def main(): args = parse() # Load a conf file dir_name = os.path.dirname(args.recog_model[0]) conf = load_config(os.path.join(dir_name, 'conf.yml')) # Overwrite conf for k, v in conf.items(): if 'recog' not in k: setattr(args, k, v) # Setting for logging if os.path.isfile(os.path.join(args.recog_dir, 'decode.log')): os.remove(os.path.join(args.recog_dir, 'decode.log')) logger = set_logger(os.path.join(args.recog_dir, 'decode.log'), key='decoding') ppl_avg = 0 for i, s in enumerate(args.recog_sets): # Load dataset dataset = Dataset(corpus=args.corpus, tsv_path=s, dict_path=os.path.join(dir_name, 'dict.txt'), wp_model=os.path.join(dir_name, 'wp.model'), unit=args.unit, batch_size=args.recog_batch_size, bptt=args.bptt, backward=args.backward, serialize=args.serialize, is_test=True) if i == 0: # Load the LM model = select_lm(args) model, checkpoint = load_checkpoint(model, args.recog_model[0]) epoch = checkpoint['epoch'] model.save_path = dir_name logger.info('epoch: %d' % (epoch - 1)) logger.info('batch size: %d' % args.recog_batch_size) # logger.info('recog unit: %s' % args.recog_unit) # logger.info('ensemble: %d' % (len(ensemble_models))) logger.info('BPTT: %d' % (args.bptt)) logger.info('cache size: %d' % (args.recog_n_caches)) logger.info('cache theta: %.3f' % (args.recog_cache_theta)) logger.info('cache lambda: %.3f' % (args.recog_cache_lambda)) model.cache_theta = args.recog_cache_theta model.cache_lambda = args.recog_cache_lambda # GPU setting model.cuda() start_time = time.time() # TODO(hirofumi): ensemble ppl, _ = eval_ppl([model], dataset, batch_size=1, bptt=args.bptt, n_caches=args.recog_n_caches, progressbar=True) ppl_avg += ppl print('PPL (%s): %.2f' % (dataset.set, ppl)) logger.info('Elasped time: %.2f [sec]:' % (time.time() - start_time)) logger.info('PPL (avg.): %.2f\n' % (ppl_avg / len(args.recog_sets)))
def main(): args = parse() # Load a conf file dir_name = os.path.dirname(args.recog_model[0]) conf = load_config(os.path.join(dir_name, 'conf.yml')) # Overwrite conf for k, v in conf.items(): if 'recog' not in k: setattr(args, k, v) recog_params = vars(args) # Setting for logging if os.path.isfile(os.path.join(args.recog_dir, 'decode.log')): os.remove(os.path.join(args.recog_dir, 'decode.log')) logger = set_logger(os.path.join(args.recog_dir, 'decode.log'), key='decoding') skip_thought = 'skip' in args.enc_type wer_avg, cer_avg, per_avg = 0, 0, 0 ppl_avg, loss_avg = 0, 0 for i, s in enumerate(args.recog_sets): # Load dataset dataset = Dataset( corpus=args.corpus, tsv_path=s, dict_path=os.path.join(dir_name, 'dict.txt'), dict_path_sub1=os.path.join(dir_name, 'dict_sub1.txt') if os.path.isfile(os.path.join(dir_name, 'dict_sub1.txt')) else False, dict_path_sub2=os.path.join(dir_name, 'dict_sub2.txt') if os.path.isfile(os.path.join(dir_name, 'dict_sub2.txt')) else False, nlsyms=os.path.join(dir_name, 'nlsyms.txt'), wp_model=os.path.join(dir_name, 'wp.model'), wp_model_sub1=os.path.join(dir_name, 'wp_sub1.model'), wp_model_sub2=os.path.join(dir_name, 'wp_sub2.model'), unit=args.unit, unit_sub1=args.unit_sub1, unit_sub2=args.unit_sub2, batch_size=args.recog_batch_size, skip_thought=skip_thought, is_test=True) if i == 0: # Load the ASR model if skip_thought: model = SkipThought(args, dir_name) else: model = Speech2Text(args, dir_name) model, checkpoint = load_checkpoint(model, args.recog_model[0]) epoch = checkpoint['epoch'] # ensemble (different models) ensemble_models = [model] if len(args.recog_model) > 1: for recog_model_e in args.recog_model[1:]: conf_e = load_config( os.path.join(os.path.dirname(recog_model_e), 'conf.yml')) args_e = copy.deepcopy(args) for k, v in conf_e.items(): if 'recog' not in k: setattr(args_e, k, v) model_e = Speech2Text(args_e) model_e, _ = load_checkpoint(model_e, recog_model_e) model_e.cuda() ensemble_models += [model_e] # Load the LM for shallow fusion if not args.lm_fusion: if args.recog_lm is not None and args.recog_lm_weight > 0: conf_lm = load_config( os.path.join(os.path.dirname(args.recog_lm), 'conf.yml')) args_lm = argparse.Namespace() for k, v in conf_lm.items(): setattr(args_lm, k, v) lm = select_lm(args_lm) lm, _ = load_checkpoint(lm, args.recog_lm) if args_lm.backward: model.lm_bwd = lm else: model.lm_fwd = lm if args.recog_lm_bwd is not None and args.recog_lm_weight > 0 \ and (args.recog_fwd_bwd_attention or args.recog_reverse_lm_rescoring): conf_lm = load_config( os.path.join(os.path.dirname(args.recog_lm_bwd), 'conf.yml')) args_lm_bwd = argparse.Namespace() for k, v in conf_lm.items(): setattr(args_lm_bwd, k, v) lm_bwd = select_lm(args_lm_bwd) lm_bwd, _ = load_checkpoint(lm_bwd, args.recog_lm_bwd) model.lm_bwd = lm_bwd if not args.recog_unit: args.recog_unit = args.unit logger.info('recog unit: %s' % args.recog_unit) logger.info('recog metric: %s' % args.recog_metric) logger.info('recog oracle: %s' % args.recog_oracle) logger.info('epoch: %d' % (epoch - 1)) logger.info('batch size: %d' % args.recog_batch_size) logger.info('beam width: %d' % args.recog_beam_width) logger.info('min length ratio: %.3f' % args.recog_min_len_ratio) logger.info('max length ratio: %.3f' % args.recog_max_len_ratio) logger.info('length penalty: %.3f' % args.recog_length_penalty) logger.info('coverage penalty: %.3f' % args.recog_coverage_penalty) logger.info('coverage threshold: %.3f' % args.recog_coverage_threshold) logger.info('CTC weight: %.3f' % args.recog_ctc_weight) logger.info('LM path: %s' % args.recog_lm) logger.info('LM path (bwd): %s' % args.recog_lm_bwd) logger.info('LM weight: %.3f' % args.recog_lm_weight) logger.info('GNMT: %s' % args.recog_gnmt_decoding) logger.info('forward-backward attention: %s' % args.recog_fwd_bwd_attention) logger.info('reverse LM rescoring: %s' % args.recog_reverse_lm_rescoring) logger.info('resolving UNK: %s' % args.recog_resolving_unk) logger.info('ensemble: %d' % (len(ensemble_models))) logger.info('ASR decoder state carry over: %s' % (args.recog_asr_state_carry_over)) logger.info('LM state carry over: %s' % (args.recog_lm_state_carry_over)) logger.info('cache size: %d' % (args.recog_n_caches)) logger.info('cache type: %s' % (args.recog_cache_type)) logger.info('cache word frequency threshold: %s' % (args.recog_cache_word_freq)) logger.info('cache theta (speech): %.3f' % (args.recog_cache_theta_speech)) logger.info('cache lambda (speech): %.3f' % (args.recog_cache_lambda_speech)) logger.info('cache theta (lm): %.3f' % (args.recog_cache_theta_lm)) logger.info('cache lambda (lm): %.3f' % (args.recog_cache_lambda_lm)) # GPU setting model.cuda() start_time = time.time() if args.recog_metric == 'edit_distance': if args.recog_unit in ['word', 'word_char']: wer, cer, _ = eval_word(ensemble_models, dataset, recog_params, epoch=epoch - 1, recog_dir=args.recog_dir, progressbar=True) wer_avg += wer cer_avg += cer elif args.recog_unit == 'wp': wer, cer = eval_wordpiece(ensemble_models, dataset, recog_params, epoch=epoch - 1, recog_dir=args.recog_dir, progressbar=True) wer_avg += wer cer_avg += cer elif 'char' in args.recog_unit: wer, cer = eval_char(ensemble_models, dataset, recog_params, epoch=epoch - 1, recog_dir=args.recog_dir, progressbar=True, task_idx=0) # task_idx=1 if args.recog_unit and 'char' in args.recog_unit else 0) wer_avg += wer cer_avg += cer elif 'phone' in args.recog_unit: per = eval_phone(ensemble_models, dataset, recog_params, epoch=epoch - 1, recog_dir=args.recog_dir, progressbar=True) per_avg += per else: raise ValueError(args.recog_unit) elif args.recog_metric == 'acc': raise NotImplementedError elif args.recog_metric in ['ppl', 'loss']: ppl, loss = eval_ppl(ensemble_models, dataset, recog_params=recog_params, progressbar=True) ppl_avg += ppl loss_avg += loss elif args.recog_metric == 'bleu': raise NotImplementedError else: raise NotImplementedError logger.info('Elasped time: %.2f [sec]:' % (time.time() - start_time)) if args.recog_metric == 'edit_distance': if 'phone' in args.recog_unit: logger.info('PER (avg.): %.2f %%\n' % (per_avg / len(args.recog_sets))) else: logger.info('WER / CER (avg.): %.2f / %.2f %%\n' % (wer_avg / len(args.recog_sets), cer_avg / len(args.recog_sets))) elif args.recog_metric in ['ppl', 'loss']: logger.info('PPL (avg.): %.2f\n' % (ppl_avg / len(args.recog_sets))) print('PPL (avg.): %.2f' % (ppl_avg / len(args.recog_sets))) logger.info('Loss (avg.): %.2f\n' % (loss_avg / len(args.recog_sets))) print('Loss (avg.): %.2f' % (loss_avg / len(args.recog_sets)))
def main(): args = parse() # Load a conf file dir_name = os.path.dirname(args.recog_model[0]) conf = load_config(os.path.join(dir_name, 'conf.yml')) # Overwrite conf for k, v in conf.items(): if 'recog' not in k: setattr(args, k, v) recog_params = vars(args) # Setting for logging if os.path.isfile(os.path.join(args.recog_dir, 'plot.log')): os.remove(os.path.join(args.recog_dir, 'plot.log')) logger = set_logger(os.path.join(args.recog_dir, 'plot.log'), key='decoding') for i, s in enumerate(args.recog_sets): # Load dataset dataset = Dataset( corpus=args.corpus, tsv_path=s, dict_path=os.path.join(dir_name, 'dict.txt'), dict_path_sub1=os.path.join(dir_name, 'dict_sub1.txt') if os.path.isfile(os.path.join(dir_name, 'dict_sub1.txt')) else False, nlsyms=args.nlsyms, wp_model=os.path.join(dir_name, 'wp.model'), unit=args.unit, unit_sub1=args.unit_sub1, batch_size=args.recog_batch_size, is_test=True) if i == 0: # Load the ASR model model = Speech2Text(args, dir_name) model, checkpoint = load_checkpoint(model, args.recog_model[0]) epoch = checkpoint['epoch'] # ensemble (different models) ensemble_models = [model] if len(args.recog_model) > 1: for recog_model_e in args.recog_model[1:]: # Load the ASR model conf_e = load_config( os.path.join(os.path.dirname(recog_model_e), 'conf.yml')) args_e = copy.deepcopy(args) for k, v in conf_e.items(): if 'recog' not in k: setattr(args_e, k, v) model_e = Speech2Text(args_e) model_e, _ = load_checkpoint(model_e, recog_model_e) model_e.cuda() ensemble_models += [model_e] # Load the LM for shallow fusion if not args.lm_fusion: if args.recog_lm is not None and args.recog_lm_weight > 0: conf_lm = load_config( os.path.join(os.path.dirname(args.recog_lm), 'conf.yml')) args_lm = argparse.Namespace() for k, v in conf_lm.items(): setattr(args_lm, k, v) lm = select_lm(args_lm) lm, _ = load_checkpoint(lm, args.recog_lm) if args_lm.backward: model.lm_bwd = lm else: model.lm_fwd = lm if args.recog_lm_bwd is not None and args.recog_lm_weight > 0 and \ (args.recog_fwd_bwd_attention or args.recog_reverse_lm_rescoring): conf_lm = load_config( os.path.join(args.recog_lm_bwd, 'conf.yml')) args_lm_bwd = argparse.Namespace() for k, v in conf_lm.items(): setattr(args_lm_bwd, k, v) lm_bwd = select_lm(args_lm_bwd) lm_bwd, _ = load_checkpoint(lm_bwd, args.recog_lm_bwd) model.lm_bwd = lm_bwd if not args.recog_unit: args.recog_unit = args.unit logger.info('recog unit: %s' % args.recog_unit) logger.info('recog metric: %s' % args.recog_metric) logger.info('recog oracle: %s' % args.recog_oracle) logger.info('epoch: %d' % (epoch - 1)) logger.info('batch size: %d' % args.recog_batch_size) logger.info('beam width: %d' % args.recog_beam_width) logger.info('min length ratio: %.3f' % args.recog_min_len_ratio) logger.info('max length ratio: %.3f' % args.recog_max_len_ratio) logger.info('length penalty: %.3f' % args.recog_length_penalty) logger.info('coverage penalty: %.3f' % args.recog_coverage_penalty) logger.info('coverage threshold: %.3f' % args.recog_coverage_threshold) logger.info('CTC weight: %.3f' % args.recog_ctc_weight) logger.info('LM path: %s' % args.recog_lm) logger.info('LM path (bwd): %s' % args.recog_lm_bwd) logger.info('LM weight: %.3f' % args.recog_lm_weight) logger.info('GNMT: %s' % args.recog_gnmt_decoding) logger.info('forward-backward attention: %s' % args.recog_fwd_bwd_attention) logger.info('reverse LM rescoring: %s' % args.recog_reverse_lm_rescoring) logger.info('resolving UNK: %s' % args.recog_resolving_unk) logger.info('ensemble: %d' % (len(ensemble_models))) logger.info('ASR decoder state carry over: %s' % (args.recog_asr_state_carry_over)) logger.info('LM state carry over: %s' % (args.recog_lm_state_carry_over)) logger.info('cache size: %d' % (args.recog_n_caches)) logger.info('cache type: %s' % (args.recog_cache_type)) logger.info('cache word frequency threshold: %s' % (args.recog_cache_word_freq)) logger.info('cache theta (speech): %.3f' % (args.recog_cache_theta_speech)) logger.info('cache lambda (speech): %.3f' % (args.recog_cache_lambda_speech)) logger.info('cache theta (lm): %.3f' % (args.recog_cache_theta_lm)) logger.info('cache lambda (lm): %.3f' % (args.recog_cache_lambda_lm)) # GPU setting model.cuda() # TODO(hirofumi): move this save_path = mkdir_join(args.recog_dir, 'att_weights') if args.recog_n_caches > 0: save_path_cache = mkdir_join(args.recog_dir, 'cache') # Clean directory if save_path is not None and os.path.isdir(save_path): shutil.rmtree(save_path) os.mkdir(save_path) if args.recog_n_caches > 0: shutil.rmtree(save_path_cache) os.mkdir(save_path_cache) while True: batch, is_new_epoch = dataset.next( recog_params['recog_batch_size']) best_hyps_id, aws, (cache_attn_hist, cache_id_hist) = model.decode( batch['xs'], recog_params, dataset.idx2token[0], exclude_eos=False, refs_id=batch['ys'], ensemble_models=ensemble_models[1:] if len(ensemble_models) > 1 else [], speakers=batch['sessions'] if dataset.corpus == 'swbd' else batch['speakers']) if model.bwd_weight > 0.5: # Reverse the order best_hyps_id = [hyp[::-1] for hyp in best_hyps_id] aws = [aw[::-1] for aw in aws] for b in range(len(batch['xs'])): tokens = dataset.idx2token[0](best_hyps_id[b], return_list=True) spk = batch['speakers'][b] plot_attention_weights( aws[b][:len(tokens)], tokens, spectrogram=batch['xs'][b][:, :dataset.input_dim] if args.input_type == 'speech' else None, save_path=mkdir_join(save_path, spk, batch['utt_ids'][b] + '.png'), figsize=(20, 8)) if args.recog_n_caches > 0 and cache_id_hist is not None and cache_attn_hist is not None: n_keys, n_queries = cache_attn_hist[0].shape # mask = np.ones((n_keys, n_queries)) # for i in range(n_queries): # mask[:n_keys - i, -(i + 1)] = 0 mask = np.zeros((n_keys, n_queries)) plot_cache_weights( cache_attn_hist[0], keys=dataset.idx2token[0](cache_id_hist[-1], return_list=True), # fifo # keys=dataset.idx2token[0](cache_id_hist, return_list=True), # dict queries=tokens, save_path=mkdir_join(save_path_cache, spk, batch['utt_ids'][b] + '.png'), figsize=(40, 16), mask=mask) if model.bwd_weight > 0.5: hyp = ' '.join(tokens[::-1]) else: hyp = ' '.join(tokens) logger.info('utt-id: %s' % batch['utt_ids'][b]) logger.info('Ref: %s' % batch['text'][b].lower()) logger.info('Hyp: %s' % hyp) logger.info('-' * 50) if is_new_epoch: break
def main(): args = parse() # Load a conf file if args.resume: conf = load_config( os.path.join(os.path.dirname(args.resume), 'conf.yml')) for k, v in conf.items(): if k != 'resume': setattr(args, k, v) # Load dataset train_set = Dataset(corpus=args.corpus, tsv_path=args.train_set, dict_path=args.dict, nlsyms=args.nlsyms, unit=args.unit, wp_model=args.wp_model, batch_size=args.batch_size * args.n_gpus, n_epochs=args.n_epochs, min_n_tokens=args.min_n_tokens, bptt=args.bptt, backward=args.backward, serialize=args.serialize) dev_set = Dataset(corpus=args.corpus, tsv_path=args.dev_set, dict_path=args.dict, nlsyms=args.nlsyms, unit=args.unit, wp_model=args.wp_model, batch_size=args.batch_size * args.n_gpus, bptt=args.bptt, backward=args.backward, serialize=args.serialize) eval_sets = [] for s in args.eval_sets: eval_sets += [ Dataset(corpus=args.corpus, tsv_path=s, dict_path=args.dict, nlsyms=args.nlsyms, unit=args.unit, wp_model=args.wp_model, batch_size=1, bptt=args.bptt, backward=args.backward, serialize=args.serialize) ] args.vocab = train_set.vocab # Set save path if args.resume: save_path = os.path.dirname(args.resume) dir_name = os.path.basename(save_path) else: dir_name = set_lm_name(args) save_path = mkdir_join( args.model_save_dir, '_'.join(os.path.basename(args.train_set).split('.')[:-1]), dir_name) save_path = set_save_path(save_path) # avoid overwriting # Set logger logger = set_logger(os.path.join(save_path, 'train.log'), key='training', stdout=args.stdout) # Model setting model = select_lm(args, save_path) if args.resume: # Set optimizer epoch = int(args.resume.split('-')[-1]) optimizer = set_optimizer( model, 'sgd' if epoch > conf['convert_to_sgd_epoch'] else conf['optimizer'], conf['lr'], conf['weight_decay']) # Restore the last saved model model, optimizer = load_checkpoint(model, args.resume, optimizer, resume=True) # Resume between convert_to_sgd_epoch -1 and convert_to_sgd_epoch if epoch == conf['convert_to_sgd_epoch']: optimizer = set_optimizer(model, 'sgd', args.lr, conf['weight_decay']) optimizer = LRScheduler(optimizer, args.lr, decay_type='always', decay_start_epoch=0, decay_rate=0.5) logger.info('========== Convert to SGD ==========') else: # Save the conf file as a yaml file save_config(vars(args), os.path.join(save_path, 'conf.yml')) # Save the nlsyms, dictionar, and wp_model if args.nlsyms: shutil.copy(args.nlsyms, os.path.join(save_path, 'nlsyms.txt')) shutil.copy(args.dict, os.path.join(save_path, 'dict.txt')) if args.unit == 'wp': shutil.copy(args.wp_model, os.path.join(save_path, 'wp.model')) for k, v in sorted(vars(args).items(), key=lambda x: x[0]): logger.info('%s: %s' % (k, str(v))) # Count total parameters for n in sorted(list(model.num_params_dict.keys())): n_params = model.num_params_dict[n] logger.info("%s %d" % (n, n_params)) logger.info("Total %.2f M parameters" % (model.total_parameters / 1000000)) logger.info(model) # Set optimizer optimizer = set_optimizer(model, args.optimizer, args.lr, args.weight_decay) # Wrap optimizer by learning rate scheduler optimizer = LRScheduler( optimizer, args.lr, decay_type=args.lr_decay_type, decay_start_epoch=args.lr_decay_start_epoch, decay_rate=args.lr_decay_rate, decay_patient_n_epochs=args.lr_decay_patient_n_epochs, early_stop_patient_n_epochs=args.early_stop_patient_n_epochs, warmup_start_lr=args.warmup_start_lr, warmup_n_steps=args.warmup_n_steps, model_size=args.d_model, factor=args.lr_factor, noam=args.lm_type == 'transformer') # GPU setting if args.n_gpus >= 1: model = CustomDataParallel(model, device_ids=list(range(0, args.n_gpus, 1)), deterministic=False, benchmark=True) model.cuda() # Set process name logger.info('PID: %s' % os.getpid()) logger.info('USERNAME: %s' % os.uname()[1]) setproctitle(args.job_name if args.job_name else dir_name) # Set reporter reporter = Reporter(save_path, tensorboard=True) hidden = None start_time_train = time.time() start_time_epoch = time.time() start_time_step = time.time() pbar_epoch = tqdm(total=len(train_set)) accum_n_tokens = 0 while True: # Compute loss in the training set ys_train, is_new_epoch = train_set.next() accum_n_tokens += sum([len(y) for y in ys_train]) optimizer.zero_grad() loss, hidden, reporter = model(ys_train, hidden, reporter) # loss /= args.accum_grad_n_steps if len(model.device_ids) > 1: loss.backward(torch.ones(len(model.device_ids))) else: loss.backward() loss.detach() # Trancate the graph if args.accum_grad_n_tokens == 0 or accum_n_tokens >= args.accum_grad_n_tokens: if args.clip_grad_norm > 0: torch.nn.utils.clip_grad_norm_(model.module.parameters(), args.clip_grad_norm) optimizer.step() optimizer.zero_grad() accum_n_tokens = 0 loss_train = loss.item() del loss hidden = model.module.repackage_state(hidden) reporter.step() if optimizer.n_steps % args.print_step == 0: # Compute loss in the dev set ys_dev = dev_set.next()[0] loss, _, reporter = model(ys_dev, None, reporter, is_eval=True) loss_dev = loss.item() del loss reporter.step(is_eval=True) duration_step = time.time() - start_time_step logger.info( "step:%d(ep:%.2f) loss:%.3f(%.3f)/ppl:%.3f(%.3f)/lr:%.5f/bs:%d (%.2f min)" % (optimizer.n_steps, optimizer.n_epochs + train_set.epoch_detail, loss_train, loss_dev, np.exp(loss_train), np.exp(loss_dev), optimizer.lr, ys_train.shape[0], duration_step / 60)) start_time_step = time.time() pbar_epoch.update(ys_train.shape[0] * (ys_train.shape[1] - 1)) # Save fugures of loss and accuracy if optimizer.n_steps % (args.print_step * 10) == 0: reporter.snapshot() if args.lm_type == 'transformer': model.module.plot_attention() # Save checkpoint and evaluate model per epoch if is_new_epoch: duration_epoch = time.time() - start_time_epoch logger.info('========== EPOCH:%d (%.2f min) ==========' % (optimizer.n_epochs + 1, duration_epoch / 60)) if optimizer.n_epochs + 1 < args.eval_start_epoch: optimizer.epoch() reporter.epoch() # Save the model save_checkpoint( model, save_path, optimizer, optimizer.n_epochs, remove_old_checkpoints=args.lm_type != 'transformer') else: start_time_eval = time.time() # dev ppl_dev, _ = eval_ppl([model.module], dev_set, batch_size=1, bptt=args.bptt) logger.info('PPL (%s): %.2f' % (dev_set.set, ppl_dev)) optimizer.epoch(ppl_dev) reporter.epoch(ppl_dev, name='perplexity') if optimizer.is_best: # Save the model save_checkpoint( model, save_path, optimizer, optimizer.n_epochs, remove_old_checkpoints=args.lm_type != 'transformer') # test ppl_test_avg = 0. for eval_set in eval_sets: ppl_test, _ = eval_ppl([model.module], eval_set, batch_size=1, bptt=args.bptt) logger.info('PPL (%s): %.2f' % (eval_set.set, ppl_test)) ppl_test_avg += ppl_test if len(eval_sets) > 0: logger.info('PPL (avg.): %.2f' % (ppl_test_avg / len(eval_sets))) duration_eval = time.time() - start_time_eval logger.info('Evaluation time: %.2f min' % (duration_eval / 60)) # Early stopping if optimizer.is_early_stop: break # Convert to fine-tuning stage if optimizer.n_epochs == args.convert_to_sgd_epoch: optimizer = set_optimizer(model, 'sgd', args.lr, args.weight_decay) optimizer = LRScheduler(optimizer, args.lr, decay_type='always', decay_start_epoch=0, decay_rate=0.5) logger.info('========== Convert to SGD ==========') pbar_epoch = tqdm(total=len(train_set)) if optimizer.n_epochs == args.n_epochs: break start_time_step = time.time() start_time_epoch = time.time() duration_train = time.time() - start_time_train logger.info('Total time: %.2f hour' % (duration_train / 3600)) if reporter.tensorboard: reporter.tf_writer.close() pbar_epoch.close() return save_path
def main(): args = parse() # Load a conf file if args.resume: conf = load_config( os.path.join(os.path.dirname(args.resume), 'conf.yml')) for k, v in conf.items(): if k != 'resume': setattr(args, k, v) # Load dataset train_set = Dataset(corpus=args.corpus, tsv_path=args.train_set, dict_path=args.dict, nlsyms=args.nlsyms, unit=args.unit, wp_model=args.wp_model, batch_size=args.batch_size * args.n_gpus, n_epochs=args.n_epochs, min_n_tokens=args.min_n_tokens, bptt=args.bptt, backward=args.backward, serialize=args.serialize) dev_set = Dataset(corpus=args.corpus, tsv_path=args.dev_set, dict_path=args.dict, nlsyms=args.nlsyms, unit=args.unit, wp_model=args.wp_model, batch_size=args.batch_size * args.n_gpus, bptt=args.bptt, backward=args.backward, serialize=args.serialize) eval_sets = [] for s in args.eval_sets: eval_sets += [ Dataset(corpus=args.corpus, tsv_path=s, dict_path=args.dict, nlsyms=args.nlsyms, unit=args.unit, wp_model=args.wp_model, batch_size=1, bptt=args.bptt, backward=args.backward, serialize=args.serialize) ] args.vocab = train_set.vocab # Set save path if args.resume: save_path = os.path.dirname(args.resume) dir_name = os.path.basename(save_path) else: dir_name = make_model_name(args) save_path = mkdir_join( args.model_save_dir, '_'.join(os.path.basename(args.train_set).split('.')[:-1]), dir_name) save_path = set_save_path(save_path) # avoid overwriting # Set logger logger = set_logger(os.path.join(save_path, 'train.log'), key='training') # Model setting model = select_lm(args, save_path) if args.resume: # Set optimizer epoch = int(args.resume.split('-')[-1]) model.set_optimizer( optimizer='sgd' if epoch > conf['convert_to_sgd_epoch'] + 1 else conf['optimizer'], lr=float(conf['learning_rate']), # on-the-fly weight_decay=float(conf['weight_decay'])) # Restore the last saved model model, checkpoint = load_checkpoint(model, args.resume, resume=True) lr_controller = checkpoint['lr_controller'] epoch = checkpoint['epoch'] step = checkpoint['step'] ppl_dev_best = checkpoint['metric_dev_best'] # Resume between convert_to_sgd_epoch and convert_to_sgd_epoch + 1 if epoch == conf['convert_to_sgd_epoch'] + 1: model.set_optimizer(optimizer='sgd', lr=args.learning_rate, weight_decay=float(conf['weight_decay'])) logger.info('========== Convert to SGD ==========') else: # Save the conf file as a yaml file save_config(vars(args), os.path.join(model.save_path, 'conf.yml')) # Save the nlsyms, dictionar, and wp_model if args.nlsyms: shutil.copy(args.nlsyms, os.path.join(model.save_path, 