コード例 #1
0
def test(img):
    imgT = TransformView.transformView(img, aff, interval,
                                       MultiViewDeconvolution.minValueImg,
                                       MultiViewDeconvolution.outsideValueImg,
                                       1)  # 1: linear interpolation
    imgA = ArrayImgs.floats(dimensions)
    ImgUtil.copy(ImgView.wrap(imgT, imgA.factory()), imgA)
コード例 #2
0
ファイル: segmentation_em.py プロジェクト: mwinding/scripts
def classify(img, classifier, class_names, ops=None, distribution_class_index=-1):
  """ img: a 2D RandomAccessibleInterval.
      classifier: a WEKA Classifier instance, like SMO or FastRandomForest, etc. Any.
                  If it's a string, interprets it as a file path and attempts to deserialize
                  a previously saved trained classifier.
      class_names: the list of names of each class to learn.
      ops: the filter bank of ImgMath ops for the img.
      distribution_class_index: defaults to -1, meaning return the class index for each pixel.
                                When larger than -1, it's interpreted as a class index, and
                                returns instead the floating-point value of each pixel in
                                the distribution of that particular class index. """
  if type(classifier) == str:
    classifier = SerializationHelper.read(classifier)

  ops = ops if ops else filterBank(img)
  
  attributes = ArrayList()
  for i in xrange(len(ops)):
    attributes.add(Attribute("attr-%i" % i))
  #for name in classifier.attributeNames()[0][1]:
  #  attributes.add(Attribute(name))
  attributes.add(Attribute("class", class_names))
  
  info = Instances("structure", attributes, 1)
  info.setClassIndex(len(attributes) -1)

  opImgs = [compute(op).into(ArrayImgs.floats([img.dimension(0), img.dimension(1)])) for op in ops]
  cs_opImgs = Views.collapse(Views.stack(opImgs))

  result = ArrayImgs.floats([img.dimension(0), img.dimension(1)])
  cr = result.cursor()
  cop = Views.iterable(cs_opImgs).cursor()

  while cr.hasNext():
    tc = cop.next()
    vector = array((tc.get(i).getRealDouble() for i in xrange(len(opImgs))), 'd')
    vector += array([0], 'd')
    di = DenseInstance(1.0, vector)
    di.setDataset(info) # the list of attributes
    if distribution_class_index > -1:
      cr.next().setReal(classifier.distributionForInstance(di)[distribution_class_index])
    else:
      cr.next().setReal(classifier.classifyInstance(di))

  return result
コード例 #3
0
ファイル: ui.py プロジェクト: acardona/scripts
 def updatePixels(self):
     # Copy interval into pixels
     view = Views.interval(
         Views.extendZero(Views.hyperSlice(self.img3D, 2, self.indexZ)),
         self.interval2D)
     aimg = ArrayImgs.floats(
         self.getPixels(),
         [self.interval2D.dimension(0),
          self.interval2D.dimension(1)])
     ImgUtil.copy(view, aimg)
コード例 #4
0
def testJython(imgred, imggreen, imgblue):
    width, height = rgb.dimension(0), rgb.dimension(1)
    hb = zeros(width * height, 'f')
    sb = zeros(width * height, 'f')
    bb = zeros(width * height, 'f')
    cred = imgred.cursor()
    cgreen = imggreen.cursor()
    cblue = imgblue.cursor()
    i = 0
    while cred.hasNext():
        r = cred.next().getRealFloat()
        g = cgreen.next().getRealFloat()
        b = cblue.next().getRealFloat()
        cmax = max(r, g, b)
        cmin = min(r, g, b)
        bb[i] = cmax / 255.0
        if 0 != cmax:
            sb[i] = (cmax - cmin) / cmax
        # Else leave sb[i] at zero
        if 0 == sb[i]:
            h = 0
        else:
            span = cmax - cmin
            redc = (cmax - r) / span
            greenc = (cmax - g) / span
            bluec = (cmax - b) / span
            if r == cmax:
                h = bluec - greenc
            elif g == cmax:
                h = 2.0 + redc - bluec
            else:
                h = 4.0 + greenc - redc
            h /= 6.0
            if h < 0:
                h += 1.0
            hb[i] = h
        i += 1

