ep_infos) _, value_loss, policy_entropy = self._train_step(obs, states, rewards, masks, actions, values, self.num_timesteps // self.n_batch, writer) n_seconds = time.time() - t_start fps = int((update * self.n_batch) / n_seconds) if writer is not None: total_episode_reward_logger(self.episode_reward, true_reward.reshape((self.n_envs, self.n_steps)), masks.reshape((self.n_envs, self.n_steps)), writer, self.num_timesteps) if self.verbose >= 1 and (update % log_interval == 0 or update == 1): explained_var = explained_variance(values, rewards) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", self.num_timesteps) logger.record_tabular("fps", fps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(explained_var)) if len(self.ep_info_buf) > 0 and len(self.ep_info_buf[0]) > 0: logger.logkv('ep_reward_mean', safe_mean([ep_info['r'] for ep_info in self.ep_info_buf])) logger.logkv('ep_len_mean', safe_mean([ep_info['l'] for ep_info in self.ep_info_buf])) logger.dump_tabular() callback.on_training_end() return self
def setup_model(self): with SetVerbosity(self.verbose): assert not isinstance(self.action_space, gym.spaces.Box), \ "Error: DQN cannot output a gym.spaces.Box action space." # If the policy is wrap in functool.partial (e.g. to disable dueling) # unwrap it to check the class type if isinstance(self.policy, partial): test_policy = self.policy.func else: test_policy = self.policy assert issubclass(test_policy, DQNPolicy), "Error: the input policy for the DQN model must be " \ "an instance of DQNPolicy." self.graph = tf.Graph() with self.graph.as_default(): self.set_random_seed(self.seed) self.sess = tf_util.make_session(num_cpu=self.n_cpu_tf_sess, graph=self.graph) optimizer = tf.train.AdamOptimizer( learning_rate=self.learning_rate) self.act, self._train_step, self.update_target, self.step_model = build_train( q_func=partial(self.policy, **self.policy_kwargs), ob_space=self.observation_space, ac_space=self.action_space, optimizer=optimizer, gamma=self.gamma, grad_norm_clipping=10, param_noise=self.param_noise, sess=self.sess, full_tensorboard_log=self.full_tensorboard_log, double_q=self.double_q) self.proba_step = self.step_model.proba_step self.params = tf_util.get_trainable_vars("deepq") # Initialize the parameters and copy them to the target network. tf_util.initialize(self.sess) self.update_target(sess=self.sess) self.summary = tf.summary.merge_all()
def setup_model(self): with SetVerbosity(self.verbose): assert issubclass(self.policy, ActorCriticPolicy), "Error: the input policy for the A2C model must be an " \ "instance of common.policies.ActorCriticPolicy." self.graph = tf.Graph() with self.graph.as_default(): self.set_random_seed(self.seed) self.sess = tf_util.make_session(num_cpu=self.n_cpu_tf_sess, graph=self.graph) self.n_batch = self.n_envs * self.n_steps n_batch_step = None n_batch_train = None if issubclass(self.policy, RecurrentActorCriticPolicy): n_batch_step = self.n_envs n_batch_train = self.n_envs * self.n_steps step_model = self.policy(self.sess, self.observation_space, self.action_space, self.n_envs, 1, n_batch_step, reuse=False, **self.policy_kwargs) with tf.variable_scope( "train_model", reuse=True, custom_getter=tf_util.outer_scope_getter( "train_model")): train_model = self.policy(self.sess, self.observation_space, self.action_space, self.n_envs, self.n_steps, n_batch_train, reuse=True, **self.policy_kwargs) with tf.variable_scope("loss", reuse=False): self.actions_ph = train_model.pdtype.sample_placeholder( [None], name="action_ph") self.advs_ph = tf.placeholder(tf.float32, [None], name="advs_ph") self.rewards_ph = tf.placeholder(tf.float32, [None], name="rewards_ph") self.learning_rate_ph = tf.placeholder( tf.float32, [], name="learning_rate_ph") neglogpac = train_model.proba_distribution.neglogp( self.actions_ph) self.entropy = tf.reduce_mean( train_model.proba_distribution.entropy()) self.pg_loss = tf.reduce_mean(self.advs_ph * neglogpac) self.vf_loss = mse(tf.squeeze(train_model.value_flat), self.rewards_ph) # https://arxiv.org/pdf/1708.04782.pdf#page=9, https://arxiv.org/pdf/1602.01783.pdf#page=4 # and https://github.com/dennybritz/reinforcement-learning/issues/34 # suggest to add an entropy component in order to improve exploration. loss = self.pg_loss - self.entropy * self.ent_coef + self.vf_loss * self.vf_coef tf.summary.scalar('entropy_loss', self.entropy) tf.summary.scalar('policy_gradient_loss', self.pg_loss) tf.summary.scalar('value_function_loss', self.vf_loss) tf.summary.scalar('loss', loss) self.params = tf_util.get_trainable_vars("model") grads = tf.gradients(loss, self.params) if self.max_grad_norm is not None: grads, _ = tf.clip_by_global_norm( grads, self.max_grad_norm) grads = list(zip(grads, self.params)) with tf.variable_scope("input_info", reuse=False): tf.summary.scalar('discounted_rewards', tf.reduce_mean(self.rewards_ph)) tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate_ph)) tf.summary.scalar('advantage', tf.reduce_mean(self.advs_ph)) if self.full_tensorboard_log: tf.summary.histogram('discounted_rewards', self.rewards_ph) tf.summary.histogram('learning_rate', self.learning_rate_ph) tf.summary.histogram('advantage', self.advs_ph) if tf_util.is_image(self.observation_space): tf.summary.image('observation', train_model.obs_ph) else: tf.summary.histogram('observation', train_model.obs_ph) trainer = tf.train.RMSPropOptimizer( learning_rate=self.learning_rate_ph, decay=self.alpha, epsilon=self.epsilon, momentum=self.momentum) self.apply_backprop = trainer.apply_gradients(grads) self.train_model = train_model self.step_model = step_model self.step = step_model.step self.proba_step = step_model.proba_step self.value = step_model.value self.initial_state = step_model.initial_state tf.global_variables_initializer().run(session=self.sess) self.summary = tf.summary.merge_all()