'nlsyms.txt')) shutil.copy(args.dict, os.path.join(model.save_path, 'dict.txt')) if args.unit == 'wp': shutil.copy(args.wp_model, os.path.join(model.save_path, 'wp.model')) for k, v in sorted(vars(args).items(), key=lambda x: x[0]): logger.info('%s: %s' % (k, str(v))) # Count total parameters for n in sorted(list(model.num_params_dict.keys())): nparams = model.num_params_dict[n] logger.info("%s %d" % (n, nparams)) logger.info("Total %.2f M parameters" % (model.total_parameters / 1000000)) logger.info(model) # Set optimizer model.set_optimizer(optimizer=args.optimizer, lr=float(args.learning_rate), weight_decay=float(args.weight_decay), transformer=args.lm_type == 'transformer') epoch, step = 1, 1 ppl_dev_best = 10000 # Set learning rate controller lr_controller = Controller( lr=float(args.learning_rate), decay_type=args.decay_type, decay_start_epoch=args.decay_start_epoch, decay_rate=args.decay_rate, decay_patient_n_epochs=args.decay_patient_n_epochs, lower_better=True, best_value=ppl_dev_best, model_size=args.d_model, warmup_start_lr=args.warmup_start_learning_rate, warmup_n_steps=args.warmup_n_steps, lr_factor=args.learning_rate_factor, transformer=args.lm_type == 'transformer') train_set.epoch = epoch - 1 # start from index:0 # GPU setting if args.n_gpus >= 1: model = CustomDataParallel(model, device_ids=list(range(0, args.n_gpus, 1)), deterministic=False, benchmark=True) model.cuda() logger.info('PID: %s' % os.getpid()) logger.info('USERNAME: %s' % os.uname()[1]) # Set process name if args.job_name: setproctitle(args.job_name) else: setproctitle(dir_name) # Set reporter reporter = Reporter(model.module.save_path, tensorboard=True) hidden = None start_time_train = time.time() start_time_epoch = time.time() start_time_step = time.time() not_improved_epoch = 0 pbar_epoch = tqdm(total=len(train_set)) while True: # Compute loss in the training set ys_train, is_new_epoch = train_set.next() model.module.optimizer.zero_grad() loss, hidden, reporter = model(ys_train, hidden, reporter) if len(model.device_ids) > 1: loss.backward(torch.ones(len(model.device_ids))) else: loss.backward() loss.detach() # Trancate the graph if args.clip_grad_norm > 0: torch.nn.utils.clip_grad_norm_(model.module.parameters(), args.clip_grad_norm) model.module.optimizer.step() loss_train = loss.item() del loss if 'gated_conv' not in args.lm_type and args.lm_type != 'transformer': hidden = model.module.repackage_hidden(hidden) reporter.step(is_eval=False) # Update learning rate if step < args.warmup_n_steps or args.lm_type == 'transformer': model.module.optimizer = lr_controller.warmup( model.module.optimizer, step=step) if step % args.print_step == 0: # Compute loss in the dev set ys_dev = dev_set.next()[0] loss, _, reporter = model(ys_dev, None, reporter, is_eval=True) loss_dev = loss.item() del loss reporter.step(is_eval=True) duration_step = time.time() - start_time_step logger.info( "step:%d(ep:%.2f) loss:%.3f(%.3f)/ppl:%.3f(%.3f)/lr:%.5f/bs:%d (%.2f min)" % (step, train_set.epoch_detail, loss_train, loss_dev, np.exp(loss_train), np.exp(loss_dev), lr_controller.lr, ys_train.shape[0], duration_step / 60)) start_time_step = time.time() step += args.n_gpus pbar_epoch.update(ys_train.shape[0] * (ys_train.shape[1] - 1)) # Save fugures of loss and accuracy if step % (args.print_step * 10) == 0: reporter.snapshot() if args.lm_type == 'transformer': model.module.plot_attention() # Save checkpoint and evaluate model per epoch if is_new_epoch: duration_epoch = time.time() - start_time_epoch logger.info('========== EPOCH:%d (%.2f min) ==========' % (epoch, duration_epoch / 60)) if epoch < args.eval_start_epoch: # Save the model save_checkpoint(model.module, model.module.save_path, lr_controller, epoch, step - 1, ppl_dev_best, remove_old_checkpoints=True) else: start_time_eval = time.time() # dev ppl_dev, _ = eval_ppl([model.module], dev_set, batch_size=1, bptt=args.bptt) logger.info('PPL (%s): %.2f' % (dev_set.set, ppl_dev)) # Update learning rate model.module.optimizer = lr_controller.decay( model.module.optimizer, epoch=epoch, value=ppl_dev) if ppl_dev < ppl_dev_best: ppl_dev_best = ppl_dev not_improved_epoch = 0 logger.info('||||| Best Score |||||') # Save the model save_checkpoint(model.module, model.module.save_path, lr_controller, epoch, step - 1, ppl_dev_best, remove_old_checkpoints=True) # test ppl_test_avg = 0. for eval_set in eval_sets: ppl_test, _ = eval_ppl([model.module], eval_set, batch_size=1, bptt=args.bptt) logger.info('PPL (%s): %.2f' % (eval_set.set, ppl_test)) ppl_test_avg += ppl_test if len(eval_sets) > 0: logger.info('PPL (avg.): %.2f' % (ppl_test_avg / len(eval_sets))) else: not_improved_epoch += 1 duration_eval = time.time() - start_time_eval logger.info('Evaluation time: %.2f min' % (duration_eval / 60)) # Early stopping if not_improved_epoch == args.not_improved_patient_n_epochs: break # Convert to fine-tuning stage if epoch == args.convert_to_sgd_epoch: model.module.set_optimizer('sgd', lr=args.learning_rate, weight_decay=float( args.weight_decay)) lr_controller = Controller(lr=args.learning_rate, decay_type='epoch', decay_start_epoch=epoch, decay_rate=0.5, lower_better=True) logger.info('========== Convert to SGD ==========') pbar_epoch = tqdm(total=len(train_set)) if epoch == args.n_epochs: break start_time_step = time.time() start_time_epoch = time.time() epoch += 1 duration_train = time.time() - start_time_train logger.info('Total time: %.2f hour' % (duration_train / 3600)) if reporter.tensorboard: reporter.tf_writer.close() pbar_epoch.close() return model.module.save_path