    hh = ArrayImgs.floats(hb, [width, height])
    ss = ArrayImgs.floats(sb, [width, height])
    bb = ArrayImgs.floats(bb, [width, height])
    return Views.stack(hh, ss, bb)
コード例 #5
0
def read2DImageROI(path, dimensions, interval, pixelType=UnsignedShortType, header=0, byte_order=ByteOrder.LITTLE_ENDIAN):
  """ Read a region of interest (the interval) of an image in a file.
      Assumes the image is written with the first dimension moving slowest.

      path: the file path to the image file.
      dimensions: a sequence of integer values e.g. [512, 512, 512]
      interval: two sequences of integer values defining the min and max coordinates, e.g.
                [[20, 0], [400, 550]]
      pixeltype: e.g. UnsignedShortType, FloatType
      header: defaults to zero, the number of bytes between the start of the file and the start of the image data.

      Supports only these types: UnsignedByteType, UnsignedShortType, FloatType.

      Returns an ArrayImg of the given type.
  """
  ra = RandomAccessFile(path, 'r')
  try:
    width, height = dimensions
    minX, minY = interval[0]
    maxX, maxY = interval[1]
    roi_width, roi_height = maxX - minX + 1, maxY - minY + 1
    tailX = width - roi_width - minX

    #print minX, minY
    #print maxX, maxY
    #print roi_width, roi_height

    size = roi_width * roi_height
    n_bytes_per_pixel = pixelType().getBitsPerPixel() / 8

    #print n_bytes_per_pixel

    bytes = zeros(size * n_bytes_per_pixel, 'b')

