예제 #1
0
def main():

    args = parse()

    # Load a conf file
    dir_name = os.path.dirname(args.recog_model[0])
    conf = load_config(os.path.join(dir_name, 'conf.yml'))

    # Overwrite conf
    for k, v in conf.items():
        if 'recog' not in k:
            setattr(args, k, v)

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'decode.log')):
        os.remove(os.path.join(args.recog_dir, 'decode.log'))
    logger = set_logger(os.path.join(args.recog_dir, 'decode.log'),
                        key='decoding')

    ppl_avg = 0
    for i, s in enumerate(args.recog_sets):
        # Load dataset
        dataset = Dataset(corpus=args.corpus,
                          tsv_path=s,
                          dict_path=os.path.join(dir_name, 'dict.txt'),
                          wp_model=os.path.join(dir_name, 'wp.model'),
                          unit=args.unit,
                          batch_size=args.recog_batch_size,
                          bptt=args.bptt,
                          backward=args.backward,
                          serialize=args.serialize,
                          is_test=True)

        if i == 0:
            # Load the LM
            model = select_lm(args)
            model, checkpoint = load_checkpoint(model, args.recog_model[0])
            epoch = checkpoint['epoch']
            model.save_path = dir_name

            logger.info('epoch: %d' % (epoch - 1))
            logger.info('batch size: %d' % args.recog_batch_size)
            # logger.info('recog unit: %s' % args.recog_unit)
            # logger.info('ensemble: %d' % (len(ensemble_models)))
            logger.info('BPTT: %d' % (args.bptt))
            logger.info('cache size: %d' % (args.recog_n_caches))
            logger.info('cache theta: %.3f' % (args.recog_cache_theta))
            logger.info('cache lambda: %.3f' % (args.recog_cache_lambda))
            model.cache_theta = args.recog_cache_theta
            model.cache_lambda = args.recog_cache_lambda

            # GPU setting
            model.cuda()

        start_time = time.time()

        # TODO(hirofumi): ensemble
        ppl, _ = eval_ppl([model],
                          dataset,
                          batch_size=1,
                          bptt=args.bptt,
                          n_caches=args.recog_n_caches,
                          progressbar=True)
        ppl_avg += ppl
        print('PPL (%s): %.2f' % (dataset.set, ppl))
        logger.info('Elasped time: %.2f [sec]:' % (time.time() - start_time))

    logger.info('PPL (avg.): %.2f\n' % (ppl_avg / len(args.recog_sets)))
예제 #2
0
파일: eval.py 프로젝트: fireae/neural_sp
def main():

    args = parse()

    # Load a conf file
    dir_name = os.path.dirname(args.recog_model[0])
    conf = load_config(os.path.join(dir_name, 'conf.yml'))

    # Overwrite conf
    for k, v in conf.items():
        if 'recog' not in k:
            setattr(args, k, v)
    recog_params = vars(args)

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'decode.log')):
        os.remove(os.path.join(args.recog_dir, 'decode.log'))
    logger = set_logger(os.path.join(args.recog_dir, 'decode.log'),
                        key='decoding')

    skip_thought = 'skip' in args.enc_type

    wer_avg, cer_avg, per_avg = 0, 0, 0
    ppl_avg, loss_avg = 0, 0
    for i, s in enumerate(args.recog_sets):
        # Load dataset
        dataset = Dataset(
            corpus=args.corpus,
            tsv_path=s,
            dict_path=os.path.join(dir_name, 'dict.txt'),
            dict_path_sub1=os.path.join(dir_name, 'dict_sub1.txt') if
            os.path.isfile(os.path.join(dir_name, 'dict_sub1.txt')) else False,
            dict_path_sub2=os.path.join(dir_name, 'dict_sub2.txt') if
            os.path.isfile(os.path.join(dir_name, 'dict_sub2.txt')) else False,
            nlsyms=os.path.join(dir_name, 'nlsyms.txt'),
            wp_model=os.path.join(dir_name, 'wp.model'),
            wp_model_sub1=os.path.join(dir_name, 'wp_sub1.model'),
            wp_model_sub2=os.path.join(dir_name, 'wp_sub2.model'),
            unit=args.unit,
            unit_sub1=args.unit_sub1,
            unit_sub2=args.unit_sub2,
            batch_size=args.recog_batch_size,
            skip_thought=skip_thought,
            is_test=True)

        if i == 0:
            # Load the ASR model
            if skip_thought:
                model = SkipThought(args, dir_name)
            else:
                model = Speech2Text(args, dir_name)
            model, checkpoint = load_checkpoint(model, args.recog_model[0])
            epoch = checkpoint['epoch']

            # ensemble (different models)
            ensemble_models = [model]
            if len(args.recog_model) > 1:
                for recog_model_e in args.recog_model[1:]:
                    conf_e = load_config(
                        os.path.join(os.path.dirname(recog_model_e),
                                     'conf.yml'))
                    args_e = copy.deepcopy(args)
                    for k, v in conf_e.items():
                        if 'recog' not in k:
                            setattr(args_e, k, v)
                    model_e = Speech2Text(args_e)
                    model_e, _ = load_checkpoint(model_e, recog_model_e)
                    model_e.cuda()
                    ensemble_models += [model_e]

            # Load the LM for shallow fusion
            if not args.lm_fusion:
                if args.recog_lm is not None and args.recog_lm_weight > 0:
                    conf_lm = load_config(
                        os.path.join(os.path.dirname(args.recog_lm),
                                     'conf.yml'))
                    args_lm = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm, k, v)
                    lm = select_lm(args_lm)
                    lm, _ = load_checkpoint(lm, args.recog_lm)
                    if args_lm.backward:
                        model.lm_bwd = lm
                    else:
                        model.lm_fwd = lm

                if args.recog_lm_bwd is not None and args.recog_lm_weight > 0 \
                        and (args.recog_fwd_bwd_attention or args.recog_reverse_lm_rescoring):
                    conf_lm = load_config(
                        os.path.join(os.path.dirname(args.recog_lm_bwd),
                                     'conf.yml'))
                    args_lm_bwd = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm_bwd, k, v)
                    lm_bwd = select_lm(args_lm_bwd)
                    lm_bwd, _ = load_checkpoint(lm_bwd, args.recog_lm_bwd)
                    model.lm_bwd = lm_bwd

            if not args.recog_unit:
                args.recog_unit = args.unit

            logger.info('recog unit: %s' % args.recog_unit)
            logger.info('recog metric: %s' % args.recog_metric)
            logger.info('recog oracle: %s' % args.recog_oracle)
            logger.info('epoch: %d' % (epoch - 1))
            logger.info('batch size: %d' % args.recog_batch_size)
            logger.info('beam width: %d' % args.recog_beam_width)
            logger.info('min length ratio: %.3f' % args.recog_min_len_ratio)
            logger.info('max length ratio: %.3f' % args.recog_max_len_ratio)
            logger.info('length penalty: %.3f' % args.recog_length_penalty)
            logger.info('coverage penalty: %.3f' % args.recog_coverage_penalty)
            logger.info('coverage threshold: %.3f' %
                        args.recog_coverage_threshold)
            logger.info('CTC weight: %.3f' % args.recog_ctc_weight)
            logger.info('LM path: %s' % args.recog_lm)
            logger.info('LM path (bwd): %s' % args.recog_lm_bwd)
            logger.info('LM weight: %.3f' % args.recog_lm_weight)
            logger.info('GNMT: %s' % args.recog_gnmt_decoding)
            logger.info('forward-backward attention: %s' %
                        args.recog_fwd_bwd_attention)
            logger.info('reverse LM rescoring: %s' %
                        args.recog_reverse_lm_rescoring)
            logger.info('resolving UNK: %s' % args.recog_resolving_unk)
            logger.info('ensemble: %d' % (len(ensemble_models)))
            logger.info('ASR decoder state carry over: %s' %
                        (args.recog_asr_state_carry_over))
            logger.info('LM state carry over: %s' %
                        (args.recog_lm_state_carry_over))
            logger.info('cache size: %d' % (args.recog_n_caches))
            logger.info('cache type: %s' % (args.recog_cache_type))
            logger.info('cache word frequency threshold: %s' %
                        (args.recog_cache_word_freq))
            logger.info('cache theta (speech): %.3f' %
                        (args.recog_cache_theta_speech))
            logger.info('cache lambda (speech): %.3f' %
                        (args.recog_cache_lambda_speech))
            logger.info('cache theta (lm): %.3f' % (args.recog_cache_theta_lm))
            logger.info('cache lambda (lm): %.3f' %
                        (args.recog_cache_lambda_lm))