def main(): args = parse() args_pt = copy.deepcopy(args) args_teacher = copy.deepcopy(args) # Load a conf file if args.resume: conf = load_config( os.path.join(os.path.dirname(args.resume), 'conf.yml')) for k, v in conf.items(): if k != 'resume': setattr(args, k, v) recog_params = vars(args) # Automatically reduce batch size in multi-GPU setting if args.n_gpus > 1: args.batch_size -= 10 args.print_step //= args.n_gpus # Compute subsampling factor subsample_factor = 1 subsample_factor_sub1 = 1 subsample_factor_sub2 = 1 subsample = [int(s) for s in args.subsample.split('_')] if args.conv_poolings and 'conv' in args.enc_type: for p in args.conv_poolings.split('_'): subsample_factor *= int(p.split(',')[0].replace('(', '')) else: subsample_factor = np.prod(subsample) if args.train_set_sub1: if args.conv_poolings and 'conv' in args.enc_type: subsample_factor_sub1 = subsample_factor * np.prod( subsample[:args.enc_n_layers_sub1 - 1]) else: subsample_factor_sub1 = subsample_factor if args.train_set_sub2: if args.conv_poolings and 'conv' in args.enc_type: subsample_factor_sub2 = subsample_factor * np.prod( subsample[:args.enc_n_layers_sub2 - 1]) else: subsample_factor_sub2 = subsample_factor skip_thought = 'skip' in args.enc_type transformer = 'transformer' in args.enc_type or args.dec_type == 'transformer' # Load dataset train_set = Dataset(corpus=args.corpus, tsv_path=args.train_set, tsv_path_sub1=args.train_set_sub1, tsv_path_sub2=args.train_set_sub2, dict_path=args.dict, dict_path_sub1=args.dict_sub1, dict_path_sub2=args.dict_sub2, nlsyms=args.nlsyms, unit=args.unit, unit_sub1=args.unit_sub1, unit_sub2=args.unit_sub2, wp_model=args.wp_model, wp_model_sub1=args.wp_model_sub1, wp_model_sub2=args.wp_model_sub2, batch_size=args.batch_size * args.n_gpus, n_epochs=args.n_epochs, min_n_frames=args.min_n_frames, max_n_frames=args.max_n_frames, sort_by_input_length=True, short2long=True, sort_stop_epoch=args.sort_stop_epoch, dynamic_batching=args.dynamic_batching, ctc=args.ctc_weight > 0, ctc_sub1=args.ctc_weight_sub1 > 0, ctc_sub2=args.ctc_weight_sub2 > 0, subsample_factor=subsample_factor, subsample_factor_sub1=subsample_factor_sub1, subsample_factor_sub2=subsample_factor_sub2, discourse_aware=args.discourse_aware, skip_thought=skip_thought) dev_set = Dataset(corpus=args.corpus, tsv_path=args.dev_set, tsv_path_sub1=args.dev_set_sub1, tsv_path_sub2=args.dev_set_sub2, dict_path=args.dict, dict_path_sub1=args.dict_sub1, dict_path_sub2=args.dict_sub2, nlsyms=args.nlsyms, unit=args.unit, unit_sub1=args.unit_sub1, unit_sub2=args.unit_sub2, wp_model=args.wp_model, wp_model_sub1=args.wp_model_sub1, wp_model_sub2=args.wp_model_sub2, batch_size=args.batch_size * args.n_gpus, min_n_frames=args.min_n_frames, max_n_frames=args.max_n_frames, shuffle=True if args.discourse_aware else False, ctc=args.ctc_weight > 0, ctc_sub1=args.ctc_weight_sub1 > 0, ctc_sub2=args.ctc_weight_sub2 > 0, subsample_factor=subsample_factor, subsample_factor_sub1=subsample_factor_sub1, subsample_factor_sub2=subsample_factor_sub2, discourse_aware=args.discourse_aware, skip_thought=skip_thought) eval_sets = [] for s in args.eval_sets: eval_sets += [ Dataset(corpus=args.corpus, tsv_path=s, dict_path=args.dict, nlsyms=args.nlsyms, unit=args.unit, wp_model=args.wp_model, batch_size=1, discourse_aware=args.discourse_aware, skip_thought=skip_thought, is_test=True) ] args.vocab = train_set.vocab args.vocab_sub1 = train_set.vocab_sub1 args.vocab_sub2 = train_set.vocab_sub2 args.input_dim = train_set.input_dim # Load a LM conf file for LM fusion & LM initialization if not args.resume and (args.lm_fusion or args.lm_init): if args.lm_fusion: lm_conf = load_config( os.path.join(os.path.dirname(args.lm_fusion), 'conf.yml')) elif args.lm_init: lm_conf = load_config( os.path.join(os.path.dirname(args.lm_init), 'conf.yml')) args.lm_conf = argparse.Namespace() for k, v in lm_conf.items(): setattr(args.lm_conf, k, v) assert args.unit == args.lm_conf.unit assert args.vocab == args.lm_conf.vocab # Set save path if args.resume: save_path = os.path.dirname(args.resume) dir_name = os.path.basename(save_path) else: dir_name = make_model_name(args, subsample_factor) save_path = mkdir_join( args.model_save_dir, '_'.join(os.path.basename(args.train_set).split('.')[:-1]), dir_name) save_path = set_save_path(save_path) # avoid overwriting # Set logger logger = set_logger(os.path.join(save_path, 'train.log'), key='training') # Model setting model = SkipThought(args, save_path) if skip_thought else Speech2Text( args, save_path) if args.resume: # Set optimizer epoch = int(args.resume.split('-')[-1]) model.set_optimizer( optimizer='sgd' if epoch > conf['convert_to_sgd_epoch'] + 1 else conf['optimizer'], lr=float(conf['learning_rate']), # on-the-fly weight_decay=float(conf['weight_decay'])) # Restore the last saved model model, checkpoint = load_checkpoint(model, args.resume, resume=True) lr_controller = checkpoint['lr_controller'] epoch = checkpoint['epoch'] step = checkpoint['step'] metric_dev_best = checkpoint['metric_dev_best'] # Resume between convert_to_sgd_epoch and convert_to_sgd_epoch + 1 if epoch == conf['convert_to_sgd_epoch'] + 1: model.set_optimizer(optimizer='sgd', lr=args.learning_rate, weight_decay=float(conf['weight_decay'])) logger.info('========== Convert to SGD ==========') else: # Save the conf file as a yaml file save_config(vars(args), os.path.join(model.save_path, 'conf.yml')) if args.lm_fusion: save_config(args.lm_conf, os.path.join(model.save_path, 'conf_lm.yml')) # Save the nlsyms, dictionar, and wp_model if args.nlsyms: shutil.copy(args.nlsyms, os.path.join(model.save_path, 'nlsyms.txt')) for sub in ['', '_sub1', '_sub2']: if getattr(args, 'dict' + sub): shutil.copy( getattr(args, 'dict' + sub), os.path.join(model.save_path, 'dict' + sub + '.txt')) if getattr(args, 'unit' + sub) == 'wp': shutil.copy( getattr(args, 'wp_model' + sub), os.path.join(model.save_path, 'wp' + sub + '.model')) for k, v in sorted(vars(args).items(), key=lambda x: x[0]): logger.info('%s: %s' % (k, str(v))) # Count total parameters for n in sorted(list(model.num_params_dict.keys())): nparams = model.num_params_dict[n] logger.info("%s %d" % (n, nparams)) logger.info("Total %.2f M parameters" % (model.total_parameters / 1000000)) logger.info(model) # Initialize with pre-trained model's parameters if args.pretrained_model and os.path.isfile(args.pretrained_model): # Load the ASR model conf_pt = load_config( os.path.join(os.path.dirname(args.pretrained_model), 'conf.yml')) for k, v in conf_pt.items(): setattr(args_pt, k, v) model_pt = Speech2Text(args_pt) model_pt, _ = load_checkpoint(model_pt, args.pretrained_model) # Overwrite parameters only_enc = (args.enc_n_layers != args_pt.enc_n_layers) or ( args.unit != args_pt.unit) or args_pt.ctc_weight == 1 