    # Read only the 2D ROI
    ra.seek(header + (minY * width + minX) * n_bytes_per_pixel)
    for h in xrange(roi_height):
      ra.readFully(bytes, h * roi_width * n_bytes_per_pixel, roi_width * n_bytes_per_pixel)
      ra.skipBytes((tailX + minX) * n_bytes_per_pixel)
    # Make an image
    roiDims = [roi_width, roi_height]
    if UnsignedByteType == pixelType:
      return ArrayImgs.unsignedBytes(bytes, roiDims)
    if UnsignedShortType == pixelType:
      shorts = zeros(size, 'h')
      ByteBuffer.wrap(bytes).order(byte_order).asShortBuffer().get(shorts)
      return ArrayImgs.shorts(shorts, roiDims)
    if FloatType == pixelType:
      floats = zeros(size, 'f')
      ByteBuffer.wrap(bytes).order(byte_order).asFloatBuffer().get(floats)
      return ArrayImgs.floats(floats, roiDims)
  finally:
    ra.close()
def populateInstances(instances, synth_imgs, class_index, mins, maxs):
    # Populate the training data: create the filter bank for each feature image
    # by reading values from the interval defined by mins and maxs
    target = ArrayImgs.floats([width, height])
    interval = FinalInterval(mins, maxs)
    n_samples = Intervals.numElements(interval)
    for img in synth_imgs:
        vectors = [zeros(len(attributes), 'd') for _ in xrange(n_samples)]
        for k, op in enumerate(filterBank(img, sumType=DoubleType())):
            imgOp = compute(op).into(target)
            for i, v in enumerate(Views.interval(imgOp, interval)):
                vectors[i][k] = v.getRealDouble()
        for vector in vectors:
            vector[-1] = class_index
            instances.add(DenseInstance(1.0, vector))
コード例 #7
0
ファイル: io.py プロジェクト: mwinding/scripts
def readFloats(path, dimensions, header=0, byte_order=ByteOrder.LITTLE_ENDIAN):
    """ Read a file as an ArrayImg of FloatType """
    size = reduce(operator.mul, dimensions)
    ra = RandomAccessFile(path, 'r')
    try:
        if header < 0:
            # Interpret from the end: useful for files with variable header lengths
            # such as some types of uncompressed TIFF formats
            header = ra.length() + header
        ra.skipBytes(header)
        bytes = zeros(size * 4, 'b')
        ra.read(bytes)
        floats = zeros(size, 'f')
        ByteBuffer.wrap(bytes).order(byte_order).asFloatBuffer().get(floats)
        return ArrayImgs.floats(floats, dimensions)
    finally:
        ra.close()
コード例 #8
0
def twoStep(index=0):
    # The current way:
    img = klb.readFull(filepaths[index])  # klb_loader.get(filepaths[index])
    imgE = Views.extendZero(img)
    imgI = Views.interpolate(imgE, NLinearInterpolatorFactory())
    imgT = RealViews.transform(imgI, cmIsotropicTransforms[index])
    imgB = Views.zeroMin(Views.interval(imgT, roi[0],
                                        roi[1]))  # bounded: crop with ROI
    imgBA = ArrayImgs.unsignedShorts(Intervals.dimensionsAsLongArray(imgB))
    ImgUtil.copy(ImgView.wrap(imgB, imgBA.factory()), imgBA)
    imgP = prepareImgForDeconvolution(
        imgBA,
        affine3D(fineTransformsPostROICrop[index]).inverse(),
        FinalInterval([0, 0, 0], [imgB.dimension(d) - 1 for d in xrange(3)]))
    # Copy transformed view into ArrayImg for best performance in deconvolution
    imgA = ArrayImgs.floats(Intervals.dimensionsAsLongArray(imgP))
    ImgUtil.copy(ImgView.wrap(imgP, imgA.factory()), imgA)
    IL.wrap(imgA, "two step").show()
コード例 #9
0
 def prepare(index):
     # Prepare the img for deconvolution:
     # 0. Transform in one step.
     # 1. Ensure its pixel values conform to expectations (no zeros inside)
     # 2. Copy it into an ArrayImg for faster recurrent retrieval of same pixels
     syncPrint("Preparing %s CM0%i for deconvolution" % (tm_dirname, index))
     img = klb_loader.get(filepaths[index])  # of UnsignedShortType
     imgP = prepareImgForDeconvolution(
         img, transforms[index], target_interval)  # returns of FloatType
     # Copy transformed view into ArrayImg for best performance in deconvolution
     imgA = ArrayImgs.floats(Intervals.dimensionsAsLongArray(imgP))
     #ImgUtil.copy(ImgView.wrap(imgP, imgA.factory()), imgA)
     ImgUtil.copy(imgP, imgA, n_threads / 2)  # parallel copying
     syncPrint("--Completed preparing %s CM0%i for deconvolution" %
               (tm_dirname, index))
     imgP = None
     img = None
     return (index, imgA)
コード例 #10
0
def oneStep(index=0):
    # Combining transforms into one, via a translation to account of the ROI crop
    img = klb.readFull(filepaths[index])  # klb_loader.get(filepaths[index])
    t1 = cmIsotropicTransforms[index]
    t2 = affine3D(
        [1, 0, 0, -roi[0][0], 0, 1, 0, -roi[0][1], 0, 0, 1, -roi[0][2]])
    t3 = affine3D(fineTransformsPostROICrop[index]).inverse()
    aff = AffineTransform3D()
    aff.set(t1)
    aff.preConcatenate(t2)
    aff.preConcatenate(t3)
    # Final interval is now rooted at 0,0,0 given that the transform includes the translation
    imgP = prepareImgForDeconvolution(
        img, aff,
        FinalInterval([0, 0, 0],
                      [maxC - minC for minC, maxC in izip(roi[0], roi[1])]))
    # Copy transformed view into ArrayImg for best performance in deconvolution
    imgA = ArrayImgs.floats(Intervals.dimensionsAsLongArray(imgP))
    ImgUtil.copy(ImgView.wrap(imgP, imgA.factory()), imgA)
    IL.wrap(imgA, "one step index %i" % index).show()
コード例 #11
0
ファイル: segmentation_em.py プロジェクト: mwinding/scripts
def createTrainingData(img, samples, class_names, n_samples=0, ops=None):
  """ img: a 2D RandomAccessibleInterval.
      samples: a sequence of long[] (or int numeric sequence or Localizable) and class_index pairs; can be a generator.
      n_samples: optional, the number of samples (in case samples is e.g. a generator).
      class_names: a list of class names, as many as different class_index.
      ops: optional, the sequence of ImgMath ops to apply to the img, defaults to filterBank(img)