            # GPU setting
            model.cuda()

        start_time = time.time()

        if args.recog_metric == 'edit_distance':
            if args.recog_unit in ['word', 'word_char']:
                wer, cer, _ = eval_word(ensemble_models,
                                        dataset,
                                        recog_params,
                                        epoch=epoch - 1,
                                        recog_dir=args.recog_dir,
                                        progressbar=True)
                wer_avg += wer
                cer_avg += cer
            elif args.recog_unit == 'wp':
                wer, cer = eval_wordpiece(ensemble_models,
                                          dataset,
                                          recog_params,
                                          epoch=epoch - 1,
                                          recog_dir=args.recog_dir,
                                          progressbar=True)
                wer_avg += wer
                cer_avg += cer
            elif 'char' in args.recog_unit:
                wer, cer = eval_char(ensemble_models,
                                     dataset,
                                     recog_params,
                                     epoch=epoch - 1,
                                     recog_dir=args.recog_dir,
                                     progressbar=True,
                                     task_idx=0)
                #  task_idx=1 if args.recog_unit and 'char' in args.recog_unit else 0)
                wer_avg += wer
                cer_avg += cer
            elif 'phone' in args.recog_unit:
                per = eval_phone(ensemble_models,
                                 dataset,
                                 recog_params,
                                 epoch=epoch - 1,
                                 recog_dir=args.recog_dir,
                                 progressbar=True)
                per_avg += per
            else:
                raise ValueError(args.recog_unit)
        elif args.recog_metric == 'acc':
            raise NotImplementedError
        elif args.recog_metric in ['ppl', 'loss']:
            ppl, loss = eval_ppl(ensemble_models,
                                 dataset,
                                 recog_params=recog_params,
                                 progressbar=True)
            ppl_avg += ppl
            loss_avg += loss
        elif args.recog_metric == 'bleu':
            raise NotImplementedError
        else:
            raise NotImplementedError
        logger.info('Elasped time: %.2f [sec]:' % (time.time() - start_time))

    if args.recog_metric == 'edit_distance':
        if 'phone' in args.recog_unit:
            logger.info('PER (avg.): %.2f %%\n' %
                        (per_avg / len(args.recog_sets)))
        else:
            logger.info('WER / CER (avg.): %.2f / %.2f %%\n' %
                        (wer_avg / len(args.recog_sets),
                         cer_avg / len(args.recog_sets)))
    elif args.recog_metric in ['ppl', 'loss']:
        logger.info('PPL (avg.): %.2f\n' % (ppl_avg / len(args.recog_sets)))
        print('PPL (avg.): %.2f' % (ppl_avg / len(args.recog_sets)))
        logger.info('Loss (avg.): %.2f\n' % (loss_avg / len(args.recog_sets)))
        print('Loss (avg.): %.2f' % (loss_avg / len(args.recog_sets)))
예제 #3
0
def main():

    args = parse()

    # Load a conf file
    dir_name = os.path.dirname(args.recog_model[0])
    conf = load_config(os.path.join(dir_name, 'conf.yml'))

    # Overwrite conf
    for k, v in conf.items():
        if 'recog' not in k:
            setattr(args, k, v)
    recog_params = vars(args)

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'plot.log')):
        os.remove(os.path.join(args.recog_dir, 'plot.log'))
    logger = set_logger(os.path.join(args.recog_dir, 'plot.log'),
                        key='decoding')

    for i, s in enumerate(args.recog_sets):
        # Load dataset
        dataset = Dataset(
            corpus=args.corpus,
            tsv_path=s,
            dict_path=os.path.join(dir_name, 'dict.txt'),
            dict_path_sub1=os.path.join(dir_name, 'dict_sub1.txt') if
            os.path.isfile(os.path.join(dir_name, 'dict_sub1.txt')) else False,
            nlsyms=args.nlsyms,
            wp_model=os.path.join(dir_name, 'wp.model'),
            unit=args.unit,
            unit_sub1=args.unit_sub1,
            batch_size=args.recog_batch_size,
            is_test=True)

        if i == 0:
            # Load the ASR model
            model = Speech2Text(args, dir_name)
            model, checkpoint = load_checkpoint(model, args.recog_model[0])
            epoch = checkpoint['epoch']

            # ensemble (different models)
            ensemble_models = [model]
            if len(args.recog_model) > 1:
                for recog_model_e in args.recog_model[1:]:
                    # Load the ASR model
                    conf_e = load_config(
                        os.path.join(os.path.dirname(recog_model_e),
                                     'conf.yml'))
                    args_e = copy.deepcopy(args)
                    for k, v in conf_e.items():
                        if 'recog' not in k:
                            setattr(args_e, k, v)
                    model_e = Speech2Text(args_e)
                    model_e, _ = load_checkpoint(model_e, recog_model_e)
                    model_e.cuda()
                    ensemble_models += [model_e]

            # Load the LM for shallow fusion
            if not args.lm_fusion:
                if args.recog_lm is not None and args.recog_lm_weight > 0:
                    conf_lm = load_config(
                        os.path.join(os.path.dirname(args.recog_lm),
                                     'conf.yml'))
                    args_lm = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm, k, v)
                    lm = select_lm(args_lm)
                    lm, _ = load_checkpoint(lm, args.recog_lm)
                    if args_lm.backward:
                        model.lm_bwd = lm
                    else:
                        model.lm_fwd = lm

                if args.recog_lm_bwd is not None and args.recog_lm_weight > 0 and \
                        (args.recog_fwd_bwd_attention or args.recog_reverse_lm_rescoring):
                    conf_lm = load_config(
                        os.path.join(args.recog_lm_bwd, 'conf.yml'))
                    args_lm_bwd = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm_bwd, k, v)
                    lm_bwd = select_lm(args_lm_bwd)
                    lm_bwd, _ = load_checkpoint(lm_bwd, args.recog_lm_bwd)
                    model.lm_bwd = lm_bwd

            if not args.recog_unit:
                args.recog_unit = args.unit

            logger.info('recog unit: %s' % args.recog_unit)
            logger.info('recog metric: %s' % args.recog_metric)
            logger.info('recog oracle: %s' % args.recog_oracle)
            logger.info('epoch: %d' % (epoch - 1))
            logger.info('batch size: %d' % args.recog_batch_size)
            logger.info('beam width: %d' % args.recog_beam_width)
            logger.info('min length ratio: %.3f' % args.recog_min_len_ratio)
            logger.info('max length ratio: %.3f' % args.recog_max_len_ratio)
            logger.info('length penalty: %.3f' % args.recog_length_penalty)
            logger.info('coverage penalty: %.3f' % args.recog_coverage_penalty)
            logger.info('coverage threshold: %.3f' %
                        args.recog_coverage_threshold)
            logger.info('CTC weight: %.3f' % args.recog_ctc_weight)
            logger.info('LM path: %s' % args.recog_lm)
            logger.info('LM path (bwd): %s' % args.recog_lm_bwd)
            logger.info('LM weight: %.3f' % args.recog_lm_weight)
            logger.info('GNMT: %s' % args.recog_gnmt_decoding)
            logger.info('forward-backward attention: %s' %
                        args.recog_fwd_bwd_attention)
            logger.info('reverse LM rescoring: %s' %
                        args.recog_reverse_lm_rescoring)
            logger.info('resolving UNK: %s' % args.recog_resolving_unk)
            logger.info('ensemble: %d' % (len(ensemble_models)))
            logger.info('ASR decoder state carry over: %s' %
                        (args.recog_asr_state_carry_over))
            logger.info('LM state carry over: %s' %
                        (args.recog_lm_state_carry_over))
            logger.info('cache size: %d' % (args.recog_n_caches))
            logger.info('cache type: %s' % (args.recog_cache_type))
            logger.info('cache word frequency threshold: %s' %
                        (args.recog_cache_word_freq))
            logger.info('cache theta (speech): %.3f' %
                        (args.recog_cache_theta_speech))
            logger.info('cache lambda (speech): %.3f' %
                        (args.recog_cache_lambda_speech))
            logger.info('cache theta (lm): %.3f' % (args.recog_cache_theta_lm))
            logger.info('cache lambda (lm): %.3f' %
                        (args.recog_cache_lambda_lm))