param_dict = dict(model_pt.named_parameters()) for n, p in model.named_parameters(): if n in param_dict.keys() and p.size() == param_dict[n].size(): if only_enc and 'enc' not in n: continue if args.lm_fusion_type == 'cache' and 'output' in n: continue p.data = param_dict[n].data logger.info('Overwrite %s' % n) # Set optimizer model.set_optimizer(optimizer=args.optimizer, lr=float(args.learning_rate), weight_decay=float(args.weight_decay), transformer=transformer) epoch, step = 1, 1 metric_dev_best = 10000 # Set learning rate controller lr_controller = Controller( lr=float(args.learning_rate), decay_type=args.decay_type, decay_start_epoch=args.decay_start_epoch, decay_rate=args.decay_rate, decay_patient_n_epochs=args.decay_patient_n_epochs, lower_better=True, best_value=metric_dev_best, model_size=args.d_model, warmup_start_lr=args.warmup_start_learning_rate, warmup_n_steps=args.warmup_n_steps, lr_factor=args.learning_rate_factor, transformer=transformer) train_set.epoch = epoch - 1 # start from index:0 # Load the teacher ASR model teacher = None teacher_lm = None if args.teacher and os.path.isfile(args.teacher): conf_teacher = load_config( os.path.join(os.path.dirname(args.teacher), 'conf.yml')) for k, v in conf_teacher.items(): setattr(args_teacher, k, v) # Setting for knowledge distillation args_teacher.ss_prob = 0 args.lsm_prob = 0 teacher = Speech2Text(args_teacher) teacher, _ = load_checkpoint(teacher, args.teacher) # Load the teacher LM if args.teacher_lm and os.path.isfile(args.teacher_lm): conf_lm = load_config( os.path.join(os.path.dirname(args.teacher_lm), 'conf.yml')) args_lm = argparse.Namespace() for k, v in conf_lm.items(): setattr(args_lm, k, v) teacher_lm = select_lm(args_lm) teacher_lm, _ = load_checkpoint(teacher_lm, args.teacher_lm) # GPU setting if args.n_gpus >= 1: model = CustomDataParallel(model, device_ids=list(range(0, args.n_gpus, 1)), deterministic=False, benchmark=True) model.cuda() if teacher is not None: teacher.cuda() if teacher_lm is not None: teacher_lm.cuda() logger.info('PID: %s' % os.getpid()) logger.info('USERNAME: %s' % os.uname()[1]) # Set process name if args.job_name: setproctitle(args.job_name) else: setproctitle(dir_name) # Set reporter reporter = Reporter(model.module.save_path, tensorboard=True) if args.mtl_per_batch: # NOTE: from easier to harder tasks tasks = [] if 1 - args.bwd_weight - args.ctc_weight - args.sub1_weight - args.sub2_weight > 0: tasks += ['ys'] if args.bwd_weight > 0: tasks = ['ys.bwd'] + tasks if args.ctc_weight > 0: tasks = ['ys.ctc'] + tasks if args.lmobj_weight > 0: tasks = ['ys.lmobj'] + tasks for sub in ['sub1', 'sub2']: if getattr(args, 'train_set_' + sub): if getattr(args, sub + '_weight') - getattr( args, 'ctc_weight_' + sub) > 0: tasks = ['ys_' + sub] + tasks if getattr(args, 'ctc_weight_' + sub) > 0: tasks = ['ys_' + sub + '.ctc'] + tasks else: tasks = ['all'] start_time_train = time.time() start_time_epoch = time.time() start_time_step = time.time() not_improved_n_epochs = 0 pbar_epoch = tqdm(total=len(train_set)) accum_n_tokens = 0 while True: # Compute loss in the training set batch_train, is_new_epoch = train_set.next() accum_n_tokens += sum([len(y) for y in batch_train['ys']]) # Change tasks depending on task for task in tasks: if skip_thought: loss, reporter = model(batch_train['ys'], ys_prev=batch_train['ys_prev'], ys_next=batch_train['ys_next'], reporter=reporter) else: loss, reporter = model(batch_train, reporter=reporter, task=task, teacher=teacher, teacher_lm=teacher_lm) # loss /= args.accum_grad_n_steps if len(model.device_ids) > 1: loss.backward(torch.ones(len(model.device_ids))) else: loss.backward() loss.detach() # Trancate the graph if args.accum_grad_n_tokens == 0 or accum_n_tokens >= args.accum_grad_n_tokens: if args.clip_grad_norm > 0: torch.nn.utils.clip_grad_norm_(model.module.parameters(), args.clip_grad_norm) model.module.optimizer.step() model.module.optimizer.zero_grad() accum_n_tokens = 0 loss_train = loss.item() del loss reporter.step(is_eval=False) # Update learning rate if step < args.warmup_n_steps or transformer: model.module.optimizer = lr_controller.warmup( model.module.optimizer, step=step) if step % args.print_step == 0: # Compute loss in the dev set batch_dev = dev_set.next()[0] # Change tasks depending on task for task in tasks: if skip_thought: loss, reporter = model(batch_dev['ys'], ys_prev=batch_dev['ys_prev'], ys_next=batch_dev['ys_next'], reporter=reporter, is_eval=True) else: loss, reporter = model(batch_dev, reporter=reporter, task=task, is_eval=True) loss_dev = loss.item() del loss reporter.step(is_eval=True) duration_step = time.time() - start_time_step if args.input_type == 'speech': xlen = max(len(x) for x in batch_train['xs']) ylen = max(len(y) for y in batch_train['ys']) elif args.input_type == 'text': xlen = max(len(x) for x in batch_train['ys']) ylen = max(len(y) for y in batch_train['ys_sub1']) logger.info( "step:%d(ep:%.2f) loss:%.3f(%.3f)/lr:%.5f/bs:%d/xlen:%d/ylen:%d (%.2f min)" % (step, train_set.epoch_detail, loss_train, loss_dev, lr_controller.lr, len(batch_train['utt_ids']), xlen, ylen, duration_step / 60)) start_time_step = time.time() step += args.n_gpus pbar_epoch.update(len(batch_train['utt_ids'])) # Save fugures of loss and accuracy if step % (args.print_step * 10) == 0: reporter.snapshot() model.module.plot_attention() # Save checkpoint and evaluate model per epoch if is_new_epoch: duration_epoch = time.time() - start_time_epoch logger.info('========== EPOCH:%d (%.2f min) ==========' % (epoch, duration_epoch / 60)) if epoch < args.eval_start_epoch: # Save the model save_checkpoint(model.module, model.module.save_path, lr_controller, epoch, step - 1, metric_dev_best, remove_old_checkpoints=True) reporter._epoch += 1 # TODO(hirofumi): fix later else: start_time_eval = time.time() # dev if args.metric == 'edit_distance': if args.unit in ['word', 'word_char']: metric_dev = eval_word([model.module], dev_set, recog_params, epoch=epoch)[0] logger.info('WER (%s): %.2f %%' % (dev_set.set, metric_dev)) elif args.unit == 'wp': metric_dev, cer_dev = eval_wordpiece([model.module], dev_set, recog_params, epoch=epoch) logger.info('WER (%s): %.2f %%' % (dev_set.set, metric_dev)) logger.info('CER (%s): %.2f %%' % (dev_set.set, cer_dev)) elif 'char' in args.unit: metric_dev, cer_dev = eval_char([model.module], dev_set, recog_params, epoch=epoch) logger.info('WER (%s): %.2f %%' % (dev_set.set, metric_dev)) logger.info('CER (%s): %.2f %%' % (dev_set.set, cer_dev)) elif 'phone' in args.unit: metric_dev = eval_phone([model.module], dev_set, recog_params, epoch=epoch) logger.info('PER (%s): %.2f %%' % (dev_set.set, metric_dev)) elif args.metric == 'ppl': metric_dev = eval_ppl([model.module], dev_set, batch_size=args.batch_size)[0] logger.info('PPL (%s): %.2f' % (dev_set.set, metric_dev)) elif args.metric == 'loss': metric_dev = eval_ppl([model.module], dev_set, batch_size=args.batch_size)[1] logger.info('Loss (%s): %.2f' % (dev_set.set, metric_dev)) else: raise NotImplementedError(args.metric) reporter.epoch(metric_dev) # Update learning rate model.module.optimizer = lr_controller.decay( model.module.optimizer, epoch=epoch, value=metric_dev) if metric_dev < metric_dev_best: metric_dev_best = metric_dev not_improved_n_epochs = 0 logger.info('||||| Best Score |||||') # Save the model save_checkpoint(model.module, model.module.save_path, lr_controller, epoch, step - 1, metric_dev_best, remove_old_checkpoints=True) # test for s in eval_sets: if args.metric == 'edit_distance': if args.unit in ['word', 'word_char']: wer_test = eval_word([model.module], s, recog_params, epoch=epoch)[0] logger.info('WER (%s): %.2f %%' % (s.set, wer_test)) elif args.unit == 'wp': wer_test, cer_test = eval_wordpiece( [model.module], s, recog_params, epoch=epoch) logger.info('WER (%s): %.2f %%' % (s.set, wer_test)) logger.info('CER (%s): %.2f %%' % (s.set, cer_test)) elif 'char' in args.unit: wer_test, cer_test = eval_char([model.module], s, recog_params, epoch=epoch) logger.info('WER (%s): %.2f %%' % (s.set, wer_test)) logger.info('CER (%s): %.2f %%' % (s.set, cer_test)) elif 'phone' in args.unit: per_test = eval_phone([model.module], s, recog_params, epoch=epoch) logger.info('PER (%s): %.2f %%' % (s.set, per_test)) elif args.metric == 'ppl': ppl_test = eval_ppl([model.module], s, batch_size=args.batch_size)[0] logger.info('PPL (%s): %.2f' % (s.set, ppl_test)) elif args.metric == 'loss': loss_test = eval_ppl([model.module], s, batch_size=args.batch_size)[1] logger.info('Loss (%s): %.2f' % (s.set, loss_test)) else: raise NotImplementedError(args.metric) else: not_improved_n_epochs += 1 # start scheduled sampling if args.ss_prob > 0: model.module.scheduled_sampling_trigger() duration_eval = time.time() - start_time_eval logger.info('Evaluation time: %.2f min' % (duration_eval / 60)) # Early stopping if not_improved_n_epochs == args.not_improved_patient_n_epochs: break # Convert to fine-tuning stage if epoch == args.convert_to_sgd_epoch: model.module.set_optimizer('sgd', lr=args.learning_rate, weight_decay=float( args.weight_decay)) lr_controller = Controller(lr=args.learning_rate, decay_type='epoch', decay_start_epoch=epoch, decay_rate=0.5, lower_better=True) logger.info('========== Convert to SGD ==========') pbar_epoch = tqdm(total=len(train_set)) if epoch == args.n_epochs: break start_time_step = time.time() start_time_epoch = time.time() epoch += 1 duration_train = time.time() - start_time_train logger.info('Total time: %.2f hour' % (duration_train / 3600)) if reporter.tensorboard: reporter.tf_writer.close() pbar_epoch.close() return model.module.save_path
def main(): args = parse() # Load a conf file dir_name = os.path.dirname(args.recog_model[0]) conf = load_config(os.path.join(dir_name, 'conf.yml')) # Overwrite conf for k, v in conf.items(): if 'recog' not in k: setattr(args, k, v) # Setting for logging if os.path.isfile(os.path.join(args.recog_dir, 'plot.log')): os.remove(os.path.join(args.recog_dir, 'plot.log')) logger = set_logger(os.path.join(args.recog_dir, 'plot.log'), key='decoding') for i, s in enumerate(args.recog_sets): # Load dataset dataset = Dataset(corpus=args.corpus, tsv_path=s, dict_path=os.path.join(dir_name, 'dict.txt'), wp_model=os.path.join(dir_name, 'wp.model'), unit=args.unit, batch_size=args.recog_batch_size, bptt=args.bptt, backward=args.backward, serialize=args.serialize, is_test=True) if i == 0: # Load the LM model = select_lm(args, dir_name) model, checkpoint = load_checkpoint(model, args.recog_model[0]) epoch = checkpoint['epoch'] logger.info('epoch: %d' % (epoch - 1)) logger.info('batch size: %d' % args.recog_batch_size) # logger.info('recog unit: %s' % args.recog_unit) # logger.info('ensemble: %d' % (len(ensemble_models))) logger.info('BPTT: %d' % (args.bptt)) logger.info('cache size: %d' % (args.recog_n_caches)) logger.info('cache theta: %.3f' % (args.recog_cache_theta)) logger.info('cache lambda: %.3f' % (args.recog_cache_lambda)) model.cache_theta = args.recog_cache_theta model.cache_lambda = args.recog_cache_lambda # GPU setting model.cuda() assert args.recog_n_caches > 0 save_path = mkdir_join(args.recog_dir, 'cache') # Clean directory if save_path is not None and os.path.isdir(save_path): shutil.rmtree(save_path) os.mkdir(save_path) hidden = None fig_count = 0 toknen_count = 0 n_tokens = args.recog_n_caches while True: ys, is_new_epoch = dataset.next() for t in range(ys.shape[1] - 1): loss, hidden = model(ys[:, t:t + 2], hidden, is_eval=True, n_caches=args.recog_n_caches)[:2] if len(model.cache_attn) > 0: if toknen_count == n_tokens: tokens_keys = dataset.idx2token[0]( model.cache_ids[:args.recog_n_caches], return_list=True) tokens_query = dataset.idx2token[0]( model.cache_ids[-n_tokens:], return_list=True) # Slide attention matrix n_keys = len(tokens_keys) n_queries = len(tokens_query) cache_probs = np.zeros( (n_keys, n_queries)) # `[n_keys, n_queries]` mask = np.zeros((n_keys, n_queries)) for i, aw in enumerate(model.cache_attn[-n_tokens:]): cache_probs[:(n_keys - n_queries + i + 1), i] = aw[0, -(n_keys - n_queries + i + 1):] mask[(n_keys - n_queries + i + 1):, i] = 1 plot_cache_weights(cache_probs, keys=tokens_keys, queries=tokens_query, save_path=mkdir_join( save_path, str(fig_count) + '.png'), figsize=(40, 16), mask=mask) toknen_count = 0 fig_count += 1 else: toknen_count += 1 if is_new_epoch: break