      return an instance of WEKA Instances
  """
  ops = ops if ops else filterBank(img)

  if 0 == n_samples:
    n_samples = len(samples)
  
  # Define a WEKA Attribute for each feature (one for op in the filter bank, plus the class)
  attribute_names = ["attr-%i" % (i+1) for i in xrange(len(ops))]
  attributes = ArrayList()
  for name in attribute_names:
    attributes.add(Attribute(name))
  # Add an attribute at the end for the classification classes
  attributes.add(Attribute("class", class_names))

  # Create the training data structure
  training_data = Instances("training", attributes, n_samples)
  training_data.setClassIndex(len(attributes) -1)

  opImgs = [compute(op).into(ArrayImgs.floats([img.dimension(0), img.dimension(1)])) for op in ops]
  ra = Views.collapse(Views.stack(opImgs)).randomAccess()

  for position, class_index in samples:
    ra.setPosition(position)
    tc = ra.get()
    vector = array((tc.get(i).getRealDouble() for i in xrange(len(opImgs))), 'd')
    vector += array([class_index], 'd')
    training_data.add(DenseInstance(1.0, vector))

  return training_data
コード例 #12
0
from net.imglib2.type.numeric.real import FloatType

ft = FloatType(10)
ft.pow(2)

print ft

from net.imglib2.algorithm.math.ImgMath import compute, add, power
from net.imglib2.img.array import ArrayImgs
from net.imglib2.img.display.imagej import ImageJFunctions as IL

img = ArrayImgs.floats([10, 10, 10])

compute(add(img, 5)).into(img)  # in place

compute(power(img, 2)).into(img)  # in place

print 25 * 10 * 10 * 10 == sum(t.get() for t in img.cursor())

IL.wrap(img, "5 squared").show()
コード例 #13
0
from net.imglib2.algorithm.math import ImgMath
from net.imglib2.util import ImgUtil
from net.imglib2.img import ImgView
import sys
sys.path.append("/home/albert/lab/scripts/python/imagej/IsoView-GCaMP/")
from lib.util import timeit

roi = (
    [1, 228, 0],  # top-left coordinates
    [1 + 406 - 1, 228 + 465 - 1,
     0 + 325 - 1])  # bottom-right coordinates (inclusive, hence the -1)

dimensions = [maxC - minC + 1 for minC, maxC in zip(roi[0], roi[1])]

imgU = ArrayImgs.unsignedShorts(dimensions)
imgF = ArrayImgs.floats(dimensions)
#c = imgF.cursor()
#while c.hasNext():
#  c.next().set(random() * 65535)
ImgMath.compute(ImgMath.number(17)).into(imgF)
ImgMath.compute(ImgMath.img(imgF)).into(imgU)
aff = AffineTransform3D()
"""
aff.set(1, 0, 0, 0,
        0, 1, 0, 0,
        0, 0, 1, 0)
"""
aff.set(*[
    0.9999949529841275, -0.0031770224721305684, 2.3118912942710207e-05,
    -1.6032353998500826, 0.003177032139125933, 0.999994860398559,
    -0.00043086338151948394, -0.4401520585103873, -2.1749931475206362e-05,
            for i, v in enumerate(Views.interval(imgOp, interval)):
                vectors[i][k] = v.getRealDouble()
        for vector in vectors:
            vector[-1] = class_index
            instances.add(DenseInstance(1.0, vector))