            # GPU setting
            model.cuda()
            # TODO(hirofumi): move this

        save_path = mkdir_join(args.recog_dir, 'att_weights')
        if args.recog_n_caches > 0:
            save_path_cache = mkdir_join(args.recog_dir, 'cache')

        # Clean directory
        if save_path is not None and os.path.isdir(save_path):
            shutil.rmtree(save_path)
            os.mkdir(save_path)
            if args.recog_n_caches > 0:
                shutil.rmtree(save_path_cache)
                os.mkdir(save_path_cache)

        while True:
            batch, is_new_epoch = dataset.next(
                recog_params['recog_batch_size'])
            best_hyps_id, aws, (cache_attn_hist, cache_id_hist) = model.decode(
                batch['xs'],
                recog_params,
                dataset.idx2token[0],
                exclude_eos=False,
                refs_id=batch['ys'],
                ensemble_models=ensemble_models[1:]
                if len(ensemble_models) > 1 else [],
                speakers=batch['sessions']
                if dataset.corpus == 'swbd' else batch['speakers'])

            if model.bwd_weight > 0.5:
                # Reverse the order
                best_hyps_id = [hyp[::-1] for hyp in best_hyps_id]
                aws = [aw[::-1] for aw in aws]

            for b in range(len(batch['xs'])):
                tokens = dataset.idx2token[0](best_hyps_id[b],
                                              return_list=True)
                spk = batch['speakers'][b]

                plot_attention_weights(
                    aws[b][:len(tokens)],
                    tokens,
                    spectrogram=batch['xs'][b][:, :dataset.input_dim]
                    if args.input_type == 'speech' else None,
                    save_path=mkdir_join(save_path, spk,
                                         batch['utt_ids'][b] + '.png'),
                    figsize=(20, 8))

                if args.recog_n_caches > 0 and cache_id_hist is not None and cache_attn_hist is not None:
                    n_keys, n_queries = cache_attn_hist[0].shape
                    # mask = np.ones((n_keys, n_queries))
                    # for i in range(n_queries):
                    #     mask[:n_keys - i, -(i + 1)] = 0
                    mask = np.zeros((n_keys, n_queries))

                    plot_cache_weights(
                        cache_attn_hist[0],
                        keys=dataset.idx2token[0](cache_id_hist[-1],
                                                  return_list=True),  # fifo
                        # keys=dataset.idx2token[0](cache_id_hist, return_list=True),  # dict
                        queries=tokens,
                        save_path=mkdir_join(save_path_cache, spk,
                                             batch['utt_ids'][b] + '.png'),
                        figsize=(40, 16),
                        mask=mask)

                if model.bwd_weight > 0.5:
                    hyp = ' '.join(tokens[::-1])
                else:
                    hyp = ' '.join(tokens)
                logger.info('utt-id: %s' % batch['utt_ids'][b])
                logger.info('Ref: %s' % batch['text'][b].lower())
                logger.info('Hyp: %s' % hyp)
                logger.info('-' * 50)

            if is_new_epoch:
                break
예제 #4
0
def main():

    args = parse()

    # Load a conf file
    if args.resume:
        conf = load_config(
            os.path.join(os.path.dirname(args.resume), 'conf.yml'))
        for k, v in conf.items():
            if k != 'resume':
                setattr(args, k, v)

    # Load dataset
    train_set = Dataset(corpus=args.corpus,
                        tsv_path=args.train_set,
                        dict_path=args.dict,
                        nlsyms=args.nlsyms,
                        unit=args.unit,
                        wp_model=args.wp_model,
                        batch_size=args.batch_size * args.n_gpus,
                        n_epochs=args.n_epochs,
                        min_n_tokens=args.min_n_tokens,
                        bptt=args.bptt,
                        backward=args.backward,
                        serialize=args.serialize)
    dev_set = Dataset(corpus=args.corpus,
                      tsv_path=args.dev_set,
                      dict_path=args.dict,
                      nlsyms=args.nlsyms,
                      unit=args.unit,
                      wp_model=args.wp_model,
                      batch_size=args.batch_size * args.n_gpus,
                      bptt=args.bptt,
                      backward=args.backward,
                      serialize=args.serialize)
    eval_sets = []
    for s in args.eval_sets:
        eval_sets += [
            Dataset(corpus=args.corpus,
                    tsv_path=s,
                    dict_path=args.dict,
                    nlsyms=args.nlsyms,
                    unit=args.unit,
                    wp_model=args.wp_model,
                    batch_size=1,
                    bptt=args.bptt,
                    backward=args.backward,
                    serialize=args.serialize)
        ]

    args.vocab = train_set.vocab

    # Set save path
    if args.resume:
        save_path = os.path.dirname(args.resume)
        dir_name = os.path.basename(save_path)
    else:
        dir_name = set_lm_name(args)
        save_path = mkdir_join(
            args.model_save_dir,
            '_'.join(os.path.basename(args.train_set).split('.')[:-1]),
            dir_name)
        save_path = set_save_path(save_path)  # avoid overwriting

    # Set logger
    logger = set_logger(os.path.join(save_path, 'train.log'),
                        key='training',
                        stdout=args.stdout)

    # Model setting
    model = select_lm(args, save_path)

    if args.resume:
        # Set optimizer
        epoch = int(args.resume.split('-')[-1])
        optimizer = set_optimizer(
            model, 'sgd' if epoch > conf['convert_to_sgd_epoch'] else
            conf['optimizer'], conf['lr'], conf['weight_decay'])

        # Restore the last saved model
        model, optimizer = load_checkpoint(model,
                                           args.resume,
                                           optimizer,
                                           resume=True)

        # Resume between convert_to_sgd_epoch -1 and convert_to_sgd_epoch
        if epoch == conf['convert_to_sgd_epoch']:
            optimizer = set_optimizer(model, 'sgd', args.lr,
                                      conf['weight_decay'])
            optimizer = LRScheduler(optimizer,
                                    args.lr,
                                    decay_type='always',
                                    decay_start_epoch=0,
                                    decay_rate=0.5)
            logger.info('========== Convert to SGD ==========')
    else:
        # Save the conf file as a yaml file
        save_config(vars(args), os.path.join(save_path, 'conf.yml'))

        # Save the nlsyms, dictionar, and wp_model
        if args.nlsyms:
            shutil.copy(args.nlsyms, os.path.join(save_path, 'nlsyms.txt'))
        shutil.copy(args.dict, os.path.join(save_path, 'dict.txt'))
        if args.unit == 'wp':
            shutil.copy(args.wp_model, os.path.join(save_path, 'wp.model'))

        for k, v in sorted(vars(args).items(), key=lambda x: x[0]):
            logger.info('%s: %s' % (k, str(v)))

        # Count total parameters
        for n in sorted(list(model.num_params_dict.keys())):
            n_params = model.num_params_dict[n]
            logger.info("%s %d" % (n, n_params))
        logger.info("Total %.2f M parameters" %
                    (model.total_parameters / 1000000))
        logger.info(model)

        # Set optimizer
        optimizer = set_optimizer(model, args.optimizer, args.lr,
                                  args.weight_decay)

        # Wrap optimizer by learning rate scheduler
        optimizer = LRScheduler(
            optimizer,
            args.lr,
            decay_type=args.lr_decay_type,
            decay_start_epoch=args.lr_decay_start_epoch,
            decay_rate=args.lr_decay_rate,
            decay_patient_n_epochs=args.lr_decay_patient_n_epochs,
            early_stop_patient_n_epochs=args.early_stop_patient_n_epochs,
            warmup_start_lr=args.warmup_start_lr,
            warmup_n_steps=args.warmup_n_steps,
            model_size=args.d_model,
            factor=args.lr_factor,
            noam=args.lm_type == 'transformer')

    # GPU setting
    if args.n_gpus >= 1:
        model = CustomDataParallel(model,
                                   device_ids=list(range(0, args.n_gpus, 1)),
                                   deterministic=False,
                                   benchmark=True)
        model.cuda()

    # Set process name
    logger.info('PID: %s' % os.getpid())
    logger.info('USERNAME: %s' % os.uname()[1])
    setproctitle(args.job_name if args.job_name else dir_name)