def learn(self, total_timesteps, callback=None, log_interval=100, tb_log_name="ACKTR", reset_num_timesteps=True): new_tb_log = self._init_num_timesteps(reset_num_timesteps) callback = self._init_callback(callback) with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \ as writer: self._setup_learn() self.n_batch = self.n_envs * self.n_steps self.learning_rate_schedule = Scheduler( initial_value=self.learning_rate, n_values=total_timesteps, schedule=self.lr_schedule) # FIFO queue of the q_runner thread is closed at the end of the learn function. # As a result, it needs to be redefinied at every call with self.graph.as_default(): with tf.variable_scope( "kfac_apply", reuse=self.trained, custom_getter=tf_util.outer_scope_getter( "kfac_apply")): # Some of the variables are not in a scope when they are create # so we make a note of any previously uninitialized variables tf_vars = tf.global_variables() is_uninitialized = self.sess.run( [tf.is_variable_initialized(var) for var in tf_vars]) old_uninitialized_vars = [ v for (v, f) in zip(tf_vars, is_uninitialized) if not f ] self.train_op, self.q_runner = self.optim.apply_gradients( list(zip(self.grads_check, self.params))) # then we check for new uninitialized variables and initialize them tf_vars = tf.global_variables() is_uninitialized = self.sess.run( [tf.is_variable_initialized(var) for var in tf_vars]) new_uninitialized_vars = [ v for (v, f) in zip(tf_vars, is_uninitialized) if not f and v not in old_uninitialized_vars ] if len(new_uninitialized_vars) != 0: self.sess.run( tf.variables_initializer(new_uninitialized_vars)) self.trained = True t_start = time.time() coord = tf.train.Coordinator() if self.q_runner is not None: enqueue_threads = self.q_runner.create_threads(self.sess, coord=coord, start=True) else: enqueue_threads = [] callback.on_training_start(locals(), globals()) for update in range(1, total_timesteps // self.n_batch + 1): callback.on_rollout_start() # pytype:disable=bad-unpacking # true_reward is the reward without discount if isinstance(self.runner, PPO2Runner): # We are using GAE rollout = self.runner.run(callback) obs, returns, masks, actions, values, _, states, ep_infos, true_reward = rollout else: rollout = self.runner.run(callback) obs, states, returns, masks, actions, values, ep_infos, true_reward = rollout # pytype:enable=bad-unpacking callback.update_locals(locals()) callback.on_rollout_end() # Early stopping due to the callback if not self.runner.continue_training: break self.ep_info_buf.extend(ep_infos) policy_loss, value_loss, policy_entropy = self._train_step( obs, states, returns, masks, actions, values, self.num_timesteps // (self.n_batch + 1), writer) n_seconds = time.time() - t_start fps = int((update * self.n_batch) / n_seconds) if writer is not None: total_episode_reward_logger( self.episode_reward, true_reward.reshape((self.n_envs, self.n_steps)), masks.reshape((self.n_envs, self.n_steps)), writer, self.num_timesteps) if self.verbose >= 1 and (update % log_interval == 0 or update == 1): explained_var = explained_variance(values, returns) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", self.num_timesteps) logger.record_tabular("fps", fps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("policy_loss", float(policy_loss)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(explained_var)) if len(self.ep_info_buf) > 0 and len( self.ep_info_buf[0]) > 0: logger.logkv( 'ep_reward_mean', safe_mean([ ep_info['r'] for ep_info in self.ep_info_buf ])) logger.logkv( 'ep_len_mean', safe_mean([ ep_info['l'] for ep_info in self.ep_info_buf ])) logger.dump_tabular() coord.request_stop() coord.join(enqueue_threads) callback.on_training_end() return self
def setup_model(self): with SetVerbosity(self.verbose): assert issubclass(self.policy, ActorCriticPolicy), "Error: the input policy for the ACKTR model must be " \ "an instance of common.policies.ActorCriticPolicy." # Enable continuous actions tricks (normalized advantage) self.continuous_actions = isinstance(self.action_space, Box) self.graph = tf.Graph() with self.graph.as_default(): self.set_random_seed(self.seed) self.sess = tf_util.make_session(num_cpu=self.n_cpu_tf_sess, graph=self.graph) n_batch_step = None n_batch_train = None if issubclass(self.policy, RecurrentActorCriticPolicy): n_batch_step = self.n_envs n_batch_train = self.n_envs * self.n_steps step_model = self.policy(self.sess, self.observation_space, self.action_space, self.n_envs, 1, n_batch_step, reuse=False, **self.policy_kwargs) self.params = params = tf_util.get_trainable_vars("model") with tf.variable_scope( "train_model", reuse=True, custom_getter=tf_util.outer_scope_getter( "train_model")): train_model = self.policy(self.sess, self.observation_space, self.action_space, self.n_envs, self.n_steps, n_batch_train, reuse=True, **self.policy_kwargs) with