# pick pixels on the black line for class 0 (membrane), 4x4
populateInstances(training_data, synth_imgs_membrane, 0, [14, 14], [17, 17])
# pick pixels in the very center for class 1 (mitochondrial boundary), 2x2
populateInstances(training_data, synth_imgs_mit_boundary, 1, [15, 15],
                  [16, 16])

# Populate the training data for class "other" from two images
# entirely filled with background or foreground plus noise
target = ArrayImgs.floats([width, height])
interval = FinalInterval([14, 14], [17, 17])
n_samples = Intervals.numElements(interval)
for ci, v in enumerate([fillValue, backgroundValue]):
    for _ in xrange(training_data.size() /
                    4):  # the other 2/4 are the membrane and mit boundary
        other = syntheticEM([], width, height, 0, v, noise=True)
        vectors = [zeros(len(attributes), 'd') for _ in xrange(n_samples)]
        for k, op in enumerate(filterBank(IL.wrap(other),
                                          sumType=DoubleType())):
            imgOp = compute(op).into(target)
            for i, v in enumerate(Views.interval(imgOp, interval)):
                vectors[i][k] = v.getRealDouble()
        for vector in vectors:
            vector[-1] = ci + 2  # class index
            training_data.add(DenseInstance(1.0, vector))
コード例 #15
0
# @OpService ops
# @float[] arr
# @long[] dims
# @OUTPUT Img out

from net.imagej.ops import Ops
from net.imglib2.img import Img
from net.imglib2.img.array import ArrayImgs

arr = list(arr)
dims = list(dims)
out = ArrayImgs.floats(arr, dims)
コード例 #16
0
 def __init__(self, dimensions, filenames):
     super(Thread, self).__init__()
     self.filenames = filenames
     self.aimg = ArrayImgs.floats(dimensions)
     self.klb = KLB.newInstance()
コード例 #17
0
    def factory(self):
        return None

    def copy(self):
        return self  # stateless, so safe

    def randomAccess(
        self,
        interval=None
    ):  # optional argument handles case of having randomAccess() and randomAccess(interval).
        return self.cursor()

    def cursor(self):
        return FnCursor(self.numDimensions(), -pi / 2, self.dimension(0) / 4)

    def localizingCursor(self):
        return self.cursor()


img = FnImg([512, 512])
IL.show(img)  # shows black, yet above the get() prints values
aimg = ArrayImgs.floats([512, 512])
c1 = img.cursor()
c2 = aimg.cursor()
while c2.hasNext():
    t = c2.next()
    c1.setPosition(c2)
    c2.next().set(c1.get())
IL.show(aimg)  # Shows black, yet above the get() prints values
コード例 #18
0
    imgB0,
    transformedView(imgB1, matrices["imgB0-imgB1"]),
    transformedView(imgB2, matrices["imgB0-imgB2"]),
    transformedView(imgB3, matrices["imgB0-imgB3"])
   ]


#viewInBDV(*transformed)
viewAsStack(*transformed)


exe = newFixedThreadPool(4)
try:
  # Copy into ArrayImg
  def copyIntoArrayImg(img):
    return ImgMath.compute(ImgMath.img(img)).into(ArrayImgs.floats([img.dimension(d) for d in xrange(img.numDimensions())]))
  futures = [exe.submit(Task(copyIntoArrayImg, img)) for img in [imgB0, imgB1, imgB2, imgB3]]
  imgB0, imgB1, imgB2, imgB3 = [f.get() for f in futures]
finally:
  exe.shutdown()

viewAsStack(imgB0, imgB1, imgB2, imgB3) # ArrayImg instances

# Read the kernel as a FloatType ArrayImg
kernel = readFloats("/home/albert/lab/Raghav-IsoView-PSF/PSF-19x19x25.tif", [19, 19, 25], header=434)