    # Set reporter
    reporter = Reporter(save_path, tensorboard=True)

    hidden = None
    start_time_train = time.time()
    start_time_epoch = time.time()
    start_time_step = time.time()
    pbar_epoch = tqdm(total=len(train_set))
    accum_n_tokens = 0
    while True:
        # Compute loss in the training set
        ys_train, is_new_epoch = train_set.next()
        accum_n_tokens += sum([len(y) for y in ys_train])
        optimizer.zero_grad()
        loss, hidden, reporter = model(ys_train, hidden, reporter)
        # loss /= args.accum_grad_n_steps
        if len(model.device_ids) > 1:
            loss.backward(torch.ones(len(model.device_ids)))
        else:
            loss.backward()
        loss.detach()  # Trancate the graph
        if args.accum_grad_n_tokens == 0 or accum_n_tokens >= args.accum_grad_n_tokens:
            if args.clip_grad_norm > 0:
                torch.nn.utils.clip_grad_norm_(model.module.parameters(),
                                               args.clip_grad_norm)
            optimizer.step()
            optimizer.zero_grad()
            accum_n_tokens = 0
        loss_train = loss.item()
        del loss
        hidden = model.module.repackage_state(hidden)
        reporter.step()

        if optimizer.n_steps % args.print_step == 0:
            # Compute loss in the dev set
            ys_dev = dev_set.next()[0]
            loss, _, reporter = model(ys_dev, None, reporter, is_eval=True)
            loss_dev = loss.item()
            del loss
            reporter.step(is_eval=True)

            duration_step = time.time() - start_time_step
            logger.info(
                "step:%d(ep:%.2f) loss:%.3f(%.3f)/ppl:%.3f(%.3f)/lr:%.5f/bs:%d (%.2f min)"
                % (optimizer.n_steps,
                   optimizer.n_epochs + train_set.epoch_detail, loss_train,
                   loss_dev, np.exp(loss_train), np.exp(loss_dev),
                   optimizer.lr, ys_train.shape[0], duration_step / 60))
            start_time_step = time.time()
        pbar_epoch.update(ys_train.shape[0] * (ys_train.shape[1] - 1))

        # Save fugures of loss and accuracy
        if optimizer.n_steps % (args.print_step * 10) == 0:
            reporter.snapshot()
            if args.lm_type == 'transformer':
                model.module.plot_attention()

        # Save checkpoint and evaluate model per epoch
        if is_new_epoch:
            duration_epoch = time.time() - start_time_epoch
            logger.info('========== EPOCH:%d (%.2f min) ==========' %
                        (optimizer.n_epochs + 1, duration_epoch / 60))

            if optimizer.n_epochs + 1 < args.eval_start_epoch:
                optimizer.epoch()
                reporter.epoch()

                # Save the model
                save_checkpoint(
                    model,
                    save_path,
                    optimizer,
                    optimizer.n_epochs,
                    remove_old_checkpoints=args.lm_type != 'transformer')
            else:
                start_time_eval = time.time()
                # dev
                ppl_dev, _ = eval_ppl([model.module],
                                      dev_set,
                                      batch_size=1,
                                      bptt=args.bptt)
                logger.info('PPL (%s): %.2f' % (dev_set.set, ppl_dev))
                optimizer.epoch(ppl_dev)
                reporter.epoch(ppl_dev, name='perplexity')

                if optimizer.is_best:
                    # Save the model
                    save_checkpoint(
                        model,
                        save_path,
                        optimizer,
                        optimizer.n_epochs,
                        remove_old_checkpoints=args.lm_type != 'transformer')

                    # test
                    ppl_test_avg = 0.
                    for eval_set in eval_sets:
                        ppl_test, _ = eval_ppl([model.module],
                                               eval_set,
                                               batch_size=1,
                                               bptt=args.bptt)
                        logger.info('PPL (%s): %.2f' %
                                    (eval_set.set, ppl_test))
                        ppl_test_avg += ppl_test
                    if len(eval_sets) > 0:
                        logger.info('PPL (avg.): %.2f' %
                                    (ppl_test_avg / len(eval_sets)))

                duration_eval = time.time() - start_time_eval
                logger.info('Evaluation time: %.2f min' % (duration_eval / 60))

                # Early stopping
                if optimizer.is_early_stop:
                    break

                # Convert to fine-tuning stage
                if optimizer.n_epochs == args.convert_to_sgd_epoch:
                    optimizer = set_optimizer(model, 'sgd', args.lr,
                                              args.weight_decay)
                    optimizer = LRScheduler(optimizer,
                                            args.lr,
                                            decay_type='always',
                                            decay_start_epoch=0,
                                            decay_rate=0.5)
                    logger.info('========== Convert to SGD ==========')

            pbar_epoch = tqdm(total=len(train_set))

            if optimizer.n_epochs == args.n_epochs:
                break

            start_time_step = time.time()
            start_time_epoch = time.time()

    duration_train = time.time() - start_time_train
    logger.info('Total time: %.2f hour' % (duration_train / 3600))

    if reporter.tensorboard:
        reporter.tf_writer.close()
    pbar_epoch.close()

    return save_path
예제 #5
0
파일: train.py 프로젝트: fireae/neural_sp
def main():

    args = parse()

    # Load a conf file
    if args.resume:
        conf = load_config(
            os.path.join(os.path.dirname(args.resume), 'conf.yml'))
        for k, v in conf.items():
            if k != 'resume':
                setattr(args, k, v)

    # Load dataset
    train_set = Dataset(corpus=args.corpus,
                        tsv_path=args.train_set,
                        dict_path=args.dict,
                        nlsyms=args.nlsyms,
                        unit=args.unit,
                        wp_model=args.wp_model,
                        batch_size=args.batch_size * args.n_gpus,
                        n_epochs=args.n_epochs,
                        min_n_tokens=args.min_n_tokens,
                        bptt=args.bptt,
                        backward=args.backward,
                        serialize=args.serialize)
    dev_set = Dataset(corpus=args.corpus,
                      tsv_path=args.dev_set,
                      dict_path=args.dict,
                      nlsyms=args.nlsyms,
                      unit=args.unit,
                      wp_model=args.wp_model,
                      batch_size=args.batch_size * args.n_gpus,
                      bptt=args.bptt,
                      backward=args.backward,
                      serialize=args.serialize)
    eval_sets = []
    for s in args.eval_sets:
        eval_sets += [
            Dataset(corpus=args.corpus,
                    tsv_path=s,
                    dict_path=args.dict,
                    nlsyms=args.nlsyms,
                    unit=args.unit,
                    wp_model=args.wp_model,
                    batch_size=1,
                    bptt=args.bptt,
                    backward=args.backward,
                    serialize=args.serialize)
        ]

    args.vocab = train_set.vocab

    # Set save path
    if args.resume:
        save_path = os.path.dirname(args.resume)
        dir_name = os.path.basename(save_path)
    else:
        dir_name = make_model_name(args)
        save_path = mkdir_join(
            args.model_save_dir,
            '_'.join(os.path.basename(args.train_set).split('.')[:-1]),
            dir_name)
        save_path = set_save_path(save_path)  # avoid overwriting

    # Set logger
    logger = set_logger(os.path.join(save_path, 'train.log'), key='training')

    # Model setting
    model = select_lm(args, save_path)

    if args.resume:
        # Set optimizer
        epoch = int(args.resume.split('-')[-1])
        model.set_optimizer(
            optimizer='sgd'
            if epoch > conf['convert_to_sgd_epoch'] + 1 else conf['optimizer'],
            lr=float(conf['learning_rate']),  # on-the-fly
            weight_decay=float(conf['weight_decay']))

        # Restore the last saved model
        model, checkpoint = load_checkpoint(model, args.resume, resume=True)
        lr_controller = checkpoint['lr_controller']
        epoch = checkpoint['epoch']
        step = checkpoint['step']
        ppl_dev_best = checkpoint['metric_dev_best']

        # Resume between convert_to_sgd_epoch and convert_to_sgd_epoch + 1
        if epoch == conf['convert_to_sgd_epoch'] + 1:
            model.set_optimizer(optimizer='sgd',
                                lr=args.learning_rate,
                                weight_decay=float(conf['weight_decay']))
            logger.info('========== Convert to SGD ==========')
    else:
        # Save the conf file as a yaml file
        save_config(vars(args), os.path.join(model.save_path, 'conf.yml'))

        # Save the nlsyms, dictionar, and wp_model
        if args.nlsyms:
            shutil.copy(args.nlsyms, os.path.join(model.save_path,
                                                  'nlsyms.txt'))
        shutil.copy(args.dict, os.path.join(model.save_path, 'dict.txt'))
        if args.unit == 'wp':
            shutil.copy(args.wp_model, os.path.join(model.save_path,
                                                    'wp.model'))

        for k, v in sorted(vars(args).items(), key=lambda x: x[0]):
            logger.info('%s: %s' % (k, str(v)))