tf.variable_scope( "loss", reuse=False, custom_getter=tf_util.outer_scope_getter("loss")): self.advs_ph = advs_ph = tf.placeholder(tf.float32, [None]) self.rewards_ph = rewards_ph = tf.placeholder( tf.float32, [None]) self.learning_rate_ph = learning_rate_ph = tf.placeholder( tf.float32, []) self.actions_ph = train_model.pdtype.sample_placeholder( [None]) neg_log_prob = train_model.proba_distribution.neglogp( self.actions_ph) # training loss pg_loss = tf.reduce_mean(advs_ph * neg_log_prob) self.entropy = entropy = tf.reduce_mean( train_model.proba_distribution.entropy()) self.pg_loss = pg_loss = pg_loss - self.ent_coef * entropy self.vf_loss = vf_loss = mse( tf.squeeze(train_model.value_fn), rewards_ph) train_loss = pg_loss + self.vf_coef * vf_loss # Fisher loss construction self.pg_fisher = pg_fisher_loss = -tf.reduce_mean( neg_log_prob) sample_net = train_model.value_fn + tf.random_normal( tf.shape(train_model.value_fn)) self.vf_fisher = vf_fisher_loss = -self.vf_fisher_coef * tf.reduce_mean( tf.pow( train_model.value_fn - tf.stop_gradient(sample_net), 2)) self.joint_fisher = pg_fisher_loss + vf_fisher_loss tf.summary.scalar('entropy_loss', self.entropy) tf.summary.scalar('policy_gradient_loss', pg_loss) tf.summary.scalar('policy_gradient_fisher_loss', pg_fisher_loss) tf.summary.scalar('value_function_loss', self.vf_loss) tf.summary.scalar('value_function_fisher_loss', vf_fisher_loss) tf.summary.scalar('loss', train_loss) self.grads_check = tf.gradients(train_loss, params) with tf.variable_scope("input_info", reuse=False): tf.summary.scalar('discounted_rewards', tf.reduce_mean(self.rewards_ph)) tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate_ph)) tf.summary.scalar('advantage', tf.reduce_mean(self.advs_ph)) if self.full_tensorboard_log: tf.summary.histogram('discounted_rewards', self.rewards_ph) tf.summary.histogram('learning_rate', self.learning_rate_ph) tf.summary.histogram('advantage', self.advs_ph) if tf_util.is_image(self.observation_space): tf.summary.image('observation', train_model.obs_ph) else: tf.summary.histogram('observation', train_model.obs_ph) with tf.variable_scope( "kfac", reuse=False, custom_getter=tf_util.outer_scope_getter("kfac")): with tf.device('/gpu:0'): self.optim = optim = kfac.KfacOptimizer( learning_rate=learning_rate_ph, clip_kl=self.kfac_clip, momentum=0.9, kfac_update=self.kfac_update, epsilon=0.01, stats_decay=0.99, async_eigen_decomp=self.async_eigen_decomp, cold_iter=10, max_grad_norm=self.max_grad_norm, verbose=self.verbose) optim.compute_and_apply_stats(self.joint_fisher, var_list=params) self.train_model = train_model self.step_model = step_model self.step = step_model.step self.proba_step = step_model.proba_step self.value = step_model.value self.initial_state = step_model.initial_state tf.global_variables_initializer().run(session=self.sess) self.summary = tf.summary.merge_all()
def learn(self, total_timesteps, callback=None, log_interval=100, tb_log_name="DQN", reset_num_timesteps=True, replay_wrapper=None): new_tb_log = self._init_num_timesteps(reset_num_timesteps) callback = self._init_callback(callback) with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \ as writer: self._setup_learn() # Create the replay buffer if self.prioritized_replay: self.replay_buffer = PrioritizedReplayBuffer( self.buffer_size, alpha=self.prioritized_replay_alpha) if self.prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = total_timesteps else: prioritized_replay_beta_iters = self.prioritized_replay_beta_iters self.beta_schedule = LinearSchedule( prioritized_replay_beta_iters, initial_p=self.prioritized_replay_beta0, final_p=1.0) else: self.replay_buffer = ReplayBuffer(self.buffer_size) self.beta_schedule = None if replay_wrapper is not None: assert not self.prioritized_replay, "Prioritized replay buffer is not supported by HER" self.replay_buffer = replay_wrapper(self.replay_buffer) # Create the schedule for exploration starting from 1. self.exploration = LinearSchedule( schedule_timesteps=int(self.exploration_fraction * total_timesteps), initial_p=self.exploration_initial_eps, final_p=self.exploration_final_eps) episode_rewards = [0.0] episode_successes = [] callback.on_training_start(locals(), globals()) callback.on_rollout_start() reset = True obs = self.env.reset() # Retrieve unnormalized observation for saving into the buffer if self._vec_normalize_env is not None: obs_ = self._vec_normalize_env.get_original_obs().squeeze() for _ in range(total_timesteps): # Take action and update exploration to the newest value kwargs = {} if not self.param_noise: update_eps = self.exploration.value(self.num_timesteps) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = \ -np.log(1. - self.exploration.value(self.num_timesteps) + self.exploration.value(self.num_timesteps) / float(self.env.action_space.n)) kwargs['reset'] = reset kwargs[ 'update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True with self.sess.as_default(): action = self.act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action = action reset = False new_obs, rew, done, info = self.env.step(env_action) self.num_timesteps += 1 # Stop training if return value is False callback.update_locals(locals()) if callback.on_step() is False: break # Store only the unnormalized version if self._vec_normalize_env is not None: new_obs_ = self._vec_normalize_env.get_original_obs( ).squeeze() reward_ = self._vec_normalize_env.get_original_reward( ).squeeze() else: # Avoid changing the original ones obs_, new_obs_, reward_ = obs, new_obs, rew # Store transition in the replay buffer. self.replay_buffer_add(obs_, action, reward_, new_obs_, done, info) obs = new_obs # Save the unnormalized observation if self._vec_normalize_env is not None: obs_ = new_obs_ if writer is not None: ep_rew = np.array([reward_]).reshape((1, -1)) ep_done = np.array([done]).reshape((1, -1)) tf_util.total_episode_reward_logger( self.episode_reward, ep_rew, ep_done, writer, self.num_timesteps) episode_rewards[-1] += reward_ if done: maybe_is_success = info.get('is_success') if maybe_is_success is not None: episode_successes.append(float(maybe_is_success)) if not isinstance(self.env, VecEnv): obs = self.env.reset() episode_rewards.append(0.0) reset = True # Do not train if the warmup phase is not over # or if there are not enough samples in the replay buffer can_sample = self.replay_buffer.can_sample(self.batch_size) if can_sample and self.num_timesteps > self.learning_starts \ and self.num_timesteps % self.train_freq == 0: callback.on_rollout_end() # Minimize the error in Bellman's equation on a batch sampled from replay buffer. # pytype:disable=bad-unpacking if self.prioritized_replay: assert self.beta_schedule is not None, \ "BUG: should be LinearSchedule when self.prioritized_replay True" experience = self.replay_buffer.sample( self.batch_size, beta=self.beta_schedule.value(self.num_timesteps), env=self._vec_normalize_env) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = self.replay_buffer.sample( self.batch_size, env=self._vec_normalize_env) weights, batch_idxes = np.ones_like(rewards), None # pytype:enable=bad-unpacking if writer is not None: # run loss backprop with summary, but once every 100 steps save the metadata # (memory, compute time, ...) if (1 + self.num_timesteps) % 100 == 0: run_options = tf.RunOptions( trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() summary, td_errors = self._train_step( obses_t, actions, rewards, obses_tp1, obses_tp1, dones, weights, sess=self.sess, options=run_options, run_metadata=run_metadata) writer.add_run_metadata( run_metadata, 'step%d' % self.num_timesteps) else: summary, td_errors = self._train_step( obses_t, actions, rewards, obses_tp1, obses_tp1, dones, weights, sess=self.sess) writer.add_summary(summary, self.num_timesteps) else: _, td_errors = self._train_step(obses_t, actions, rewards, obses_tp1, obses_tp1, dones, weights, sess=self.sess) if self.prioritized_replay: new_priorities = np.abs( td_errors) + self.prioritized_replay_eps assert isinstance(self.replay_buffer, PrioritizedReplayBuffer) self.replay_buffer.update_priorities( batch_idxes, new_priorities) callback.on_rollout_start() if can_sample and self.num_timesteps > self.learning_starts and \ self.num_timesteps % self.target_network_update_freq == 0: # Update target network periodically. self.update_target(sess=self.sess) if len(episode_rewards[-101:-1]) == 0: mean_100ep_reward = -np.inf else: mean_100ep_reward = round( float(np.mean(episode_rewards[-101:-1])), 1) num_episodes = len(episode_rewards) if self.verbose >= 1 and done and log_interval is not None and len( episode_rewards) % log_interval == 0: logger.record_tabular("steps", self.num_timesteps) logger.record_tabular("episodes", num_episodes) if len(episode_successes) > 0: logger.logkv("success rate", np.mean(episode_successes[-100:])) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.record_tabular( "% time spent exploring", int(100 * self.exploration.value(self.num_timesteps))) logger.dump_tabular() callback.on_training_end() return self
def learn(self, total_timesteps, callback=None, log_interval=1, tb_log_name="PPO2", reset_num_timesteps=True): # Transform to callable if needed self.learning_rate = get_schedule_fn(self.learning_rate) self.cliprange = get_schedule_fn(self.cliprange) cliprange_vf = get_schedule_fn(self.cliprange_vf) new_tb_log = self._init_num_timesteps(reset_num_timesteps) callback = self._init_callback(callback) with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \ as writer: self._setup_learn() t_first_start = time.time() n_updates = total_timesteps // self.n_batch callback.on_training_start(locals(), globals()) for update in range(1, n_updates + 1): assert self.n_batch % self.nminibatches == 0, ( "The number of minibatches (`nminibatches`) " "is not a factor of the total number of samples " "collected per rollout (`n_batch`), " "some samples won't be used.") batch_size = self.n_batch // self.nminibatches t_start = time.time() frac = 1.0 - (update - 1.0) / n_updates lr_now = self.learning_rate(frac) cliprange_now = self.cliprange(frac) cliprange_vf_now = cliprange_vf(frac) callback.on_rollout_start() # true_reward is the reward without discount rollout = self.runner.run(callback) # Unpack obs, returns, masks, actions, values, neglogpacs, states, ep_infos, true_reward = rollout callback.on_rollout_end() # Early stopping due to the callback if not self.runner.continue_training: break self.ep_info_buf.extend(ep_infos) mb_loss_vals = [] if states is None: # nonrecurrent version update_fac = max( self.n_batch // self.nminibatches // self.noptepochs, 1) inds = np.arange(self.n_batch) for epoch_num in range(self.noptepochs): np.random.shuffle(inds) for start in