def affine3D(matrix):
  aff = AffineTransform3D()
  aff.set(*matrix)
  return aff
コード例 #19
0
 def readKernel(path):
   if kernel_header is None:
     imp = IJ.openImage(path)
     return ArrayImgs.floats(imp.getProcessor().getPixels(),
                             [imp.getWidth(), imp.getHeight(), imp.getNSlices()])
   return readFloats(path, kernel_dimensions, kernel_header)
コード例 #20
0
def testASMFloats():
    img2 = ArrayImgs.floats(dimensions)
    ImgUtil.copy(
        ImgView.wrap(
            Converters.convertRandomAccessibleIterableInterval(
                img1, sampler_conv_floats), img1.factory()), img2)
コード例 #21
0
from net.imglib2.img.array import ArrayImgs
import sys
sys.path.append("/home/albert/lab/scripts/python/imagej/IsoView-GCaMP/")
from random import random
from net.imglib2.loops import LoopBuilder
from net.imglib2.type.numeric.real import FloatType
from lib.loop import createBiConsumerTypeSet, createBiConsumerTypeSet2, binaryLambda, nthLambda
from java.util.function import BiConsumer

img1 = ArrayImgs.floats([10, 10, 10])
cursor = img1.cursor()
for t in img1:
    t.setReal(random())

img2 = ArrayImgs.floats([10, 10, 10])

#copyIt = createBiConsumerTypeSet(FloatType) # works well
#copyIt = createBiConsumerTypeSet2(FloatType) # works well
#LoopBuilder.setImages(img1, img2).forEachPixel(copyIt)

# Works well:
#copyIt = binaryLambda(FloatType, "set", FloatType,
#                      interface=BiConsumer, interface_method="accept")

copyIt = nthLambda(FloatType, "set", [FloatType], BiConsumer, "accept")

ra1 = img1.randomAccess()
ra2 = img2.randomAccess()

pos = [3, 2, 5]
ra1.setPosition(pos)
コード例 #22
0
def test(red, green, blue, easy=True):
    saturation = let(
        "red", red, "green", green, "blue", blue, "max",
        maximum("red", "green", "blue"), "min",
        minimum("red", "green", "blue"),
        IF(EQ(0, "max"), THEN(0), ELSE(div(sub("max", "min"), "max"))))

    brightness = div(maximum(red, green, blue), 255.0)

    hue = IF(
        EQ(0, saturation), THEN(0),
        ELSE(
            let(
                "red", red, "green", green, "blue", blue, "max",
                maximum("red", "green", "blue"), "min",
                minimum("red", "green", "blue"), "range", sub("max", "min"),
                "redc", div(sub("max", "red"), "range"), "greenc",
                div(sub("max", "green"), "range"), "bluec",
                div(sub("max", "blue"), "range"), "hue",
                div(
                    IF(
                        EQ("red", "max"), THEN(sub("bluec", "greenc")),
                        ELSE(
                            IF(EQ("green", "max"),
                               THEN(sub(add(2, "redc"), "bluec")),
                               ELSE(sub(add(4, "greenc"), "redc"))))), 6),
                IF(LT("hue", 0), THEN(add("hue", 1)), ELSE("hue")))))

    #print hierarchy(hue)

    #print "hue view:", hue.view( FloatType() ).iterationOrder()

    if easy:
        # About 26 ms
        """
    hsb = Views.stack( hue.view( FloatType() ),
                       saturation.view( FloatType() ),
                       brightness.view( FloatType() ) )
    """