        # Count total parameters
        for n in sorted(list(model.num_params_dict.keys())):
            nparams = model.num_params_dict[n]
            logger.info("%s %d" % (n, nparams))
        logger.info("Total %.2f M parameters" %
                    (model.total_parameters / 1000000))
        logger.info(model)

        # Set optimizer
        model.set_optimizer(optimizer=args.optimizer,
                            lr=float(args.learning_rate),
                            weight_decay=float(args.weight_decay),
                            transformer=args.lm_type == 'transformer')

        epoch, step = 1, 1
        ppl_dev_best = 10000

        # Set learning rate controller
        lr_controller = Controller(
            lr=float(args.learning_rate),
            decay_type=args.decay_type,
            decay_start_epoch=args.decay_start_epoch,
            decay_rate=args.decay_rate,
            decay_patient_n_epochs=args.decay_patient_n_epochs,
            lower_better=True,
            best_value=ppl_dev_best,
            model_size=args.d_model,
            warmup_start_lr=args.warmup_start_learning_rate,
            warmup_n_steps=args.warmup_n_steps,
            lr_factor=args.learning_rate_factor,
            transformer=args.lm_type == 'transformer')

    train_set.epoch = epoch - 1  # start from index:0

    # GPU setting
    if args.n_gpus >= 1:
        model = CustomDataParallel(model,
                                   device_ids=list(range(0, args.n_gpus, 1)),
                                   deterministic=False,
                                   benchmark=True)
        model.cuda()

    logger.info('PID: %s' % os.getpid())
    logger.info('USERNAME: %s' % os.uname()[1])

    # Set process name
    if args.job_name:
        setproctitle(args.job_name)
    else:
        setproctitle(dir_name)

    # Set reporter
    reporter = Reporter(model.module.save_path, tensorboard=True)

    hidden = None
    start_time_train = time.time()
    start_time_epoch = time.time()
    start_time_step = time.time()
    not_improved_epoch = 0
    pbar_epoch = tqdm(total=len(train_set))
    while True:
        # Compute loss in the training set
        ys_train, is_new_epoch = train_set.next()

        model.module.optimizer.zero_grad()
        loss, hidden, reporter = model(ys_train, hidden, reporter)
        if len(model.device_ids) > 1:
            loss.backward(torch.ones(len(model.device_ids)))
        else:
            loss.backward()
        loss.detach()  # Trancate the graph
        if args.clip_grad_norm > 0:
            torch.nn.utils.clip_grad_norm_(model.module.parameters(),
                                           args.clip_grad_norm)
        model.module.optimizer.step()
        loss_train = loss.item()
        del loss
        if 'gated_conv' not in args.lm_type and args.lm_type != 'transformer':
            hidden = model.module.repackage_hidden(hidden)
        reporter.step(is_eval=False)

        # Update learning rate
        if step < args.warmup_n_steps or args.lm_type == 'transformer':
            model.module.optimizer = lr_controller.warmup(
                model.module.optimizer, step=step)

        if step % args.print_step == 0:
            # Compute loss in the dev set
            ys_dev = dev_set.next()[0]
            loss, _, reporter = model(ys_dev, None, reporter, is_eval=True)
            loss_dev = loss.item()
            del loss
            reporter.step(is_eval=True)

            duration_step = time.time() - start_time_step
            logger.info(
                "step:%d(ep:%.2f) loss:%.3f(%.3f)/ppl:%.3f(%.3f)/lr:%.5f/bs:%d (%.2f min)"
                % (step, train_set.epoch_detail, loss_train, loss_dev,
                   np.exp(loss_train), np.exp(loss_dev), lr_controller.lr,
                   ys_train.shape[0], duration_step / 60))
            start_time_step = time.time()
        step += args.n_gpus
        pbar_epoch.update(ys_train.shape[0] * (ys_train.shape[1] - 1))

        # Save fugures of loss and accuracy
        if step % (args.print_step * 10) == 0:
            reporter.snapshot()
            if args.lm_type == 'transformer':
                model.module.plot_attention()

        # Save checkpoint and evaluate model per epoch
        if is_new_epoch:
            duration_epoch = time.time() - start_time_epoch
            logger.info('========== EPOCH:%d (%.2f min) ==========' %
                        (epoch, duration_epoch / 60))

            if epoch < args.eval_start_epoch:
                # Save the model
                save_checkpoint(model.module,
                                model.module.save_path,
                                lr_controller,
                                epoch,
                                step - 1,
                                ppl_dev_best,
                                remove_old_checkpoints=True)
            else:
                start_time_eval = time.time()
                # dev
                ppl_dev, _ = eval_ppl([model.module],
                                      dev_set,
                                      batch_size=1,
                                      bptt=args.bptt)
                logger.info('PPL (%s): %.2f' % (dev_set.set, ppl_dev))

                # Update learning rate
                model.module.optimizer = lr_controller.decay(
                    model.module.optimizer, epoch=epoch, value=ppl_dev)

                if ppl_dev < ppl_dev_best:
                    ppl_dev_best = ppl_dev
                    not_improved_epoch = 0
                    logger.info('||||| Best Score |||||')

                    # Save the model
                    save_checkpoint(model.module,
                                    model.module.save_path,
                                    lr_controller,
                                    epoch,
                                    step - 1,
                                    ppl_dev_best,
                                    remove_old_checkpoints=True)

                    # test
                    ppl_test_avg = 0.
                    for eval_set in eval_sets:
                        ppl_test, _ = eval_ppl([model.module],
                                               eval_set,
                                               batch_size=1,
                                               bptt=args.bptt)
                        logger.info('PPL (%s): %.2f' %
                                    (eval_set.set, ppl_test))
                        ppl_test_avg += ppl_test
                    if len(eval_sets) > 0:
                        logger.info('PPL (avg.): %.2f' %
                                    (ppl_test_avg / len(eval_sets)))
                else:
                    not_improved_epoch += 1

                duration_eval = time.time() - start_time_eval
                logger.info('Evaluation time: %.2f min' % (duration_eval / 60))

                # Early stopping
                if not_improved_epoch == args.not_improved_patient_n_epochs:
                    break

                # Convert to fine-tuning stage
                if epoch == args.convert_to_sgd_epoch:
                    model.module.set_optimizer('sgd',
                                               lr=args.learning_rate,
                                               weight_decay=float(
                                                   args.weight_decay))
                    lr_controller = Controller(lr=args.learning_rate,
                                               decay_type='epoch',
                                               decay_start_epoch=epoch,
                                               decay_rate=0.5,
                                               lower_better=True)
                    logger.info('========== Convert to SGD ==========')

            pbar_epoch = tqdm(total=len(train_set))

            if epoch == args.n_epochs:
                break

            start_time_step = time.time()
            start_time_epoch = time.time()
            epoch += 1

    duration_train = time.time() - start_time_train
    logger.info('Total time: %.2f hour' % (duration_train / 3600))

    if reporter.tensorboard:
        reporter.tf_writer.close()
    pbar_epoch.close()

    return model.module.save_path
예제 #6
0
파일: train.py 프로젝트: fireae/neural_sp
def main():

    args = parse()
    args_pt = copy.deepcopy(args)
    args_teacher = copy.deepcopy(args)

    # Load a conf file
    if args.resume:
        conf = load_config(
            os.path.join(os.path.dirname(args.resume), 'conf.yml'))
        for k, v in conf.items():
            if k != 'resume':
                setattr(args, k, v)
    recog_params = vars(args)

    # Automatically reduce batch size in multi-GPU setting
    if args.n_gpus > 1:
        args.batch_size -= 10
        args.print_step //= args.n_gpus

    # Compute subsampling factor
    subsample_factor = 1
    subsample_factor_sub1 = 1
    subsample_factor_sub2 = 1
    subsample = [int(s) for s in args.subsample.split('_')]
    if args.conv_poolings and 'conv' in args.enc_type:
        for p in args.conv_poolings.split('_'):
            subsample_factor *= int(p.split(',')[0].replace('(', ''))
    else:
        subsample_factor = np.prod(subsample)
    if args.train_set_sub1:
        if args.conv_poolings and 'conv' in args.enc_type:
            subsample_factor_sub1 = subsample_factor * np.prod(
                subsample[:args.enc_n_layers_sub1 - 1])
        else:
            subsample_factor_sub1 = subsample_factor
    if args.train_set_sub2:
        if args.conv_poolings and 'conv' in args.enc_type:
            subsample_factor_sub2 = subsample_factor * np.prod(
                subsample[:args.enc_n_layers_sub2 - 1])
        else:
            subsample_factor_sub2 = subsample_factor

    skip_thought = 'skip' in args.enc_type
    transformer = 'transformer' in args.enc_type or args.dec_type == 'transformer'