range(0, self.n_batch, batch_size): timestep = self.num_timesteps // update_fac + ( (epoch_num * self.n_batch + start) // batch_size) end = start + batch_size mbinds = inds[start:end] slices = (arr[mbinds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mb_loss_vals.append( self._train_step( lr_now, cliprange_now, *slices, writer=writer, update=timestep, cliprange_vf=cliprange_vf_now)) else: # recurrent version update_fac = max( self.n_batch // self.nminibatches // self.noptepochs // self.n_steps, 1) assert self.n_envs % self.nminibatches == 0 env_indices = np.arange(self.n_envs) flat_indices = np.arange(self.n_envs * self.n_steps).reshape( self.n_envs, self.n_steps) envs_per_batch = batch_size // self.n_steps for epoch_num in range(self.noptepochs): np.random.shuffle(env_indices) for start in range(0, self.n_envs, envs_per_batch): timestep = self.num_timesteps // update_fac + ( (epoch_num * self.n_envs + start) // envs_per_batch) end = start + envs_per_batch mb_env_inds = env_indices[start:end] mb_flat_inds = flat_indices[mb_env_inds].ravel() slices = (arr[mb_flat_inds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mb_states = states[mb_env_inds] mb_loss_vals.append( self._train_step( lr_now, cliprange_now, *slices, update=timestep, writer=writer, states=mb_states, cliprange_vf=cliprange_vf_now)) loss_vals = np.mean(mb_loss_vals, axis=0) t_now = time.time() fps = int(self.n_batch / (t_now - t_start)) if writer is not None: total_episode_reward_logger( self.episode_reward, true_reward.reshape((self.n_envs, self.n_steps)), masks.reshape((self.n_envs, self.n_steps)), writer, self.num_timesteps) if self.verbose >= 1 and (update % log_interval == 0 or update == 1): explained_var = explained_variance(values, returns) logger.logkv("serial_timesteps", update * self.n_steps) logger.logkv("n_updates", update) logger.logkv("total_timesteps", self.num_timesteps) logger.logkv("fps", fps) logger.logkv("explained_variance", float(explained_var)) if len(self.ep_info_buf) > 0 and len( self.ep_info_buf[0]) > 0: logger.logkv( 'ep_reward_mean', safe_mean([ ep_info['r'] for ep_info in self.ep_info_buf ])) logger.logkv( 'ep_len_mean', safe_mean([ ep_info['l'] for ep_info in self.ep_info_buf ])) logger.logkv('time_elapsed', t_start - t_first_start) for (loss_val, loss_name) in zip(loss_vals, self.loss_names): logger.logkv(loss_name, loss_val) logger.dumpkvs() callback.on_training_end() return self
def setup_model(self): with SetVerbosity(self.verbose): assert issubclass(self.policy, ActorCriticPolicy), "Error: the input policy for the PPO2 model must be " \ "an instance of common.policies.ActorCriticPolicy." self.n_batch = self.n_envs * self.n_steps self.graph = tf.Graph() with self.graph.as_default(): self.set_random_seed(self.seed) self.sess = tf_util.make_session(num_cpu=self.n_cpu_tf_sess, graph=self.graph) n_batch_step = None n_batch_train = None if issubclass(self.policy, RecurrentActorCriticPolicy): assert self.n_envs % self.nminibatches == 0, "For recurrent policies, "\ "the number of environments run in parallel should be a multiple of nminibatches." n_batch_step = self.n_envs n_batch_train = self.n_batch // self.nminibatches act_model = self.policy(self.sess, self.observation_space, self.action_space, self.n_envs, 1, n_batch_step, reuse=False, **self.policy_kwargs) with tf.variable_scope( "train_model", reuse=True, custom_getter=tf_util.outer_scope_getter( "train_model")): train_model = self.policy(self.sess, self.observation_space, self.action_space, self.n_envs // self.nminibatches, self.n_steps, n_batch_train, reuse=True, **self.policy_kwargs) with tf.variable_scope("loss", reuse=False): self.action_ph = train_model.pdtype.sample_placeholder( [None], name="action_ph") self.advs_ph = tf.placeholder(tf.float32, [None], name="advs_ph") self.rewards_ph = tf.placeholder(tf.float32, [None], name="rewards_ph") self.old_neglog_pac_ph = tf.placeholder( tf.float32, [None], name="old_neglog_pac_ph") self.old_vpred_ph = tf.placeholder(tf.float32, [None], name="old_vpred_ph") self.learning_rate_ph = tf.placeholder( tf.float32, [], name="learning_rate_ph") self.clip_range_ph = tf.placeholder(tf.float32, [], name="clip_range_ph") neglogpac = train_model.proba_distribution.neglogp( self.action_ph) self.entropy = tf.reduce_mean( train_model.proba_distribution.entropy()) vpred = train_model.value_flat # Value function clipping: not present in the original PPO if self.cliprange_vf is None: # Default behavior (legacy from OpenAI baselines): # use the same clipping as for the policy self.clip_range_vf_ph = self.clip_range_ph self.cliprange_vf = self.cliprange elif isinstance(self.cliprange_vf, (float, int)) and self.cliprange_vf < 0: # Original PPO implementation: no value function clipping self.clip_range_vf_ph = None else: # Last possible behavior: clipping range # specific to the value function self.clip_range_vf_ph = tf.placeholder( tf.float32, [], name="clip_range_vf_ph") if self.clip_range_vf_ph is None: # No clipping vpred_clipped = train_model.value_flat else: # Clip the different between old and new value # NOTE: this depends on the reward scaling vpred_clipped = self.old_vpred_ph + \ tf.clip_by_value(train_model.value_flat - self.old_vpred_ph, - self.clip_range_vf_ph, self.clip_range_vf_ph) vf_losses1 = tf.square(vpred - self.rewards_ph) vf_losses2 = tf.square(vpred_clipped - self.rewards_ph) self.vf_loss = .5 * tf.reduce_mean( tf.maximum(vf_losses1, vf_losses2)) ratio = tf.exp(self.old_neglog_pac_ph - neglogpac) pg_losses = -self.advs_ph * ratio pg_losses2 = -self.advs_ph * tf.clip_by_value( ratio, 1.0 - self.clip_range_ph, 1.0 + self.clip_range_ph) self.pg_loss = tf.reduce_mean( tf.maximum(pg_losses, pg_losses2)) self.approxkl = .5 * tf.reduce_mean( tf.square(neglogpac - self.old_neglog_pac_ph)) self.clipfrac = tf.reduce_mean( tf.cast( tf.greater(tf.abs(ratio - 1.0), self.clip_range_ph), tf.float32)) loss = self.pg_loss - self.entropy * self.ent_coef + self.vf_loss * self.vf_coef tf.summary.scalar('entropy_loss', self.entropy) tf.summary.scalar('policy_gradient_loss', self.pg_loss) tf.summary.scalar('value_function_loss', self.vf_loss) tf.summary.scalar('approximate_kullback-leibler', self.approxkl) tf.summary.scalar('clip_factor', self.clipfrac) tf.summary.scalar('loss', loss) with tf.variable_scope('model'): self.params = tf.trainable_variables() if self.full_tensorboard_log: for var in self.params: tf.summary.histogram(var.name, var) grads = tf.gradients(loss, self.params) if self.max_grad_norm is not None: grads, _grad_norm = tf.clip_by_global_norm( grads, self.max_grad_norm) grads = list(zip(grads, self.params)) trainer = tf.train.AdamOptimizer( learning_rate=self.learning_rate_ph, epsilon=1e-5) self._train = trainer.apply_gradients(grads) self.loss_names = [ 'policy_loss', 'value_loss', 'policy_entropy', 'approxkl', 'clipfrac' ] with tf.variable_scope("input_info", reuse=False): tf.summary.scalar('discounted_rewards', tf.reduce_mean(self.rewards_ph)) tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate_ph)) tf.summary.scalar('advantage', tf.reduce_mean(self.advs_ph)) tf.summary.scalar('clip_range', tf.reduce_mean(self.clip_range_ph)) if self.clip_range_vf_ph is not None: tf.summary.scalar( 'clip_range_vf', tf.reduce_mean(self.clip_range_vf_ph)) tf.summary.scalar('old_neglog_action_probability', tf.reduce_mean(self.old_neglog_pac_ph)) tf.summary.scalar('old_value_pred', tf.reduce_mean(self.old_vpred_ph)) if self.full_tensorboard_log: tf.summary.histogram('discounted_rewards', self.rewards_ph) tf.summary.histogram('learning_rate', self.learning_rate_ph) tf.summary.histogram('advantage', self.advs_ph) tf.summary.histogram('clip_range', self.clip_range_ph) tf.summary.histogram('old_neglog_action_probability', self.old_neglog_pac_ph) tf.summary.histogram('old_value_pred', self.old_vpred_ph) if tf_util.is_image(self.observation_space): tf.summary.image('observation', train_model.obs_ph) else: tf.summary.histogram('observation', train_model.obs_ph) self.train_model = train_model self.act_model = act_model self.step = act_model.step self.proba_step = act_model.proba_step self.value = act_model.value self.initial_state = act_model.initial_state tf.global_variables_initializer().run(session=self.sess) # pylint: disable=E1101 self.summary = tf.summary.merge_all()
def learn(self, total_timesteps, callback=None, log_interval=100, tb_log_name="ACER", reset_num_timesteps=True): new_tb_log = self._init_num_timesteps(reset_num_timesteps) callback = self._init_callback(callback) with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \ as writer: self._setup_learn() self.learning_rate_schedule = Scheduler(initial_value=self.learning_rate, n_values=total_timesteps, schedule=self.lr_schedule) episode_stats = EpisodeStats(self.n_steps, self.n_envs) if self.replay_ratio > 0: buffer = Buffer(env=self.env, n_steps=self.n_steps, size=self.buffer_size) else: buffer = None t_start = time.time() callback.on_training_start(locals(), globals()) # n_batch samples, 1 on_policy call and multiple off-policy calls for steps in range(0, total_timesteps, self.n_batch): callback.on_rollout_start() enc_obs, obs, actions, rewards, mus, dones, masks = self.runner.run(callback) callback.update_locals(locals()) callback.on_rollout_end() # Early stopping due to the callback if not self.runner.continue_training: break episode_stats.feed(rewards, dones) if buffer is not None: buffer.put(enc_obs, actions, rewards, mus, dones, masks) if writer is not None: total_episode_reward_logger(self.episode_reward, rewards.reshape((self.n_envs, self.n_steps)), dones.reshape((self.n_envs, self.n_steps)), writer, self.num_timesteps) # reshape stuff correctly obs = obs.reshape(self.runner.batch_ob_shape) actions = actions.reshape([self.n_batch]) rewards = rewards.reshape([self.n_batch]) mus = mus.reshape([self.n_batch, self.n_act]) dones = dones.reshape([self.n_batch]) masks = masks.reshape([self.runner.batch_ob_shape[0]]) names_ops, values_ops = self._train_step(obs, actions, rewards, dones, mus, self.initial_state, masks, self.num_timesteps, writer) if self.verbose >= 1 and (int(steps / self.n_batch) % log_interval == 0): logger.record_tabular("total_timesteps", self.num_timesteps) logger.record_tabular("fps", int(steps / (time.time() - t_start))) # IMP: In EpisodicLife env, during training, we get done=True at each loss of life, # not just at the terminal state. Thus, this is mean until end of life, not end of episode. # For true episode rewards, see the monitor files in the log folder. logger.record_tabular("mean_episode_length", episode_stats.mean_length()) logger.record_tabular("mean_episode_reward", episode_stats.mean_reward()) for name, val in zip(names_ops, values_ops): logger.record_tabular(name, float(val)) logger.dump_tabular() if (self.replay_ratio > 0 and buffer is not None and buffer.has_atleast(self.replay_start)): samples_number = np.random.poisson(self.replay_ratio) for _ in range(samples_number): # get obs, actions, rewards, mus, dones from buffer. obs, actions, rewards, mus, dones, masks = buffer.get() # reshape stuff correctly obs = obs.reshape(self.runner.batch_ob_shape) actions = actions.reshape([self.n_batch]) rewards = rewards.reshape([self.n_batch]) mus = mus.reshape([self.n_batch, self.n_act]) dones = dones.reshape([self.n_batch]) masks = masks.reshape([self.runner.batch_ob_shape[0]]) self._train_step(obs, actions, rewards, dones, mus, self.initial_state, masks, self.num_timesteps) callback.on_training_end() return self