        # About 13 ms: half! Still much worse than plain ImageJ,
        # but the source images are iterated 4 times, rather than just once,
        # and the saturation is computed twice,
        # and the min, max is computed 3 and 4 times, respectively.
        hsb = Views.stack(hue.viewDouble(FloatType()),
                          saturation.viewDouble(FloatType()),
                          brightness.viewDouble(FloatType()))
        """
    # Even worse: ~37 ms
    width, height = rgb.dimension(0), rgb.dimension(1)
    h = compute(hue).into(ArrayImgs.floats([width, height]))
    s = compute(saturation).into(ArrayImgs.floats([width, height]))
    b = compute(brightness).into(ArrayImgs.floats([width, height]))
    hsb = Views.stack( h, s, b )
    """

        imp = IL.wrap(hsb, "HSB view")
    else:
        # Tested it: takes more time (~40 ms vs 26 ms above)
        width, height = rgb.dimension(0), rgb.dimension(1)
        hb = zeros(width * height, 'f')
        sb = zeros(width * height, 'f')
        bb = zeros(width * height, 'f')
        h = ArrayImgs.floats(hb, [width, height])
        s = ArrayImgs.floats(sb, [width, height])
        b = ArrayImgs.floats(bb, [width, height])
        #print "ArrayImg:", b.iterationOrder()
        ImgUtil.copy(ImgView.wrap(hue.view(FloatType()), None), h)
        ImgUtil.copy(ImgView.wrap(saturation.view(FloatType()), None), s)
        ImgUtil.copy(ImgView.wrap(brightness.view(FloatType()), None), b)
        stack = ImageStack(width, height)
        stack.addSlice(FloatProcessor(width, height, hb, None))
        stack.addSlice(FloatProcessor(width, height, sb, None))
        stack.addSlice(FloatProcessor(width, height, bb, None))
        imp = ImagePlus("hsb", stack)
    return imp
コード例 #23
0

imp = IJ.getImage()
dimensions = [imp.getWidth(), imp.getHeight()]
ip = imp.getProcessor()
pixels = ip.getPixels()

# In practice, you never want to do this below,
# and instead you'd use the built-in wrapper: ImageJFunctions.wrap(imp)
# This is merely for illustration of how to use ArrayImgs with an existing pixel array
if isinstance(ip, ByteProcessor):
  img1 = ArrayImgs.unsignedBytes(pixels, dimensions)
elif isinstance(ip, ShortProcessor):
  img1 = ArrayImgs.unsignedShorts(pixels, dimensions)
elif isinstance(ip, FloatProcessor):
  img1 = ArrayImgs.floats(pixels, dimensions)
else:
  print "Can't handle image of type:", type(ip).getName()


# An empty image of float[]
img2 = ArrayImgs.floats(dimensions)

# View it as RandomAccessibleInterval<FloatType> by converting on the fly
# using a generic RealType to FloatType converter
floatView = Converters.convertRAI(img1, RealFloatConverter(), FloatType())

# The above 'floatView' can be used as an image: one that gets always converted on demand.
# If you only have to iterate over the pixels just once, there's no need to create a new image.
IL.show(floatView, "32-bit view of the 8-bit")
コード例 #24
0
imgE = Views.extendZero(target)
# Integrate every dimension, cummulatively by writing into
# a target image that is also the input
for d in xrange(img.numDimensions()):
    coord = [0] * img.numDimensions()  # array of zeros
    coord[d] = -1
    # Cummulative sum along the current dimension
    # Note that instead of the ImgMath offset op,
    # we could have used Views.translate(Views.extendZero(target), [1, 0]))
    # (Notice though the sign change in the translation)
    integral = add(target, offset(imgE, coord))
    compute(integral).into(target)

# The target is the integral image
integralImg = target

# Read out blocks of radius 5 (i.e. 10x10 for a 2d image)
# in a way that is entirely n-dimensional (applies to 1d, 2d, 3d, 4d ...)
radius = 5
nd = img.numDimensions()
op = div(block(Views.extendBorder(integralImg), [radius] * nd),
         pow(radius * 2, nd))  # divide by total number of pixels in the block

blurred = ArrayImgs.floats(Intervals.dimensionsAsLongArray(img))
compute(op).into(blurred, FloatType())

# Show the blurred image with the same LUT as the original
imp2 = IL.wrap(blurred, "integral image radius 5 blur")
imp2.getProcessor().setLut(imp.getProcessor().getLut())
imp2.show()