    # Load dataset
    train_set = Dataset(corpus=args.corpus,
                        tsv_path=args.train_set,
                        tsv_path_sub1=args.train_set_sub1,
                        tsv_path_sub2=args.train_set_sub2,
                        dict_path=args.dict,
                        dict_path_sub1=args.dict_sub1,
                        dict_path_sub2=args.dict_sub2,
                        nlsyms=args.nlsyms,
                        unit=args.unit,
                        unit_sub1=args.unit_sub1,
                        unit_sub2=args.unit_sub2,
                        wp_model=args.wp_model,
                        wp_model_sub1=args.wp_model_sub1,
                        wp_model_sub2=args.wp_model_sub2,
                        batch_size=args.batch_size * args.n_gpus,
                        n_epochs=args.n_epochs,
                        min_n_frames=args.min_n_frames,
                        max_n_frames=args.max_n_frames,
                        sort_by_input_length=True,
                        short2long=True,
                        sort_stop_epoch=args.sort_stop_epoch,
                        dynamic_batching=args.dynamic_batching,
                        ctc=args.ctc_weight > 0,
                        ctc_sub1=args.ctc_weight_sub1 > 0,
                        ctc_sub2=args.ctc_weight_sub2 > 0,
                        subsample_factor=subsample_factor,
                        subsample_factor_sub1=subsample_factor_sub1,
                        subsample_factor_sub2=subsample_factor_sub2,
                        discourse_aware=args.discourse_aware,
                        skip_thought=skip_thought)
    dev_set = Dataset(corpus=args.corpus,
                      tsv_path=args.dev_set,
                      tsv_path_sub1=args.dev_set_sub1,
                      tsv_path_sub2=args.dev_set_sub2,
                      dict_path=args.dict,
                      dict_path_sub1=args.dict_sub1,
                      dict_path_sub2=args.dict_sub2,
                      nlsyms=args.nlsyms,
                      unit=args.unit,
                      unit_sub1=args.unit_sub1,
                      unit_sub2=args.unit_sub2,
                      wp_model=args.wp_model,
                      wp_model_sub1=args.wp_model_sub1,
                      wp_model_sub2=args.wp_model_sub2,
                      batch_size=args.batch_size * args.n_gpus,
                      min_n_frames=args.min_n_frames,
                      max_n_frames=args.max_n_frames,
                      shuffle=True if args.discourse_aware else False,
                      ctc=args.ctc_weight > 0,
                      ctc_sub1=args.ctc_weight_sub1 > 0,
                      ctc_sub2=args.ctc_weight_sub2 > 0,
                      subsample_factor=subsample_factor,
                      subsample_factor_sub1=subsample_factor_sub1,
                      subsample_factor_sub2=subsample_factor_sub2,
                      discourse_aware=args.discourse_aware,
                      skip_thought=skip_thought)
    eval_sets = []
    for s in args.eval_sets:
        eval_sets += [
            Dataset(corpus=args.corpus,
                    tsv_path=s,
                    dict_path=args.dict,
                    nlsyms=args.nlsyms,
                    unit=args.unit,
                    wp_model=args.wp_model,
                    batch_size=1,
                    discourse_aware=args.discourse_aware,
                    skip_thought=skip_thought,
                    is_test=True)
        ]

    args.vocab = train_set.vocab
    args.vocab_sub1 = train_set.vocab_sub1
    args.vocab_sub2 = train_set.vocab_sub2
    args.input_dim = train_set.input_dim

    # Load a LM conf file for LM fusion & LM initialization
    if not args.resume and (args.lm_fusion or args.lm_init):
        if args.lm_fusion:
            lm_conf = load_config(
                os.path.join(os.path.dirname(args.lm_fusion), 'conf.yml'))
        elif args.lm_init:
            lm_conf = load_config(
                os.path.join(os.path.dirname(args.lm_init), 'conf.yml'))
        args.lm_conf = argparse.Namespace()
        for k, v in lm_conf.items():
            setattr(args.lm_conf, k, v)
        assert args.unit == args.lm_conf.unit
        assert args.vocab == args.lm_conf.vocab

    # Set save path
    if args.resume:
        save_path = os.path.dirname(args.resume)
        dir_name = os.path.basename(save_path)
    else:
        dir_name = make_model_name(args, subsample_factor)
        save_path = mkdir_join(
            args.model_save_dir,
            '_'.join(os.path.basename(args.train_set).split('.')[:-1]),
            dir_name)
        save_path = set_save_path(save_path)  # avoid overwriting

    # Set logger
    logger = set_logger(os.path.join(save_path, 'train.log'), key='training')

    # Model setting
    model = SkipThought(args, save_path) if skip_thought else Speech2Text(
        args, save_path)

    if args.resume:
        # Set optimizer
        epoch = int(args.resume.split('-')[-1])
        model.set_optimizer(
            optimizer='sgd'
            if epoch > conf['convert_to_sgd_epoch'] + 1 else conf['optimizer'],
            lr=float(conf['learning_rate']),  # on-the-fly
            weight_decay=float(conf['weight_decay']))

        # Restore the last saved model
        model, checkpoint = load_checkpoint(model, args.resume, resume=True)
        lr_controller = checkpoint['lr_controller']
        epoch = checkpoint['epoch']
        step = checkpoint['step']
        metric_dev_best = checkpoint['metric_dev_best']

        # Resume between convert_to_sgd_epoch and convert_to_sgd_epoch + 1
        if epoch == conf['convert_to_sgd_epoch'] + 1:
            model.set_optimizer(optimizer='sgd',
                                lr=args.learning_rate,
                                weight_decay=float(conf['weight_decay']))
            logger.info('========== Convert to SGD ==========')
    else:
        # Save the conf file as a yaml file
        save_config(vars(args), os.path.join(model.save_path, 'conf.yml'))
        if args.lm_fusion:
            save_config(args.lm_conf,
                        os.path.join(model.save_path, 'conf_lm.yml'))

        # Save the nlsyms, dictionar, and wp_model
        if args.nlsyms:
            shutil.copy(args.nlsyms, os.path.join(model.save_path,
                                                  'nlsyms.txt'))
        for sub in ['', '_sub1', '_sub2']:
            if getattr(args, 'dict' + sub):
                shutil.copy(
                    getattr(args, 'dict' + sub),
                    os.path.join(model.save_path, 'dict' + sub + '.txt'))
            if getattr(args, 'unit' + sub) == 'wp':
                shutil.copy(
                    getattr(args, 'wp_model' + sub),
                    os.path.join(model.save_path, 'wp' + sub + '.model'))

        for k, v in sorted(vars(args).items(), key=lambda x: x[0]):
            logger.info('%s: %s' % (k, str(v)))

        # Count total parameters
        for n in sorted(list(model.num_params_dict.keys())):
            nparams = model.num_params_dict[n]
            logger.info("%s %d" % (n, nparams))
        logger.info("Total %.2f M parameters" %
                    (model.total_parameters / 1000000))
        logger.info(model)

        # Initialize with pre-trained model's parameters
        if args.pretrained_model and os.path.isfile(args.pretrained_model):
            # Load the ASR model
            conf_pt = load_config(
                os.path.join(os.path.dirname(args.pretrained_model),
                             'conf.yml'))
            for k, v in conf_pt.items():
                setattr(args_pt, k, v)
            model_pt = Speech2Text(args_pt)
            model_pt, _ = load_checkpoint(model_pt, args.pretrained_model)

            # Overwrite parameters
            only_enc = (args.enc_n_layers != args_pt.enc_n_layers) or (
                args.unit != args_pt.unit) or args_pt.ctc_weight == 1
            param_dict = dict(model_pt.named_parameters())
            for n, p in model.named_parameters():
                if n in param_dict.keys() and p.size() == param_dict[n].size():
                    if only_enc and 'enc' not in n:
                        continue
                    if args.lm_fusion_type == 'cache' and 'output' in n:
                        continue
                    p.data = param_dict[n].data
                    logger.info('Overwrite %s' % n)