def setup_model(self): with SetVerbosity(self.verbose): assert issubclass(self.policy, ActorCriticPolicy), "Error: the input policy for the ACER model must be " \ "an instance of common.policies.ActorCriticPolicy." if isinstance(self.action_space, Discrete): self.n_act = self.action_space.n continuous = False elif isinstance(self.action_space, Box): # self.n_act = self.action_space.shape[-1] # continuous = True raise NotImplementedError("WIP: Acer does not support Continuous actions yet.") else: raise ValueError("Error: ACER does not work with {} actions space.".format(self.action_space)) self.n_batch = self.n_envs * self.n_steps self.graph = tf.Graph() with self.graph.as_default(): self.sess = tf_util.make_session(num_cpu=self.n_cpu_tf_sess, graph=self.graph) self.set_random_seed(self.seed) n_batch_step = None if issubclass(self.policy, RecurrentActorCriticPolicy): n_batch_step = self.n_envs n_batch_train = self.n_envs * (self.n_steps + 1) step_model = self.policy(self.sess, self.observation_space, self.action_space, self.n_envs, 1, n_batch_step, reuse=False, **self.policy_kwargs) self.params = tf_util.get_trainable_vars("model") with tf.variable_scope("train_model", reuse=True, custom_getter=tf_util.outer_scope_getter("train_model")): train_model = self.policy(self.sess, self.observation_space, self.action_space, self.n_envs, self.n_steps + 1, n_batch_train, reuse=True, **self.policy_kwargs) with tf.variable_scope("moving_average"): # create averaged model ema = tf.train.ExponentialMovingAverage(self.alpha) ema_apply_op = ema.apply(self.params) def custom_getter(getter, name, *args, **kwargs): name = name.replace("polyak_model/", "") val = ema.average(getter(name, *args, **kwargs)) return val with tf.variable_scope("polyak_model", reuse=True, custom_getter=custom_getter): self.polyak_model = polyak_model = self.policy(self.sess, self.observation_space, self.action_space, self.n_envs, self.n_steps + 1, self.n_envs * (self.n_steps + 1), reuse=True, **self.policy_kwargs) with tf.variable_scope("loss", reuse=False): self.done_ph = tf.placeholder(tf.float32, [self.n_batch]) # dones self.reward_ph = tf.placeholder(tf.float32, [self.n_batch]) # rewards, not returns self.mu_ph = tf.placeholder(tf.float32, [self.n_batch, self.n_act]) # mu's self.action_ph = train_model.pdtype.sample_placeholder([self.n_batch]) self.learning_rate_ph = tf.placeholder(tf.float32, []) eps = 1e-6 # Notation: (var) = batch variable, (var)s = sequence variable, # (var)_i = variable index by action at step i # shape is [n_envs * (n_steps + 1)] if continuous: value = train_model.value_flat else: value = tf.reduce_sum(train_model.policy_proba * train_model.q_value, axis=-1) rho, rho_i_ = None, None if continuous: action_ = strip(train_model.proba_distribution.sample(), self.n_envs, self.n_steps) distribution_f = tf.contrib.distributions.MultivariateNormalDiag( loc=strip(train_model.proba_distribution.mean, self.n_envs, self.n_steps), scale_diag=strip(train_model.proba_distribution.logstd, self.n_envs, self.n_steps)) f_polyak = tf.contrib.distributions.MultivariateNormalDiag( loc=strip(polyak_model.proba_distribution.mean, self.n_envs, self.n_steps), scale_diag=strip(polyak_model.proba_distribution.logstd, self.n_envs, self.n_steps)) f_i = distribution_f.prob(self.action_ph) f_i_ = distribution_f.prob(action_) f_polyak_i = f_polyak.prob(self.action_ph) phi_i = strip(train_model.proba_distribution.mean, self.n_envs, self.n_steps) q_value = strip(train_model.value_fn, self.n_envs, self.n_steps) q_i = q_value[:, 0] rho_i = tf.reshape(f_i, [-1, 1]) / (self.mu_ph + eps) rho_i_ = tf.reshape(f_i_, [-1, 1]) / (self.mu_ph + eps) qret = q_retrace(self.reward_ph, self.done_ph, q_i, value, tf.pow(rho_i, 1 / self.n_act), self.n_envs, self.n_steps, self.gamma) else: # strip off last step # f is a distribution, chosen to be Gaussian distributions # with fixed diagonal covariance and mean \phi(x) # in the paper distribution_f, f_polyak, q_value = \ map(lambda variables: strip(variables, self.n_envs, self.n_steps), [train_model.policy_proba, polyak_model.policy_proba, train_model.q_value]) # Get pi and q values for actions taken f_i = get_by_index(distribution_f, self.action_ph) f_i_ = distribution_f phi_i = distribution_f f_polyak_i = f_polyak q_i = get_by_index(q_value, self.action_ph) # Compute ratios for importance truncation rho = distribution_f / (self.mu_ph + eps) rho_i = get_by_index(rho, self.action_ph) # Calculate Q_retrace targets qret = q_retrace(self.reward_ph, self.done_ph, q_i, value, rho_i, self.n_envs, self.n_steps, self.gamma) # Calculate