        # Set optimizer
        model.set_optimizer(optimizer=args.optimizer,
                            lr=float(args.learning_rate),
                            weight_decay=float(args.weight_decay),
                            transformer=transformer)

        epoch, step = 1, 1
        metric_dev_best = 10000

        # Set learning rate controller
        lr_controller = Controller(
            lr=float(args.learning_rate),
            decay_type=args.decay_type,
            decay_start_epoch=args.decay_start_epoch,
            decay_rate=args.decay_rate,
            decay_patient_n_epochs=args.decay_patient_n_epochs,
            lower_better=True,
            best_value=metric_dev_best,
            model_size=args.d_model,
            warmup_start_lr=args.warmup_start_learning_rate,
            warmup_n_steps=args.warmup_n_steps,
            lr_factor=args.learning_rate_factor,
            transformer=transformer)

    train_set.epoch = epoch - 1  # start from index:0

    # Load the teacher ASR model
    teacher = None
    teacher_lm = None
    if args.teacher and os.path.isfile(args.teacher):
        conf_teacher = load_config(
            os.path.join(os.path.dirname(args.teacher), 'conf.yml'))
        for k, v in conf_teacher.items():
            setattr(args_teacher, k, v)
        # Setting for knowledge distillation
        args_teacher.ss_prob = 0
        args.lsm_prob = 0
        teacher = Speech2Text(args_teacher)
        teacher, _ = load_checkpoint(teacher, args.teacher)

        # Load the teacher LM
        if args.teacher_lm and os.path.isfile(args.teacher_lm):
            conf_lm = load_config(
                os.path.join(os.path.dirname(args.teacher_lm), 'conf.yml'))
            args_lm = argparse.Namespace()
            for k, v in conf_lm.items():
                setattr(args_lm, k, v)
            teacher_lm = select_lm(args_lm)
            teacher_lm, _ = load_checkpoint(teacher_lm, args.teacher_lm)

    # GPU setting
    if args.n_gpus >= 1:
        model = CustomDataParallel(model,
                                   device_ids=list(range(0, args.n_gpus, 1)),
                                   deterministic=False,
                                   benchmark=True)
        model.cuda()
        if teacher is not None:
            teacher.cuda()
        if teacher_lm is not None:
            teacher_lm.cuda()

    logger.info('PID: %s' % os.getpid())
    logger.info('USERNAME: %s' % os.uname()[1])

    # Set process name
    if args.job_name:
        setproctitle(args.job_name)
    else:
        setproctitle(dir_name)

    # Set reporter
    reporter = Reporter(model.module.save_path, tensorboard=True)

    if args.mtl_per_batch:
        # NOTE: from easier to harder tasks
        tasks = []
        if 1 - args.bwd_weight - args.ctc_weight - args.sub1_weight - args.sub2_weight > 0:
            tasks += ['ys']
        if args.bwd_weight > 0:
            tasks = ['ys.bwd'] + tasks
        if args.ctc_weight > 0:
            tasks = ['ys.ctc'] + tasks
        if args.lmobj_weight > 0:
            tasks = ['ys.lmobj'] + tasks
        for sub in ['sub1', 'sub2']:
            if getattr(args, 'train_set_' + sub):
                if getattr(args, sub + '_weight') - getattr(
                        args, 'ctc_weight_' + sub) > 0:
                    tasks = ['ys_' + sub] + tasks
                if getattr(args, 'ctc_weight_' + sub) > 0:
                    tasks = ['ys_' + sub + '.ctc'] + tasks
    else:
        tasks = ['all']

    start_time_train = time.time()
    start_time_epoch = time.time()
    start_time_step = time.time()
    not_improved_n_epochs = 0
    pbar_epoch = tqdm(total=len(train_set))
    accum_n_tokens = 0
    while True:
        # Compute loss in the training set
        batch_train, is_new_epoch = train_set.next()
        accum_n_tokens += sum([len(y) for y in batch_train['ys']])

        # Change tasks depending on task
        for task in tasks:
            if skip_thought:
                loss, reporter = model(batch_train['ys'],
                                       ys_prev=batch_train['ys_prev'],
                                       ys_next=batch_train['ys_next'],
                                       reporter=reporter)
            else:
                loss, reporter = model(batch_train,
                                       reporter=reporter,
                                       task=task,
                                       teacher=teacher,
                                       teacher_lm=teacher_lm)
            # loss /= args.accum_grad_n_steps
            if len(model.device_ids) > 1:
                loss.backward(torch.ones(len(model.device_ids)))
            else:
                loss.backward()
            loss.detach()  # Trancate the graph
            if args.accum_grad_n_tokens == 0 or accum_n_tokens >= args.accum_grad_n_tokens:
                if args.clip_grad_norm > 0:
                    torch.nn.utils.clip_grad_norm_(model.module.parameters(),
                                                   args.clip_grad_norm)
                model.module.optimizer.step()
                model.module.optimizer.zero_grad()
                accum_n_tokens = 0
            loss_train = loss.item()
            del loss

        reporter.step(is_eval=False)

        # Update learning rate
        if step < args.warmup_n_steps or transformer:
            model.module.optimizer = lr_controller.warmup(
                model.module.optimizer, step=step)

        if step % args.print_step == 0:
            # Compute loss in the dev set
            batch_dev = dev_set.next()[0]
            # Change tasks depending on task
            for task in tasks:
                if skip_thought:
                    loss, reporter = model(batch_dev['ys'],
                                           ys_prev=batch_dev['ys_prev'],
                                           ys_next=batch_dev['ys_next'],
                                           reporter=reporter,
                                           is_eval=True)
                else:
                    loss, reporter = model(batch_dev,
                                           reporter=reporter,
                                           task=task,
                                           is_eval=True)
                loss_dev = loss.item()
                del loss
            reporter.step(is_eval=True)

            duration_step = time.time() - start_time_step
            if args.input_type == 'speech':
                xlen = max(len(x) for x in batch_train['xs'])
                ylen = max(len(y) for y in batch_train['ys'])
            elif args.input_type == 'text':
                xlen = max(len(x) for x in batch_train['ys'])
                ylen = max(len(y) for y in batch_train['ys_sub1'])
            logger.info(
                "step:%d(ep:%.2f) loss:%.3f(%.3f)/lr:%.5f/bs:%d/xlen:%d/ylen:%d (%.2f min)"
                % (step, train_set.epoch_detail, loss_train, loss_dev,
                   lr_controller.lr, len(batch_train['utt_ids']), xlen, ylen,
                   duration_step / 60))
            start_time_step = time.time()
        step += args.n_gpus
        pbar_epoch.update(len(batch_train['utt_ids']))

        # Save fugures of loss and accuracy
        if step % (args.print_step * 10) == 0:
            reporter.snapshot()
            model.module.plot_attention()

        # Save checkpoint and evaluate model per epoch
        if is_new_epoch:
            duration_epoch = time.time() - start_time_epoch
            logger.info('========== EPOCH:%d (%.2f min) ==========' %
                        (epoch, duration_epoch / 60))

            if epoch < args.eval_start_epoch:
                # Save the model
                save_checkpoint(model.module,
                                model.module.save_path,
                                lr_controller,
                                epoch,
                                step - 1,
                                metric_dev_best,
                                remove_old_checkpoints=True)
                reporter._epoch += 1
                # TODO(hirofumi): fix later
            else:
                start_time_eval = time.time()
                # dev
                if args.metric == 'edit_distance':
                    if args.unit in ['word', 'word_char']:
                        metric_dev = eval_word([model.module],
                                               dev_set,
                                               recog_params,
                                               epoch=epoch)[0]
                        logger.info('WER (%s): %.2f %%' %
                                    (dev_set.set, metric_dev))
                    elif args.unit == 'wp':
                        metric_dev, cer_dev = eval_wordpiece([model.module],
                                                             dev_set,
                                                             recog_params,
                                                             epoch=epoch)
                        logger.info('WER (%s): %.2f %%' %
                                    (dev_set.set, metric_dev))
                        logger.info('CER (%s): %.2f %%' %
                                    (dev_set.set, cer_dev))
                    elif 'char' in args.unit:
                        metric_dev, cer_dev = eval_char([model.module],
                                                        dev_set,
                                                        recog_params,
                                                        epoch=epoch)
                        logger.info('WER (%s): %.2f %%' %
                                    (dev_set.set, metric_dev))
                        logger.info('CER (%s): %.2f %%' %
                                    (dev_set.set, cer_dev))
                    elif 'phone' in args.unit:
                        metric_dev = eval_phone([model.module],
                                                dev_set,
                                                recog_params,
                                                epoch=epoch)
                        logger.info('PER (%s): %.2f %%' %
                                    (dev_set.set, metric_dev))
                elif args.metric == 'ppl':
                    metric_dev = eval_ppl([model.module],
                                          dev_set,
                                          batch_size=args.batch_size)[0]
                    logger.info('PPL (%s): %.2f' % (dev_set.set, metric_dev))
                elif args.metric == 'loss':
                    metric_dev = eval_ppl([model.module],
                                          dev_set,
                                          batch_size=args.batch_size)[1]
                    logger.info('Loss (%s): %.2f' % (dev_set.set, metric_dev))
                else:
                    raise NotImplementedError(args.metric)
                reporter.epoch(metric_dev)