losses # Entropy entropy = tf.reduce_sum(train_model.proba_distribution.entropy()) # Policy Gradient loss, with truncated importance sampling & bias correction value = strip(value, self.n_envs, self.n_steps, True) # check_shape([qret, value, rho_i, f_i], [[self.n_envs * self.n_steps]] * 4) # check_shape([rho, distribution_f, q_value], [[self.n_envs * self.n_steps, self.n_act]] * 2) # Truncated importance sampling adv = qret - value log_f = tf.log(f_i + eps) # [n_envs * n_steps] gain_f = log_f * tf.stop_gradient(adv * tf.minimum(self.correction_term, rho_i)) loss_f = -tf.reduce_mean(gain_f) # Bias correction for the truncation adv_bc = (q_value - tf.reshape(value, [self.n_envs * self.n_steps, 1])) # [n_envs * n_steps, n_act] # check_shape([adv_bc, log_f_bc], [[self.n_envs * self.n_steps, self.n_act]] * 2) if continuous: gain_bc = tf.stop_gradient(adv_bc * tf.nn.relu(1.0 - (self.correction_term / (rho_i_ + eps))) * f_i_) else: log_f_bc = tf.log(f_i_ + eps) # / (f_old + eps) gain_bc = tf.reduce_sum(log_f_bc * tf.stop_gradient( adv_bc * tf.nn.relu(1.0 - (self.correction_term / (rho + eps))) * f_i_), axis=1) # IMP: This is sum, as expectation wrt f loss_bc = -tf.reduce_mean(gain_bc) loss_policy = loss_f + loss_bc # Value/Q function loss, and explained variance check_shape([qret, q_i], [[self.n_envs * self.n_steps]] * 2) explained_variance = q_explained_variance(tf.reshape(q_i, [self.n_envs, self.n_steps]), tf.reshape(qret, [self.n_envs, self.n_steps])) loss_q = tf.reduce_mean(tf.square(tf.stop_gradient(qret) - q_i) * 0.5) # Net loss check_shape([loss_policy, loss_q, entropy], [[]] * 3) loss = loss_policy + self.q_coef * loss_q - self.ent_coef * entropy tf.summary.scalar('entropy_loss', entropy) tf.summary.scalar('policy_gradient_loss', loss_policy) tf.summary.scalar('value_function_loss', loss_q) tf.summary.scalar('loss', loss) norm_grads_q, norm_grads_policy, avg_norm_grads_f = None, None, None avg_norm_k, avg_norm_g, avg_norm_k_dot_g, avg_norm_adj = None, None, None, None if self.trust_region: # [n_envs * n_steps, n_act] grad = tf.gradients(- (loss_policy - self.ent_coef * entropy) * self.n_steps * self.n_envs, phi_i) # [n_envs * n_steps, n_act] # Directly computed gradient of KL divergence wrt f kl_grad = - f_polyak_i / (f_i_ + eps) k_dot_g = tf.reduce_sum(kl_grad * grad, axis=-1) adj = tf.maximum(0.0, (tf.reduce_sum(kl_grad * grad, axis=-1) - self.delta) / ( tf.reduce_sum(tf.square(kl_grad), axis=-1) + eps)) # [n_envs * n_steps] # Calculate stats (before doing adjustment) for logging. avg_norm_k = avg_norm(kl_grad) avg_norm_g = avg_norm(grad) avg_norm_k_dot_g = tf.reduce_mean(tf.abs(k_dot_g)) avg_norm_adj = tf.reduce_mean(tf.abs(adj)) grad = grad - tf.reshape(adj, [self.n_envs * self.n_steps, 1]) * kl_grad # These are turst region adjusted gradients wrt f ie statistics of policy pi grads_f = -grad / (self.n_envs * self.n_steps) grads_policy = tf.gradients(f_i_, self.params, grads_f) grads_q = tf.gradients(loss_q * self.q_coef, self.params) grads = [gradient_add(g1, g2, param, verbose=self.verbose) for (g1, g2, param) in zip(grads_policy, grads_q, self.params)] avg_norm_grads_f = avg_norm(grads_f) * (self.n_steps * self.n_envs) norm_grads_q = tf.global_norm(grads_q) norm_grads_policy = tf.global_norm(grads_policy) else: grads = tf.gradients(loss, self.params) norm_grads = None if self.max_grad_norm is not None: grads, norm_grads = tf.clip_by_global_norm(grads, self.max_grad_norm) grads = list(zip(grads, self.params)) with tf.variable_scope("input_info", reuse=False): tf.summary.scalar('rewards', tf.reduce_mean(self.reward_ph)) tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate)) tf.summary.scalar('advantage', tf.reduce_mean(adv)) tf.summary.scalar('action_probability', tf.reduce_mean(self.mu_ph)) if self.full_tensorboard_log: tf.summary.histogram('rewards', self.reward_ph) tf.summary.histogram('learning_rate', self.learning_rate) tf.summary.histogram('advantage', adv) tf.summary.histogram('action_probability', self.mu_ph) if tf_util.is_image(self.observation_space): tf.summary.image('observation', train_model.obs_ph) else: tf.summary.histogram('observation', train_model.obs_ph) trainer = tf.train.RMSPropOptimizer(learning_rate=self.learning_rate_ph, decay=self.rprop_alpha, epsilon=self.rprop_epsilon) _opt_op = trainer.apply_gradients(grads) # so when you call _train, you first do the gradient step, then you apply ema with tf.control_dependencies([_opt_op]): _train = tf.group(ema_apply_op) # Ops/Summaries to run, and their names for logging assert norm_grads is not None run_ops = [_train, loss, loss_q, entropy, loss_policy, loss_f, loss_bc, explained_variance, norm_grads] names_ops = ['loss', 'loss_q', 'entropy', 'loss_policy', 'loss_f', 'loss_bc', 'explained_variance', 'norm_grads'] if self.trust_region: self.run_ops = run_ops + [norm_grads_q, norm_grads_policy, avg_norm_grads_f, avg_norm_k, avg_norm_g, avg_norm_k_dot_g, avg_norm_adj] self.names_ops = names_ops + ['norm_grads_q', 'norm_grads_policy', 'avg_norm_grads_f', 'avg_norm_k', 'avg_norm_g', 'avg_norm_k_dot_g', 'avg_norm_adj'] self.train_model = train_model self.step_model = step_model self.step = step_model.step self.proba_step = step_model.proba_step self.initial_state = step_model.initial_state tf.global_variables_initializer().run(session=self.sess) self.summary = tf.summary.merge_all()