                # Update learning rate
                model.module.optimizer = lr_controller.decay(
                    model.module.optimizer, epoch=epoch, value=metric_dev)

                if metric_dev < metric_dev_best:
                    metric_dev_best = metric_dev
                    not_improved_n_epochs = 0
                    logger.info('||||| Best Score |||||')

                    # Save the model
                    save_checkpoint(model.module,
                                    model.module.save_path,
                                    lr_controller,
                                    epoch,
                                    step - 1,
                                    metric_dev_best,
                                    remove_old_checkpoints=True)

                    # test
                    for s in eval_sets:
                        if args.metric == 'edit_distance':
                            if args.unit in ['word', 'word_char']:
                                wer_test = eval_word([model.module],
                                                     s,
                                                     recog_params,
                                                     epoch=epoch)[0]
                                logger.info('WER (%s): %.2f %%' %
                                            (s.set, wer_test))
                            elif args.unit == 'wp':
                                wer_test, cer_test = eval_wordpiece(
                                    [model.module],
                                    s,
                                    recog_params,
                                    epoch=epoch)
                                logger.info('WER (%s): %.2f %%' %
                                            (s.set, wer_test))
                                logger.info('CER (%s): %.2f %%' %
                                            (s.set, cer_test))
                            elif 'char' in args.unit:
                                wer_test, cer_test = eval_char([model.module],
                                                               s,
                                                               recog_params,
                                                               epoch=epoch)
                                logger.info('WER (%s): %.2f %%' %
                                            (s.set, wer_test))
                                logger.info('CER (%s): %.2f %%' %
                                            (s.set, cer_test))
                            elif 'phone' in args.unit:
                                per_test = eval_phone([model.module],
                                                      s,
                                                      recog_params,
                                                      epoch=epoch)
                                logger.info('PER (%s): %.2f %%' %
                                            (s.set, per_test))
                        elif args.metric == 'ppl':
                            ppl_test = eval_ppl([model.module],
                                                s,
                                                batch_size=args.batch_size)[0]
                            logger.info('PPL (%s): %.2f' % (s.set, ppl_test))
                        elif args.metric == 'loss':
                            loss_test = eval_ppl([model.module],
                                                 s,
                                                 batch_size=args.batch_size)[1]
                            logger.info('Loss (%s): %.2f' % (s.set, loss_test))
                        else:
                            raise NotImplementedError(args.metric)
                else:
                    not_improved_n_epochs += 1

                    # start scheduled sampling
                    if args.ss_prob > 0:
                        model.module.scheduled_sampling_trigger()

                duration_eval = time.time() - start_time_eval
                logger.info('Evaluation time: %.2f min' % (duration_eval / 60))

                # Early stopping
                if not_improved_n_epochs == args.not_improved_patient_n_epochs:
                    break

                # Convert to fine-tuning stage
                if epoch == args.convert_to_sgd_epoch:
                    model.module.set_optimizer('sgd',
                                               lr=args.learning_rate,
                                               weight_decay=float(
                                                   args.weight_decay))
                    lr_controller = Controller(lr=args.learning_rate,
                                               decay_type='epoch',
                                               decay_start_epoch=epoch,
                                               decay_rate=0.5,
                                               lower_better=True)
                    logger.info('========== Convert to SGD ==========')

            pbar_epoch = tqdm(total=len(train_set))

            if epoch == args.n_epochs:
                break

            start_time_step = time.time()
            start_time_epoch = time.time()
            epoch += 1

    duration_train = time.time() - start_time_train
    logger.info('Total time: %.2f hour' % (duration_train / 3600))

    if reporter.tensorboard:
        reporter.tf_writer.close()
    pbar_epoch.close()

    return model.module.save_path
예제 #7
0
def main():

    args = parse()

    # Load a conf file
    dir_name = os.path.dirname(args.recog_model[0])
    conf = load_config(os.path.join(dir_name, 'conf.yml'))

    # Overwrite conf
    for k, v in conf.items():
        if 'recog' not in k:
            setattr(args, k, v)

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'plot.log')):
        os.remove(os.path.join(args.recog_dir, 'plot.log'))
    logger = set_logger(os.path.join(args.recog_dir, 'plot.log'),
                        key='decoding')

    for i, s in enumerate(args.recog_sets):
        # Load dataset
        dataset = Dataset(corpus=args.corpus,
                          tsv_path=s,
                          dict_path=os.path.join(dir_name, 'dict.txt'),
                          wp_model=os.path.join(dir_name, 'wp.model'),
                          unit=args.unit,
                          batch_size=args.recog_batch_size,
                          bptt=args.bptt,
                          backward=args.backward,
                          serialize=args.serialize,
                          is_test=True)

        if i == 0:
            # Load the LM
            model = select_lm(args, dir_name)
            model, checkpoint = load_checkpoint(model, args.recog_model[0])
            epoch = checkpoint['epoch']

            logger.info('epoch: %d' % (epoch - 1))
            logger.info('batch size: %d' % args.recog_batch_size)
            # logger.info('recog unit: %s' % args.recog_unit)
            # logger.info('ensemble: %d' % (len(ensemble_models)))
            logger.info('BPTT: %d' % (args.bptt))
            logger.info('cache size: %d' % (args.recog_n_caches))
            logger.info('cache theta: %.3f' % (args.recog_cache_theta))
            logger.info('cache lambda: %.3f' % (args.recog_cache_lambda))
            model.cache_theta = args.recog_cache_theta
            model.cache_lambda = args.recog_cache_lambda

            # GPU setting
            model.cuda()

        assert args.recog_n_caches > 0
        save_path = mkdir_join(args.recog_dir, 'cache')

        # Clean directory
        if save_path is not None and os.path.isdir(save_path):
            shutil.rmtree(save_path)
            os.mkdir(save_path)

        hidden = None
        fig_count = 0
        toknen_count = 0
        n_tokens = args.recog_n_caches
        while True:
            ys, is_new_epoch = dataset.next()

            for t in range(ys.shape[1] - 1):
                loss, hidden = model(ys[:, t:t + 2],
                                     hidden,
                                     is_eval=True,
                                     n_caches=args.recog_n_caches)[:2]

                if len(model.cache_attn) > 0:
                    if toknen_count == n_tokens:
                        tokens_keys = dataset.idx2token[0](
                            model.cache_ids[:args.recog_n_caches],
                            return_list=True)
                        tokens_query = dataset.idx2token[0](
                            model.cache_ids[-n_tokens:], return_list=True)

                        # Slide attention matrix
                        n_keys = len(tokens_keys)
                        n_queries = len(tokens_query)
                        cache_probs = np.zeros(
                            (n_keys, n_queries))  # `[n_keys, n_queries]`
                        mask = np.zeros((n_keys, n_queries))
                        for i, aw in enumerate(model.cache_attn[-n_tokens:]):
                            cache_probs[:(n_keys - n_queries + i + 1),
                                        i] = aw[0,
                                                -(n_keys - n_queries + i + 1):]
                            mask[(n_keys - n_queries + i + 1):, i] = 1

                        plot_cache_weights(cache_probs,
                                           keys=tokens_keys,
                                           queries=tokens_query,
                                           save_path=mkdir_join(
                                               save_path,
                                               str(fig_count) + '.png'),
                                           figsize=(40, 16),
                                           mask=mask)
                        toknen_count = 0
                        fig_count += 1
                    else:
                        toknen_count += 1

            if is_new_epoch:
                break